An hp-adaptive finite element method for electromagnetics. Part 3: A three-dimensional infinite element for Maxwell's equations

This paper is a continuation of Reference [26] (Cecot, Demkowicz and Rachowicz, Computer Methods in Applied Mechanics and Engineering 2000; 188: 625–643) and describes an implementation of the infinite element for three‐dimensional, time harmonic Maxwell's equations, proposed in Reference [15]...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal for numerical methods in engineering Ročník 57; číslo 7; s. 899 - 921
Hlavní autori: Cecot, W., Rachowicz, W., Demkowicz, L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester, UK John Wiley & Sons, Ltd 21.06.2003
Predmet:
ISSN:0029-5981, 1097-0207
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper is a continuation of Reference [26] (Cecot, Demkowicz and Rachowicz, Computer Methods in Applied Mechanics and Engineering 2000; 188: 625–643) and describes an implementation of the infinite element for three‐dimensional, time harmonic Maxwell's equations, proposed in Reference [15] (Demkowicz and Pal, Computer Methods in Applied Mechanics and Engineering 1998; 164: 77–94). The element is compatible with the hp finite element discretizations for Maxwell's equations in bounded domains reported in References [16–18] (Computer Methods in Applied Mechanics and Engineering 1998; 152: 103–124, 1999; 169: 331–344, 2000; 187: 307–337). Copyright © 2003 John Wiley & Sons, Ltd.
AbstractList This paper is a continuation of Reference [26] (Cecot, Demkowicz and Rachowicz, Computer Methods in Applied Mechanics and Engineering 2000; 188: 625-643) and describes an implementation of the infinite element for three-dimensional, time harmonic Maxwell's equations, proposed in Reference [15] (Demkowicz and Pal, Computer Methods in Applied Mechanics and Engineering 1998; 164: 77-94). The element is compatible with the hp finite element discretizations for Maxwell's equations in bounded domains reported in
This paper is a continuation of Reference [26] (Cecot, Demkowicz and Rachowicz, Computer Methods in Applied Mechanics and Engineering 2000; 188 : 625–643) and describes an implementation of the infinite element for three‐dimensional, time harmonic Maxwell's equations, proposed in Reference [15] (Demkowicz and Pal, Computer Methods in Applied Mechanics and Engineering 1998; 164 : 77–94). The element is compatible with the hp finite element discretizations for Maxwell's equations in bounded domains reported in References [16–18] ( Computer Methods in Applied Mechanics and Engineering 1998; 152 : 103–124, 1999; 169 : 331–344, 2000; 187 : 307–337). Copyright © 2003 John Wiley & Sons, Ltd.
This paper is a continuation of Reference [26] (Cecot, Demkowicz and Rachowicz, Computer Methods in Applied Mechanics and Engineering 2000; 188: 625–643) and describes an implementation of the infinite element for three‐dimensional, time harmonic Maxwell's equations, proposed in Reference [15] (Demkowicz and Pal, Computer Methods in Applied Mechanics and Engineering 1998; 164: 77–94). The element is compatible with the hp finite element discretizations for Maxwell's equations in bounded domains reported in References [16–18] (Computer Methods in Applied Mechanics and Engineering 1998; 152: 103–124, 1999; 169: 331–344, 2000; 187: 307–337). Copyright © 2003 John Wiley & Sons, Ltd.
This paper is a continuation of Reference [26] (Cecot, Demkowicz and Rachowicz, Computer Methods in Applied Mechanics and Engineering 2000; 188: 625-643) and describes an implementation of the infinite element for three-dimensional, time harmonic Maxwell's equations, proposed in Reference [15] (Demkowicz and Pal, Computer Methods in Applied Mechanics and Engineering 1998; 164: 77-94). The element is compatible with the hp finite element discretizations for Maxwell's equations in bounded domains reported in References [16-18] (Computer Methods in Applied Mechanics and Engineering 1998; 152: 103-124, 1999; 169: 331-344, 2000; 187: 307-337).
Author Cecot, W.
Demkowicz, L.
Rachowicz, W.
Author_xml – sequence: 1
  givenname: W.
  surname: Cecot
  fullname: Cecot, W.
  organization: Texas Institute for Computational and Applied Mathematics, The University of Texas at Austin, Austin, TX 78712, U.S.A
– sequence: 2
  givenname: W.
  surname: Rachowicz
  fullname: Rachowicz, W.
  organization: Texas Institute for Computational and Applied Mathematics, The University of Texas at Austin, Austin, TX 78712, U.S.A
– sequence: 3
  givenname: L.
  surname: Demkowicz
  fullname: Demkowicz, L.
  email: leszek@ticam.utexas.edu
  organization: Texas Institute for Computational and Applied Mathematics, The University of Texas at Austin, Austin, TX 78712, U.S.A
BookMark eNp90ctKAzEUBuAgCtYLvkJWKsjUnMlMp3FXxLtWBcFlSDNnbHQmU5PUy8pXN7UiKOoqcPLl54R_hSza1iIhG8C6wFi6axvsFsAXSAeYKBKWsmKRdOKNSHLRh2Wy4v09YwA54x3yNrB0PElUqSbBPCGtjDUBKdbYoA20wTBuS1q1bjbSwbWNurMYjPZdeqVcoHyPDmgYO8SkNPGNN61VNTX2R9Is4kK9PGNdb3mKj1MVovRrZKlStcf1z3OV3Bwe3OwfJ-eXRyf7g_NE8x7wJFOal1nFeqCZSivUqKHkoxKKEnItsNcXIisY5qNRzrTIBRegMsFS5ByrjK-SzXnsxLWPU_RBNsbruIuy2E69TIt-xJxHuP0vBNZPQeQgRKRbc6pd673DSk6caZR7jUjOqpCxChmriDL5IbUJH_8PTpn6F78z98-mxte_YuXw4uBbuvEBX760cg-yV_Ail7fDI3l9OoTj09szec3fAUAcq7g
CitedBy_id crossref_primary_10_1016_j_cma_2008_03_007
crossref_primary_10_1137_070689796
crossref_primary_10_1002_nme_2228
crossref_primary_10_1002_nme_5577
crossref_primary_10_1016_j_cma_2007_12_006
crossref_primary_10_1016_j_jcp_2019_04_067
crossref_primary_10_1007_s00466_014_0994_4
crossref_primary_10_1016_j_cma_2006_10_016
crossref_primary_10_1007_s11589_011_0818_y
crossref_primary_10_1016_j_camwa_2005_01_003
crossref_primary_10_1016_j_cma_2004_05_011
crossref_primary_10_1007_s10596_010_9195_1
crossref_primary_10_1109_TMTT_2024_3371399
crossref_primary_10_1002_nme_1227
crossref_primary_10_1016_j_camwa_2016_02_013
crossref_primary_10_1016_j_apnum_2012_02_007
crossref_primary_10_1137_S0036142903436915
crossref_primary_10_1016_j_cma_2004_05_020
crossref_primary_10_1109_TGRS_2006_872094
crossref_primary_10_1016_j_cma_2004_05_025
crossref_primary_10_1080_02726340590936266
crossref_primary_10_1109_TBME_2006_889177
crossref_primary_10_1137_050631732
crossref_primary_10_1016_j_cma_2004_05_026
crossref_primary_10_1016_j_finel_2005_11_007
Cites_doi 10.1109/20.34362
10.1016/S0168-9274(98)00020-8
10.1006/jsvi.1994.1048
10.1090/S0025-5718-02-01411-4
10.1016/0045-7825(89)90129-1
10.1090/S0025-5718-00-01229-1
10.1007/BF01389668
10.1016/S0168-9274(98)00025-7
10.1016/S0045-7825(98)00047-4
10.1007/978-3-663-10649-4
10.1002/nme.396
10.1016/0045-7825(95)00987-6
10.1007/PL00005440
10.1006/jcph.1994.1159
10.1016/S0045-7825(98)00161-3
10.1016/S0898-1221(00)00062-6
10.1007/BF02736182
10.1016/S0045-7825(99)00290-X
10.1007/BF01396415
10.1142/2938
10.1016/S0045-7825(97)00184-9
10.1006/jsvi.1994.1136
10.1121/1.411286
10.1016/S0045-7825(99)00137-1
10.1007/978-3-662-02835-3
ContentType Journal Article
Copyright Copyright © 2003 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2003 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
H8D
DOI 10.1002/nme.713
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Aerospace Database
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Aerospace Database
DatabaseTitleList Civil Engineering Abstracts
CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 921
ExternalDocumentID 10_1002_nme_713
NME713
ark_67375_WNG_QJN1HJWK_Q
Genre article
GrantInformation_xml – fundername: U.S. Air Force
  funderid: F49620‐98‐1‐0255
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
TN5
UB1
V2E
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~A~
~IA
~WT
AAHHS
ABDEX
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
RWS
WRC
AAYXX
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
H8D
ID FETCH-LOGICAL-c3613-4ac3d4f061c0a2fecec1d3bd17d15c9e6899470e5bb50c959391a4902e33ef43
IEDL.DBID DRFUL
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000183603700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Thu Jul 10 23:29:54 EDT 2025
Thu Oct 02 06:30:07 EDT 2025
Sat Nov 29 01:43:46 EST 2025
Tue Nov 18 22:01:40 EST 2025
Wed Jan 22 16:23:10 EST 2025
Tue Nov 11 03:33:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3613-4ac3d4f061c0a2fecec1d3bd17d15c9e6899470e5bb50c959391a4902e33ef43
Notes U.S. Air Force - No. F49620-98-1-0255
ark:/67375/WNG-QJN1HJWK-Q
istex:913AC6B55528E0042F940E351823090DB6F97F73
ArticleID:NME713
On leave from Cracow University of Technology, Poland.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1082195199
PQPubID 23500
PageCount 23
ParticipantIDs proquest_miscellaneous_27890233
proquest_miscellaneous_1082195199
crossref_primary_10_1002_nme_713
crossref_citationtrail_10_1002_nme_713
wiley_primary_10_1002_nme_713_NME713
istex_primary_ark_67375_WNG_QJN1HJWK_Q
PublicationCentury 2000
PublicationDate 21 June 2003
PublicationDateYYYYMMDD 2003-06-21
PublicationDate_xml – month: 06
  year: 2003
  text: 21 June 2003
  day: 21
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2003
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Demkowicz L, Ihlenburg F. Analysis of a coupled finite-infinite element method for exterior helmholtz problems. Numerische Mathematik 2001; 88:43-73.
Bérenger J-P. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics 1994; 114:185-200.
Demkowicz L, Pal M. An infinite element for Maxwell's equations. Computer Methods in Applied Mechanics and Engineering 1998; 164:77-94.
Rachowicz W, Demkowicz L. An hp-adaptive finite element method for electromagnetics. Part 2: A 3D implementation. International Journal for Numerical Methods in Engineering 2002; 53:147-180.
Astley RJ, Macaulay GJ, Coyette JP. Mapped wave envelope elements for acoustical radiation and scattering. Journal of Sound and Vibration 1994; 170(1):97-118.
Harrington RF. Time-Harmonic Electromagnetic Fields. McGraw-Hill Book Co.: New York, 1961.
Demkowicz L, Oden LJT, Rachowicz W, Hardy O. Toward a universal hp adaptive finite element strategy, Part 1. Constrained approximation and data structure. Computer Methods in Applied Mechanics and Engineering 1989; 77:79-112.
Vardapetyan L, Demkowicz L. Full-wave analysis of dielectric waveguides at a given frequency. Mathematics of Computation 2003; 72:105-129.
Nedelec JC. Mixed finite elements in ℝ3. Numerische Mathematik 1980; 35:315-341.
Givoli D, Patlashenko I. Optimal local non-reflecting boundary conditions. Applied Numerical Mathematics 1998; 27:367-384.
Leis R. Initial Boundary Value Problems in Mathematical Physics. Teubner: Stuttgart, 1986.
Demkowicz L, Vardapetyan L. Modeling of electromagnetic absoption/scattering problems using hp-adaptive finite elements. Computer Methods in Applied Mechanics and Engineering 1998; 152(1-2):103-124.
Cecot W, Demkowicz L, Rachowicz W. A two-dimensional infinite element for Maxwell's equations. Computer Methods in Applied Mechanics and Engineering 2000; 188:625-643.
Demkowicz L, Rachowicz W, Devloo Ph. A fully automatic hp-adaptivity. Journal of Scientific Computing 2002; 17(1-3):127-155.
Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering. Springer Verlag: Berlin, 1992.
Zdunek A, Rachowicz W, Sehlstedt N. Toward hp-adaptive solution of 3D electromagnetic scattering from cavities. IEEE Transactions on Antennas and Propagation, submitted.
Gerdes K, Demkowicz L. Solution of 3D-laplace and helmholtz equation in exterior domains using hp infinite elements. Computer Methods in Applied Mechanics and Engineering 1996; 137:239-274.
Cremers L, Fyfe KR, Coyette JO. A variable order infinite acoustic wave envelope element. Journal of Sound and Vibrations 1994; 17(4):483-508.
Givoli D. Numerical Methods for Problems in Infinite Domains. Elsevier: Amsterdam, 1992.
Babuška I, Szabo B. The Finite Element Method. Wiley: New York, 1991.
Givoli D. Recent advances in the DtN FE method. Archives of Computational Methods in Engineering 1999; 6(2):71-116.
Burnett DS. A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion. Journal of the Acoustical Society of America 1994; 96:2798-2816.
Demkowicz L, Monk P, Vardapetyan L, Rachowicz W. De Rham diagram for hp finite element spaces. Computers and Mathematics with Applications 2000; 39(7-8):29-38.
Nedelec JC. A new family of mixed finite elements in ℝ3. Numerische Mathematik 1986; 50:57-81.
d'Angelo J, Mayergoyz ID. On the use of local absorbing boundary conditions for RF scattering problems. IEEE Transactions on Magnetics 1989; 25(4):3038-3042.
Bettess P. Infinite Elements. Penshaw Press: Sunderland, 1992.
Rachowicz W, Demkowicz L. An hp-adaptive finite element method for electromagnetics. Part 1: data structure and constrained approximation. Computer Methods in Applied Mechanics and Engineering 2000; 187(1-2):307-337.
Vardapetyan L, Demkowicz L. hp-Adaptive finite elements in electromagnetics. Computer Methods in Applied Mechanics and Engineering 1999; 169:331-344.
Monk P, Demkowicz L. Discrete compactness and the approximation of Maxwell's equations in ℝ3. Mathematics of Computation 2001; 70:507-523.
Tsynkov SV. Numerical solution of problems on unbounded domains. A review. Applied Numerical Mathematics 1998; 27:465-532.
Cessenat M. Mathematical Methods in Electromagnetism. Linear Theory and Applications. World Scientific: London, 1996.
1998; 27
2001; 70
2002; 17
1994; 114
1986; 50
1994; 170
2002; 53
1998
1996
1999; 169
1992
2002
1991
2001; 88
2003; 72
1999; 6
1989; 25
1998; 152
1999
1989; 77
2000; 39
2001
1980; 35
1986
1999; II
1961
2000; 187
2000; 188
1994; 17
1996; 137
1994; 96
1998; 164
Bettess P (e_1_2_1_9_2) 1992
Babuška I (e_1_2_1_36_2) 1991
Demkowicz L (e_1_2_1_37_2) 2002; 17
e_1_2_1_40_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
Rachowicz W (e_1_2_1_22_2) 1999
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
Givoli D (e_1_2_1_4_2) 1992
e_1_2_1_28_2
e_1_2_1_29_2
Harrington RF (e_1_2_1_33_2) 1961
Zdunek A (e_1_2_1_39_2)
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_32_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_18_2
References_xml – reference: Burnett DS. A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion. Journal of the Acoustical Society of America 1994; 96:2798-2816.
– reference: Bettess P. Infinite Elements. Penshaw Press: Sunderland, 1992.
– reference: Givoli D. Numerical Methods for Problems in Infinite Domains. Elsevier: Amsterdam, 1992.
– reference: Demkowicz L, Oden LJT, Rachowicz W, Hardy O. Toward a universal hp adaptive finite element strategy, Part 1. Constrained approximation and data structure. Computer Methods in Applied Mechanics and Engineering 1989; 77:79-112.
– reference: Vardapetyan L, Demkowicz L. hp-Adaptive finite elements in electromagnetics. Computer Methods in Applied Mechanics and Engineering 1999; 169:331-344.
– reference: Leis R. Initial Boundary Value Problems in Mathematical Physics. Teubner: Stuttgart, 1986.
– reference: Demkowicz L, Ihlenburg F. Analysis of a coupled finite-infinite element method for exterior helmholtz problems. Numerische Mathematik 2001; 88:43-73.
– reference: Rachowicz W, Demkowicz L. An hp-adaptive finite element method for electromagnetics. Part 1: data structure and constrained approximation. Computer Methods in Applied Mechanics and Engineering 2000; 187(1-2):307-337.
– reference: Vardapetyan L, Demkowicz L. Full-wave analysis of dielectric waveguides at a given frequency. Mathematics of Computation 2003; 72:105-129.
– reference: Nedelec JC. A new family of mixed finite elements in ℝ3. Numerische Mathematik 1986; 50:57-81.
– reference: d'Angelo J, Mayergoyz ID. On the use of local absorbing boundary conditions for RF scattering problems. IEEE Transactions on Magnetics 1989; 25(4):3038-3042.
– reference: Demkowicz L, Monk P, Vardapetyan L, Rachowicz W. De Rham diagram for hp finite element spaces. Computers and Mathematics with Applications 2000; 39(7-8):29-38.
– reference: Cecot W, Demkowicz L, Rachowicz W. A two-dimensional infinite element for Maxwell's equations. Computer Methods in Applied Mechanics and Engineering 2000; 188:625-643.
– reference: Demkowicz L, Pal M. An infinite element for Maxwell's equations. Computer Methods in Applied Mechanics and Engineering 1998; 164:77-94.
– reference: Bérenger J-P. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics 1994; 114:185-200.
– reference: Tsynkov SV. Numerical solution of problems on unbounded domains. A review. Applied Numerical Mathematics 1998; 27:465-532.
– reference: Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering. Springer Verlag: Berlin, 1992.
– reference: Rachowicz W, Demkowicz L. An hp-adaptive finite element method for electromagnetics. Part 2: A 3D implementation. International Journal for Numerical Methods in Engineering 2002; 53:147-180.
– reference: Babuška I, Szabo B. The Finite Element Method. Wiley: New York, 1991.
– reference: Demkowicz L, Rachowicz W, Devloo Ph. A fully automatic hp-adaptivity. Journal of Scientific Computing 2002; 17(1-3):127-155.
– reference: Harrington RF. Time-Harmonic Electromagnetic Fields. McGraw-Hill Book Co.: New York, 1961.
– reference: Astley RJ, Macaulay GJ, Coyette JP. Mapped wave envelope elements for acoustical radiation and scattering. Journal of Sound and Vibration 1994; 170(1):97-118.
– reference: Givoli D. Recent advances in the DtN FE method. Archives of Computational Methods in Engineering 1999; 6(2):71-116.
– reference: Cessenat M. Mathematical Methods in Electromagnetism. Linear Theory and Applications. World Scientific: London, 1996.
– reference: Cremers L, Fyfe KR, Coyette JO. A variable order infinite acoustic wave envelope element. Journal of Sound and Vibrations 1994; 17(4):483-508.
– reference: Gerdes K, Demkowicz L. Solution of 3D-laplace and helmholtz equation in exterior domains using hp infinite elements. Computer Methods in Applied Mechanics and Engineering 1996; 137:239-274.
– reference: Zdunek A, Rachowicz W, Sehlstedt N. Toward hp-adaptive solution of 3D electromagnetic scattering from cavities. IEEE Transactions on Antennas and Propagation, submitted.
– reference: Demkowicz L, Vardapetyan L. Modeling of electromagnetic absoption/scattering problems using hp-adaptive finite elements. Computer Methods in Applied Mechanics and Engineering 1998; 152(1-2):103-124.
– reference: Givoli D, Patlashenko I. Optimal local non-reflecting boundary conditions. Applied Numerical Mathematics 1998; 27:367-384.
– reference: Nedelec JC. Mixed finite elements in ℝ3. Numerische Mathematik 1980; 35:315-341.
– reference: Monk P, Demkowicz L. Discrete compactness and the approximation of Maxwell's equations in ℝ3. Mathematics of Computation 2001; 70:507-523.
– volume: 17
  start-page: 483
  issue: 4
  year: 1994
  end-page: 508
  article-title: A variable order infinite acoustic wave envelope element
  publication-title: Journal of Sound and Vibrations
– volume: 39
  start-page: 29
  issue: 7–8
  year: 2000
  end-page: 38
  article-title: De Rham diagram for hp finite element spaces
  publication-title: Computers and Mathematics with Applications
– article-title: Toward ‐adaptive solution of 3D electromagnetic scattering from cavities
  publication-title: IEEE Transactions on Antennas and Propagation
– volume: 70
  start-page: 507
  year: 2001
  end-page: 523
  article-title: Discrete compactness and the approximation of Maxwell's equations in ℝ
  publication-title: Mathematics of Computation
– volume: 96
  start-page: 2798
  year: 1994
  end-page: 2816
  article-title: A three‐dimensional acoustic infinite element based on a prolate spheroidal multipole expansion
  publication-title: Journal of the Acoustical Society of America
– volume: 35
  start-page: 315
  year: 1980
  end-page: 341
  article-title: Mixed finite elements in ℝ
  publication-title: Numerische Mathematik
– volume: 187
  start-page: 307
  issue: 1–2
  year: 2000
  end-page: 337
  article-title: An hp‐adaptive finite element method for electromagnetics. Part 1: data structure and constrained approximation
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 164
  start-page: 77
  year: 1998
  end-page: 94
  article-title: An infinite element for Maxwell's equations
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2001
– volume: 50
  start-page: 57
  year: 1986
  end-page: 81
  article-title: A new family of mixed finite elements in ℝ
  publication-title: Numerische Mathematik
– volume: 27
  start-page: 465
  year: 1998
  end-page: 532
  article-title: Numerical solution of problems on unbounded domains. A review
  publication-title: Applied Numerical Mathematics
– year: 1996
– volume: 152
  start-page: 103
  issue: 1–2
  year: 1998
  end-page: 124
  article-title: Modeling of electromagnetic absoption/scattering problems using ‐adaptive finite elements
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 25
  start-page: 3038
  issue: 4
  year: 1989
  end-page: 3042
  article-title: On the use of local absorbing boundary conditions for RF scattering problems
  publication-title: IEEE Transactions on Magnetics
– volume: 27
  start-page: 367
  year: 1998
  end-page: 384
  article-title: Optimal local non‐reflecting boundary conditions
  publication-title: Applied Numerical Mathematics
– year: 1992
– volume: 188
  start-page: 625
  year: 2000
  end-page: 643
  article-title: A two‐dimensional infinite element for Maxwell's equations
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 53
  start-page: 147
  year: 2002
  end-page: 180
  article-title: An hp‐adaptive finite element method for electromagnetics. Part 2: A 3D implementation
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1998
– year: 1961
– year: 1986
– volume: 88
  start-page: 43
  year: 2001
  end-page: 73
  article-title: Analysis of a coupled finite‐infinite element method for exterior helmholtz problems
  publication-title: Numerische Mathematik
– volume: 72
  start-page: 105
  year: 2003
  end-page: 129
  article-title: Full‐wave analysis of dielectric waveguides at a given frequency
  publication-title: Mathematics of Computation
– volume: 169
  start-page: 331
  year: 1999
  end-page: 344
  article-title: ‐Adaptive finite elements in electromagnetics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2002
– volume: 170
  start-page: 97
  issue: 1
  year: 1994
  end-page: 118
  article-title: Mapped wave envelope elements for acoustical radiation and scattering
  publication-title: Journal of Sound and Vibration
– volume: II
  year: 1999
– volume: 17
  start-page: 127
  issue: 1–3
  year: 2002
  end-page: 155
  article-title: A fully automatic hp‐adaptivity
  publication-title: Journal of Scientific Computing
– volume: 114
  start-page: 185
  year: 1994
  end-page: 200
  article-title: A perfectly matched layer for the absorption of electromagnetic waves
  publication-title: Journal of Computational Physics
– year: 1991
– volume: 6
  start-page: 71
  issue: 2
  year: 1999
  end-page: 116
  article-title: Recent advances in the DtN FE method
  publication-title: Archives of Computational Methods in Engineering
– volume: 137
  start-page: 239
  year: 1996
  end-page: 274
  article-title: Solution of 3D‐laplace and helmholtz equation in exterior domains using infinite elements
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 1999
– volume: 77
  start-page: 79
  year: 1989
  end-page: 112
  article-title: Toward a universal adaptive finite element strategy, Part 1. Constrained approximation and data structure
  publication-title: Computer Methods in Applied Mechanics and Engineering
– ident: e_1_2_1_2_2
  doi: 10.1109/20.34362
– volume-title: Iterative Methods in Scientific Computation
  year: 1999
  ident: e_1_2_1_22_2
– ident: e_1_2_1_6_2
  doi: 10.1016/S0168-9274(98)00020-8
– volume-title: Infinite Elements
  year: 1992
  ident: e_1_2_1_9_2
– ident: e_1_2_1_10_2
  doi: 10.1006/jsvi.1994.1048
– ident: e_1_2_1_24_2
  doi: 10.1090/S0025-5718-02-01411-4
– volume-title: Numerical Methods for Problems in Infinite Domains
  year: 1992
  ident: e_1_2_1_4_2
– ident: e_1_2_1_28_2
  doi: 10.1016/0045-7825(89)90129-1
– ident: e_1_2_1_21_2
  doi: 10.1090/S0025-5718-00-01229-1
– ident: e_1_2_1_26_2
  doi: 10.1007/BF01389668
– ident: e_1_2_1_8_2
  doi: 10.1016/S0168-9274(98)00025-7
– ident: e_1_2_1_16_2
  doi: 10.1016/S0045-7825(98)00047-4
– ident: e_1_2_1_31_2
  doi: 10.1007/978-3-663-10649-4
– volume-title: The Finite Element Method
  year: 1991
  ident: e_1_2_1_36_2
– ident: e_1_2_1_13_2
– ident: e_1_2_1_29_2
  doi: 10.1002/nme.396
– ident: e_1_2_1_14_2
  doi: 10.1016/0045-7825(95)00987-6
– ident: e_1_2_1_15_2
  doi: 10.1007/PL00005440
– ident: e_1_2_1_3_2
  doi: 10.1006/jcph.1994.1159
– ident: e_1_2_1_18_2
  doi: 10.1016/S0045-7825(98)00161-3
– ident: e_1_2_1_20_2
  doi: 10.1016/S0898-1221(00)00062-6
– ident: e_1_2_1_5_2
  doi: 10.1007/BF02736182
– ident: e_1_2_1_27_2
  doi: 10.1016/S0045-7825(99)00290-X
– ident: e_1_2_1_25_2
  doi: 10.1007/BF01396415
– ident: e_1_2_1_32_2
– ident: e_1_2_1_40_2
  doi: 10.1142/2938
– ident: e_1_2_1_35_2
– ident: e_1_2_1_7_2
– ident: e_1_2_1_38_2
– ident: e_1_2_1_17_2
  doi: 10.1016/S0045-7825(97)00184-9
– ident: e_1_2_1_11_2
  doi: 10.1006/jsvi.1994.1136
– ident: e_1_2_1_12_2
  doi: 10.1121/1.411286
– volume-title: Time‐Harmonic Electromagnetic Fields
  year: 1961
  ident: e_1_2_1_33_2
– ident: e_1_2_1_19_2
  doi: 10.1016/S0045-7825(99)00137-1
– ident: e_1_2_1_23_2
– ident: e_1_2_1_30_2
  doi: 10.1007/978-3-662-02835-3
– ident: e_1_2_1_34_2
– volume: 17
  start-page: 127
  issue: 1
  year: 2002
  ident: e_1_2_1_37_2
  article-title: A fully automatic hp‐adaptivity
  publication-title: Journal of Scientific Computing
– ident: e_1_2_1_39_2
  article-title: Toward hp‐adaptive solution of 3D electromagnetic scattering from cavities
  publication-title: IEEE Transactions on Antennas and Propagation
SSID ssj0011503
Score 1.8741351
Snippet This paper is a continuation of Reference [26] (Cecot, Demkowicz and Rachowicz, Computer Methods in Applied Mechanics and Engineering 2000; 188: 625–643) and...
This paper is a continuation of Reference [26] (Cecot, Demkowicz and Rachowicz, Computer Methods in Applied Mechanics and Engineering 2000; 188 : 625–643) and...
This paper is a continuation of Reference [26] (Cecot, Demkowicz and Rachowicz, Computer Methods in Applied Mechanics and Engineering 2000; 188: 625-643) and...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 899
SubjectTerms Compatibility
Computer simulation
Discretization
Finite element method
hp finite elements
infinite elements
Mathematical analysis
Mathematical models
Maxwell's equations
Three dimensional
Title An hp-adaptive finite element method for electromagnetics. Part 3: A three-dimensional infinite element for Maxwell's equations
URI https://api.istex.fr/ark:/67375/WNG-QJN1HJWK-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.713
https://www.proquest.com/docview/1082195199
https://www.proquest.com/docview/27890233
Volume 57
WOSCitedRecordID wos000183603700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5CLQ_wwGCAVq5GmsZTtvqSpuatgpVp0GhDQ9tb5DjHMMGy0nRoj0j8AX7jfsmO4zRqhSYh8RRFsR3LPsf-ji_fB7DJnUsoLCDkJhIXqVzzSFtdRH69LZdIAURR1GITSZoOT070wZLUV-CHaBfcvGfU47V3cJNXO0ukoWe4nXi92q4gq1Ud6L77NP78sd1CIKQjF-c7Yj3k4casz7zTZF2Zirq-VS9XcOYyWq2nm_Haf1T0PtxrMCYbBaN4ALewXIe1Bm-yxpurdbi7REZIb5OWwbV6CL9HJfs6vfr1xxRm6odE5k49PGUYzpuzID3NCPOyRkrnzHwp_ZXIapsdkEEy-YaN2JxsBamYwqsIBAYQRka9WpYvZGIu_Tri64rhj0A_Xj2Co_Hu0du9qBFsiKwkWBApY2WhHEEE2zfCoUXLC5kX1OE8thoHFNyppI9xnsd96ymRNTdK9wVKiU7Jx9Apz0vcABYnSDiJD3FghDJS5864gVWGIkbqVsQebC26LrMNmbnX1PieBRpmkVGrZ9TqPWBtwmng7_g7yVbd9-13M_vmj7slcXacvs8O91O-t3_8ITvswauFcWTkhH5nxZR4flF5llUa-QkM6x68vCFNfeVYSPrdZm0tN1UnSye79Hjyb8mewh0RBCEjwZ9BZz67wOdw2_6cn1azF41PXAM3nxQq
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-hFgl4YDBAlH8z0jSesjVx0tS8VbBStjbaUNH2ZjnOBSZYVpoO7RGJL8Bn5JNwF6dRKzQJiacoiu1Yvjv757PvdwDbfp7HtC0g5BbEuRemyveUVZnH_rZUIm0gsqxKNhEnSf_0VB3Vtyo5FsbxQzQON7aMar5mA2eH9N4Ka-g57sacsLYdkhJFLWi__TD8OG7OEAjqyOUFj0j1fRcyy5X36qpra1Gbh_VqDWiuwtVqvRlu_E9P78HdGmWKgVOL-3ADi03YqBGnqO253IQ7K3SE9DZpOFzLB_BzUIjPs98_fpnMzHhSFPkZA1SB7sa5cMmnBaFeUSfTOTefCg6KLHfFEamkkK_FQCxIW5CayTiPgOMAEaTW621xIxNzxZ7EV6XAb46AvHwI0-H-9M3Iq1M2eFYSMPBCY2UW5gQSbNcEOVq0fibTjETuR1Zhj7Z3YdzFKE2jrmVSZOWbUHUDlBLzUD6CVnFR4GMQUYyElPw-9kwQGqnS3OQ9GxraM5JcETuws5SdtjWdOWfV-KodEXOgadQ1jXoHRFNw5hg8_i6yUwm_-W7mX_jCWxzpk-SdPj5I_NHByaE-7sDLpXZoMkM-WzEFXlyWzLNKcz_BYdWBrWvKVEHHgaTfbVfqcl13dDLZp8eTfyu2BbdG08lYj98nh0_hduDSQ3qB_wxai_klPoeb9vvirJy_qA3kD6bPGBo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELfQihA8MBhMFAYz0jSesjWx09R7q9jK2NaoQ0Pbm-XYZ5hgWWk6tEekfYF9Rj4J59iNWqFJSDxFUc6O5buzf-c_vyNkI7Y2w7AAkVuS2YgXIo6EFiZy620FAwwgjKmTTWR53js7E6NwqtLdhfH8EM2Cm_OMerx2Dg5jY7fnWEMvYCtzCWtbPBVddMrW7qfB56NmDwGhDpsd8EhFL_ZXZl3h7VB0YS5quW69XgCa83C1nm8Gy__T0ifkcUCZtO_N4im5B-UKWQ6IkwZ_rlbIozk6QnwbNhyu1TNy0y_p1_HvX7fKqLEbFKk9dwCVgj9xTn3yaYqol4ZkOhfqS-kuRVZbdIQmSdkO7dMpWgtgNcblEfAcIBTNerEuV8lQXbuVxHcVhR-egLx6Tk4Geyfv96OQsiHSDIFBxJVmhlsECbqjEgsadGxYYVDlcaoFdDG841kH0qJIO9qRIotYcdFJgDGwnK2SpfKyhBeEphkgUop70FUJV0wUVtmu5gpjRtQrQJtsznQndaAzd1k1vktPxJxI7HWJvd4mtBEcewaPv0U2a-U339XkmzvwlqXyNP8gjw_yeP_g9FAet8nbmXVIdEO3t6JKuLyqHM8qjv0Ih0WbrN8hU186Thj-bqM2l7uaI_PhHj5e_pvYOnkw2h3Io4_54SvyMPHZIaMkXiNL08kVvCb39c_peTV5E_zjDxDmF5U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+hp%E2%80%90adaptive+finite+element+method+for+electromagnetics.+Part+3%3A+A+three%E2%80%90dimensional+infinite+element+for+Maxwell%27s+equations&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Cecot%2C+W.&rft.au=Rachowicz%2C+W.&rft.au=Demkowicz%2C+L.&rft.date=2003-06-21&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=57&rft.issue=7&rft.spage=899&rft.epage=921&rft_id=info:doi/10.1002%2Fnme.713&rft.externalDBID=10.1002%252Fnme.713&rft.externalDocID=NME713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon