The role of the combined use of experimental and computational methods in revealing the differences between the micron-size particle deposition patterns in healthy and asthmatic subjects
Quantification of airway deposition of aerosol particles is essential for the assessment of health risks of detrimental particles. Knowledge of deposition distribution is important also in the case of treatment with aerosolised drugs. It is also worth considering that deposition of inhaled particles...
Uloženo v:
| Vydáno v: | Journal of aerosol science Ročník 147; s. 105582 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.09.2020
|
| Témata: | |
| ISSN: | 0021-8502, 1879-1964 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Quantification of airway deposition of aerosol particles is essential for the assessment of health risks of detrimental particles. Knowledge of deposition distribution is important also in the case of treatment with aerosolised drugs. It is also worth considering that deposition of inhaled particles in severe asthmatics can be different from the deposition in healthy subjects due to the modified breathing parameters, airway geometry and lobar flow distribution.
The aim of this study was to apply combined experimental and numerical techniques to quantify the upper airway and bronchial deposition of the inhaled microparticles in healthy individuals in comparison with asthma patients. Idealised and realistic physical and digital replicas of the human airways were constructed. Deposition fractions and efficiencies of inhaled polydisperse mannitol and chitosan particles in different airway sections were measured and calculated.
Deposition fraction of polydisperse mannitol particles in the idealised airway geometry assuming breathing conditions of healthy subjects was 21.9% and 18.3% when determined experimentally and by numerical simulations, respectively. Experimental measurements of deposition fraction of chitosan particles in the same geometry, but assuming breathing parameters characteristic of severe asthmatics yielded 32%, while simulations provided 30.1% for the same conditions. Extrathoracic deposition fraction of mannitol particles in healthy subjects measured in the realistic geometry was 71.1%, while bronchial deposition fraction was 5.3%. The corresponding simulations yielded 76.2% and 8.9% deposition fractions in the upper and bronchial airways, respectively. There was a good agreement between the experimental and simulation deposition results also in the different predefined sections of the airways. Present pilot study proved that lobar flow redistribution due to severe asthma significantly modified the deposition distribution of micro-particles.
Although the present results refer only to small groups of healthy and asthmatic individuals, it clearly demonstrates the capability of carefully validated models to simulate the deposition of micron-size particles in larger populations of both groups.
•Deposition distribution of micro-particles in idealised and realistic upper and central airways was measured and simulated.•Deposition distribution of micro-particles in idealised and realistic upper and central airways was measured and simulated.•Good agreement of numerical and experimental data was found.•The modified breathing of asthmatics significantly changed the deposition distribution of micro-particles.•Combination of numerical and experimental techniques can be a powerful tool of the quantification of particle deposition. |
|---|---|
| AbstractList | Quantification of airway deposition of aerosol particles is essential for the assessment of health risks of detrimental particles. Knowledge of deposition distribution is important also in the case of treatment with aerosolised drugs. It is also worth considering that deposition of inhaled particles in severe asthmatics can be different from the deposition in healthy subjects due to the modified breathing parameters, airway geometry and lobar flow distribution.
The aim of this study was to apply combined experimental and numerical techniques to quantify the upper airway and bronchial deposition of the inhaled microparticles in healthy individuals in comparison with asthma patients. Idealised and realistic physical and digital replicas of the human airways were constructed. Deposition fractions and efficiencies of inhaled polydisperse mannitol and chitosan particles in different airway sections were measured and calculated.
Deposition fraction of polydisperse mannitol particles in the idealised airway geometry assuming breathing conditions of healthy subjects was 21.9% and 18.3% when determined experimentally and by numerical simulations, respectively. Experimental measurements of deposition fraction of chitosan particles in the same geometry, but assuming breathing parameters characteristic of severe asthmatics yielded 32%, while simulations provided 30.1% for the same conditions. Extrathoracic deposition fraction of mannitol particles in healthy subjects measured in the realistic geometry was 71.1%, while bronchial deposition fraction was 5.3%. The corresponding simulations yielded 76.2% and 8.9% deposition fractions in the upper and bronchial airways, respectively. There was a good agreement between the experimental and simulation deposition results also in the different predefined sections of the airways. Present pilot study proved that lobar flow redistribution due to severe asthma significantly modified the deposition distribution of micro-particles.
Although the present results refer only to small groups of healthy and asthmatic individuals, it clearly demonstrates the capability of carefully validated models to simulate the deposition of micron-size particles in larger populations of both groups.
•Deposition distribution of micro-particles in idealised and realistic upper and central airways was measured and simulated.•Deposition distribution of micro-particles in idealised and realistic upper and central airways was measured and simulated.•Good agreement of numerical and experimental data was found.•The modified breathing of asthmatics significantly changed the deposition distribution of micro-particles.•Combination of numerical and experimental techniques can be a powerful tool of the quantification of particle deposition. |
| ArticleNumber | 105582 |
| Author | Belka, Miloslav Karas, Jakub Lizal, Frantisek Elcner, Jakub Jicha, Miroslav Misik, Ondrej Farkas, Árpád Jedelsky, Jan |
| Author_xml | – sequence: 1 givenname: Árpád surname: Farkas fullname: Farkas, Árpád email: farkas.arpad@energia.mta.hu organization: Centre for Energy Research, Konkoly Thege M. 29-33, 1121, Budapest, Hungary – sequence: 2 givenname: Frantisek orcidid: 0000-0002-0389-608X surname: Lizal fullname: Lizal, Frantisek organization: Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, Brno 61669, Czech Republic – sequence: 3 givenname: Jan orcidid: 0000-0002-1268-8434 surname: Jedelsky fullname: Jedelsky, Jan organization: Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, Brno 61669, Czech Republic – sequence: 4 givenname: Jakub surname: Elcner fullname: Elcner, Jakub organization: Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, Brno 61669, Czech Republic – sequence: 5 givenname: Jakub surname: Karas fullname: Karas, Jakub organization: Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, Brno 61669, Czech Republic – sequence: 6 givenname: Miloslav orcidid: 0000-0001-8905-9751 surname: Belka fullname: Belka, Miloslav organization: Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, Brno 61669, Czech Republic – sequence: 7 givenname: Ondrej surname: Misik fullname: Misik, Ondrej organization: Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, Brno 61669, Czech Republic – sequence: 8 givenname: Miroslav surname: Jicha fullname: Jicha, Miroslav organization: Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, Brno 61669, Czech Republic |
| BookMark | eNqFUUtuFDEUtFCQmAxcAfkCPbHd4_5ILEBRPkiR2IS15c8z7Va33bI9geRonA53D2zYZGWr9KrqvapLdOGDB4Q-UnKghDZX42GUEEPS7sAIW0HOO_YG7WjX9hXtm-MF2hHCaNVxwt6hy5RGQkjbU75Dvx8HwDFMgIPFufx1mJXzYPApbRj8WiC6GXyWE5berAPLKcvsgi_IDHkIJmHncYQnkJPzPzYd46yFCF5DwgryTwC_4bPTMfgquRfAi4zZ6eJtYAnJrZIFyxmi3xSHopeH581WpjzMxVXjdFIj6Jzeo7dWTgk-_H336PvtzeP1ffXw7e7r9ZeHStcNyZW1nLMGjsSUDPpa065XpJVGtbVsJOMloJZLxVSnGnukUvXMcKvaY9e1talVvUfNWbcsnlIEK5YSiIzPghKxNiBG8a8BsTYgzg0U4qf_iNqdg8tRuul1-uczHcpxTw6iKBNroMbFcr8wwb0m8QcHbK6q |
| CitedBy_id | crossref_primary_10_1016_j_envint_2025_109548 crossref_primary_10_1080_10803548_2024_2369423 crossref_primary_10_1016_j_scitotenv_2021_151202 crossref_primary_10_1063_5_0064805 crossref_primary_10_1016_j_jddst_2025_107393 crossref_primary_10_1007_s40336_022_00527_3 crossref_primary_10_1016_j_euromechflu_2024_01_003 crossref_primary_10_1016_j_ijpharm_2023_122695 crossref_primary_10_2147_COPD_S456878 crossref_primary_10_1016_j_jddst_2025_107409 crossref_primary_10_1051_epjconf_202429901022 crossref_primary_10_1007_s11095_025_03906_3 crossref_primary_10_3390_pharmaceutics15020496 |
| Cites_doi | 10.1152/japplphysiol.00016.2019 10.1016/j.jaerosci.2007.06.004 10.1080/02786829008959423 10.1016/j.jbiomech.2007.03.027 10.1016/j.jaerosci.2006.01.011 10.1089/jamp.2018.1487 10.1080/08958370490439597 10.1016/j.ejps.2017.08.021 10.1152/japplphysiol.00113.2013 10.1016/j.jaerosci.2010.03.001 10.1016/j.jbiomech.2017.03.012 10.1016/j.jbiomech.2005.10.009 10.1016/j.jaerosci.2011.05.007 10.1161/hc0402.104118 10.1080/09603123.2011.574269 10.1152/japplphysiol.00339.2015 10.1177/0954411911430188 10.1016/j.jaerosci.2019.06.003 10.1016/S2542-5196(19)30046-4 10.1016/j.ejps.2017.09.003 10.1016/S0169-409X(03)00080-2 10.1183/09031936.00080007 10.1016/j.jaerosci.2017.11.006 10.1155/2018/6564854 |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s) |
| Copyright_xml | – notice: 2020 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.jaerosci.2020.105582 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Engineering |
| EISSN | 1879-1964 |
| ExternalDocumentID | 10_1016_j_jaerosci_2020_105582 S0021850220300719 |
| GroupedDBID | --- --K --M -~X .DC .HR .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ IHE IMUCA J1W KCYFY KOM LY3 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SEN SEP SES SEW SPC SPCBC SPD SSE SSJ SSZ T5K TN5 WUQ ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c360t-ff5526e40d00293c189b07adb73a6a2519675ab2b8b6f41ab92d5fb748873d3b3 |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000540032700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-8502 |
| IngestDate | Sat Nov 29 07:30:03 EST 2025 Tue Nov 18 21:02:48 EST 2025 Fri Feb 23 02:46:34 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Micron-size particles Airway deposition measurement Airway deposition simulation Asthma |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c360t-ff5526e40d00293c189b07adb73a6a2519675ab2b8b6f41ab92d5fb748873d3b3 |
| ORCID | 0000-0002-1268-8434 0000-0002-0389-608X 0000-0001-8905-9751 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.jaerosci.2020.105582 |
| ParticipantIDs | crossref_primary_10_1016_j_jaerosci_2020_105582 crossref_citationtrail_10_1016_j_jaerosci_2020_105582 elsevier_sciencedirect_doi_10_1016_j_jaerosci_2020_105582 |
| PublicationCentury | 2000 |
| PublicationDate | September 2020 2020-09-00 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of aerosol science |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Sears (bib26) 2007; 30 Lizal, Elcner, Hopke, Jedelsky, Jicha (bib18) 2012; 226 Jahani, Choi, Choi, Iyer, Hofmann (bib15) 2015; 119 Weibel (bib28) 1963 Farkas, Lizal, Elcner, Jedelsky, Jicha (bib9) 2019; 136 Yang, Liu, Luo (bib30) 2006; 39 Hofmann (bib10) 2011; 42 Farkas, Balásházy (bib8) 2007; 38 Achakulwisut, Brauer, Hystad, Anenberg (bib1) 2019; 3 Nemmar, Hoet, Vanquickenborne, Dinsdale, Thomeer, Hoylaerts (bib23) 2002; 105 Belka, Lizal, Jedelsky, Elcner, Hopke, Jicha (bib3) 2018; 117 Horváth, Balásházy, Farkas, Sárkány, Hofmann, Czitrovszky (bib11) 2011; 21 Lizal, Jedelsky, Morgan, Bauer, Llop, Cossio (bib19) 2018; 113 Jahani, Choi, Choi, Haghighi, Hoffman, Comellas (bib14) 2017; 56 (bib2) 2016 Inthawong, Tu, Ye, Ding, Subic, Thien (bib12) 2010; 41 Koullapis, Kassinos, Muela, Perez-Segarra, Rigola, Lehmkuhl (bib16) 2018; 113 Oberdörster, Sharp, Atudorei, Elder, Gelein, Krezling (bib24) 2004; 16 Choi, Yoon, Jeon, Zou, Choi, Tawhai (bib7) 2019; 127 Choi, Miyawaki, Lin (bib6) 2018 Ounis, Ahmadi (bib25) 1990; 13 Xu (bib29) 2016 Jahani (bib13) 2016 Luo, Liu, Yang (bib21) 2007; 40 Martonen, Fleming, Schroeter, Conway, Hwang (bib22) 2003; 55 (bib27) 2018 Longest, Vinchurkar, Martonen (bib20) 2006; 37 Choi, LeBlanc, Choi, Haghighi, Hoffman, O'Shaughnessi (bib5) 2019; 32 Choi, Hofmann, Wenzel, Tawhai, Yin, Castro (bib4) 2013; 115 Koullapis, Lizal, Jedelsky (bib17) 2019 Inthawong (10.1016/j.jaerosci.2020.105582_bib12) 2010; 41 Choi (10.1016/j.jaerosci.2020.105582_bib6) 2018 Sears (10.1016/j.jaerosci.2020.105582_bib26) 2007; 30 Jahani (10.1016/j.jaerosci.2020.105582_bib13) 2016 Choi (10.1016/j.jaerosci.2020.105582_bib5) 2019; 32 Xu (10.1016/j.jaerosci.2020.105582_bib29) 2016 Hofmann (10.1016/j.jaerosci.2020.105582_bib10) 2011; 42 Farkas (10.1016/j.jaerosci.2020.105582_bib8) 2007; 38 Farkas (10.1016/j.jaerosci.2020.105582_bib9) 2019; 136 Luo (10.1016/j.jaerosci.2020.105582_bib21) 2007; 40 (10.1016/j.jaerosci.2020.105582_bib2) 2016 Martonen (10.1016/j.jaerosci.2020.105582_bib22) 2003; 55 Yang (10.1016/j.jaerosci.2020.105582_bib30) 2006; 39 Nemmar (10.1016/j.jaerosci.2020.105582_bib23) 2002; 105 Longest (10.1016/j.jaerosci.2020.105582_bib20) 2006; 37 (10.1016/j.jaerosci.2020.105582_bib27) 2018 Achakulwisut (10.1016/j.jaerosci.2020.105582_bib1) 2019; 3 Belka (10.1016/j.jaerosci.2020.105582_bib3) 2018; 117 Jahani (10.1016/j.jaerosci.2020.105582_bib15) 2015; 119 Lizal (10.1016/j.jaerosci.2020.105582_bib18) 2012; 226 Koullapis (10.1016/j.jaerosci.2020.105582_bib16) 2018; 113 Jahani (10.1016/j.jaerosci.2020.105582_bib14) 2017; 56 Horváth (10.1016/j.jaerosci.2020.105582_bib11) 2011; 21 Weibel (10.1016/j.jaerosci.2020.105582_bib28) 1963 Oberdörster (10.1016/j.jaerosci.2020.105582_bib24) 2004; 16 Ounis (10.1016/j.jaerosci.2020.105582_bib25) 1990; 13 Choi (10.1016/j.jaerosci.2020.105582_bib4) 2013; 115 Lizal (10.1016/j.jaerosci.2020.105582_bib19) 2018; 113 Koullapis (10.1016/j.jaerosci.2020.105582_bib17) 2019 Choi (10.1016/j.jaerosci.2020.105582_bib7) 2019; 127 |
| References_xml | – volume: 30 start-page: 411 year: 2007 end-page: 413 ident: bib26 article-title: Lung function decline in asthma publication-title: European Respiratory Journal – start-page: 1 year: 2018 end-page: 12 ident: bib6 article-title: A feasible computational fluid dynamics study for relationships of structural and functional alterations with particle depositions in severe asthmatic lungs publication-title: Computational and Mathematical Methods in Medicine – volume: 113 start-page: 77 year: 2018 end-page: 94 ident: bib16 article-title: Regional aerosol deposition in the human airways: The SimInhale benchmark case and the critical assessment of in silico methods publication-title: European Journal of Pharmaceutical Sciences – volume: 127 start-page: 122 year: 2019 end-page: 133 ident: bib7 article-title: 1D network simulations for evaluating regional flow and pressure distributions in healthy and asthmatic human lungs publication-title: Journal of Applied Physiology – volume: 38 start-page: 865 year: 2007 end-page: 884 ident: bib8 article-title: Simulation of the effect of local obstructions and blockage on airflow and aerosol deposition in central human airways publication-title: Journal of Aerosol Science – volume: 115 start-page: 730 year: 2013 end-page: 742 ident: bib4 article-title: Registration-based assessment of regional lung function data via volumetric CT images of normal subjects vs. severe asthmatics publication-title: Journal of Applied Physiology – year: 2019 ident: bib17 article-title: ERCOFTAC knowledge base: Application area 7: Biomedical flows - aerosol deposition in the human upper airways. [online]. Cyprus: Ercoftac – volume: 56 start-page: 102 year: 2017 end-page: 110 ident: bib14 article-title: A four-dimensional tomography comparison of healthy and asthmatic human lungs publication-title: Journal of Biomechanics – year: 2016 ident: bib2 publication-title: Asthma, fact sheets, world health organization – volume: 3 start-page: e166 year: 2019 end-page: 178 ident: bib1 article-title: Global, national, and urban burdens of pediatric asthma incidence attributable to ambient NO2 pollution: Estimates from global datasets publication-title: Lancet Planet Health – volume: 40 start-page: 3096 year: 2007 end-page: 3104 ident: bib21 article-title: Particle deposition in obstructed airways publication-title: Journal of Biomechanics – volume: 32 year: 2019 ident: bib5 article-title: Differences in particle deposition between members of imaging-based asthma clusters publication-title: Journal of Aerosol Medicine and Pulmonary Drug Delivery – volume: 13 start-page: 47 year: 1990 end-page: 53 ident: bib25 article-title: A comparison of Brownian and turbulent diffusion publication-title: Aerosol Science and Technology – volume: 226 start-page: 197 year: 2012 end-page: 207 ident: bib18 article-title: Development of a realistic human airway model publication-title: Journal of Engineering in Medicine – year: 2018 ident: bib27 article-title: Auckland, New Zealand – volume: 42 start-page: 693 year: 2011 end-page: 724 ident: bib10 article-title: Modelling inhaled particle deposition in the human lung – a review publication-title: Journal of Aerosol Science – volume: 105 start-page: 411 year: 2002 end-page: 414 ident: bib23 article-title: Passage of inhaled particles into the blood circulation in humans publication-title: Circulation – volume: 117 start-page: 149 year: 2018 end-page: 163 ident: bib3 article-title: Deposition of glass fibres in a physically realistic replica of the human respiratory tract publication-title: Journal of Aerosol Science – volume: 16 start-page: 437 year: 2004 end-page: 445 ident: bib24 article-title: Translocation of ultrafine particles to the brain publication-title: Inhalation Toxicology – year: 2016 ident: bib13 article-title: Dynamic breathing lung models for healthy and asthmatic subjects based on assessment of regional lung function – volume: 55 start-page: 829 year: 2003 end-page: 849 ident: bib22 article-title: In silico modelling of asthma publication-title: Aerosol Drug Delivery Reviews – year: 1963 ident: bib28 article-title: Morphometry of the human lung – volume: 21 start-page: 427 year: 2011 end-page: 440 ident: bib11 article-title: Quantification of airway deposition of intact and fragmented pollens publication-title: International Journal of Environmental Health Research – volume: 39 start-page: 2743 year: 2006 end-page: 2751 ident: bib30 article-title: Respiratory flow in obstructed airways publication-title: Journal of Biomechanics – year: 2016 ident: bib29 article-title: Modification of stochastic model in Lagrangian tracking method publication-title: Proceedings of CFD with OpenSource software – volume: 41 start-page: 587 year: 2010 end-page: 601 ident: bib12 article-title: Effects of airway obstruction induced by asthma attack on particle deposition publication-title: Journal of Aerosol Science – volume: 37 start-page: 1234 year: 2006 end-page: 1257 ident: bib20 article-title: Transport and deposition of respiratory aerosols in models of childhood asthma publication-title: Journal of Aerosol Science – volume: 119 start-page: 1064 year: 2015 end-page: 1074 ident: bib15 article-title: Assessment of regional ventilation and deformation using 4d-CT imaging for healthy human lungs during tidal breathing publication-title: Journal of Applied Physiology – volume: 136 start-page: 1 year: 2019 end-page: 14 ident: bib9 article-title: Numerical simulation of fibre deposition in oral and large bronchial airways in comparison with experiments publication-title: Journal of Aerosol Science – volume: 113 start-page: 95 year: 2018 end-page: 131 ident: bib19 article-title: Experimental methods for flow and aerosol measurements in human airways and their replicas publication-title: European Journal of Pharmaceutical Sciences – volume: 127 start-page: 122 year: 2019 ident: 10.1016/j.jaerosci.2020.105582_bib7 article-title: 1D network simulations for evaluating regional flow and pressure distributions in healthy and asthmatic human lungs publication-title: Journal of Applied Physiology doi: 10.1152/japplphysiol.00016.2019 – volume: 38 start-page: 865 year: 2007 ident: 10.1016/j.jaerosci.2020.105582_bib8 article-title: Simulation of the effect of local obstructions and blockage on airflow and aerosol deposition in central human airways publication-title: Journal of Aerosol Science doi: 10.1016/j.jaerosci.2007.06.004 – volume: 13 start-page: 47 year: 1990 ident: 10.1016/j.jaerosci.2020.105582_bib25 article-title: A comparison of Brownian and turbulent diffusion publication-title: Aerosol Science and Technology doi: 10.1080/02786829008959423 – year: 2016 ident: 10.1016/j.jaerosci.2020.105582_bib2 – year: 2016 ident: 10.1016/j.jaerosci.2020.105582_bib13 – year: 1963 ident: 10.1016/j.jaerosci.2020.105582_bib28 – volume: 40 start-page: 3096 year: 2007 ident: 10.1016/j.jaerosci.2020.105582_bib21 article-title: Particle deposition in obstructed airways publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2007.03.027 – year: 2019 ident: 10.1016/j.jaerosci.2020.105582_bib17 – volume: 37 start-page: 1234 year: 2006 ident: 10.1016/j.jaerosci.2020.105582_bib20 article-title: Transport and deposition of respiratory aerosols in models of childhood asthma publication-title: Journal of Aerosol Science doi: 10.1016/j.jaerosci.2006.01.011 – year: 2016 ident: 10.1016/j.jaerosci.2020.105582_bib29 article-title: Modification of stochastic model in Lagrangian tracking method – volume: 32 issue: 4 year: 2019 ident: 10.1016/j.jaerosci.2020.105582_bib5 article-title: Differences in particle deposition between members of imaging-based asthma clusters publication-title: Journal of Aerosol Medicine and Pulmonary Drug Delivery doi: 10.1089/jamp.2018.1487 – volume: 16 start-page: 437 year: 2004 ident: 10.1016/j.jaerosci.2020.105582_bib24 article-title: Translocation of ultrafine particles to the brain publication-title: Inhalation Toxicology doi: 10.1080/08958370490439597 – volume: 113 start-page: 95 year: 2018 ident: 10.1016/j.jaerosci.2020.105582_bib19 article-title: Experimental methods for flow and aerosol measurements in human airways and their replicas publication-title: European Journal of Pharmaceutical Sciences doi: 10.1016/j.ejps.2017.08.021 – volume: 115 start-page: 730 year: 2013 ident: 10.1016/j.jaerosci.2020.105582_bib4 article-title: Registration-based assessment of regional lung function data via volumetric CT images of normal subjects vs. severe asthmatics publication-title: Journal of Applied Physiology doi: 10.1152/japplphysiol.00113.2013 – volume: 41 start-page: 587 year: 2010 ident: 10.1016/j.jaerosci.2020.105582_bib12 article-title: Effects of airway obstruction induced by asthma attack on particle deposition publication-title: Journal of Aerosol Science doi: 10.1016/j.jaerosci.2010.03.001 – volume: 56 start-page: 102 year: 2017 ident: 10.1016/j.jaerosci.2020.105582_bib14 article-title: A four-dimensional tomography comparison of healthy and asthmatic human lungs publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2017.03.012 – volume: 39 start-page: 2743 year: 2006 ident: 10.1016/j.jaerosci.2020.105582_bib30 article-title: Respiratory flow in obstructed airways publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2005.10.009 – volume: 42 start-page: 693 year: 2011 ident: 10.1016/j.jaerosci.2020.105582_bib10 article-title: Modelling inhaled particle deposition in the human lung – a review publication-title: Journal of Aerosol Science doi: 10.1016/j.jaerosci.2011.05.007 – volume: 105 start-page: 411 year: 2002 ident: 10.1016/j.jaerosci.2020.105582_bib23 article-title: Passage of inhaled particles into the blood circulation in humans publication-title: Circulation doi: 10.1161/hc0402.104118 – volume: 21 start-page: 427 year: 2011 ident: 10.1016/j.jaerosci.2020.105582_bib11 article-title: Quantification of airway deposition of intact and fragmented pollens publication-title: International Journal of Environmental Health Research doi: 10.1080/09603123.2011.574269 – volume: 119 start-page: 1064 year: 2015 ident: 10.1016/j.jaerosci.2020.105582_bib15 article-title: Assessment of regional ventilation and deformation using 4d-CT imaging for healthy human lungs during tidal breathing publication-title: Journal of Applied Physiology doi: 10.1152/japplphysiol.00339.2015 – volume: 226 start-page: 197 issue: 3 year: 2012 ident: 10.1016/j.jaerosci.2020.105582_bib18 article-title: Development of a realistic human airway model publication-title: Journal of Engineering in Medicine doi: 10.1177/0954411911430188 – volume: 136 start-page: 1 year: 2019 ident: 10.1016/j.jaerosci.2020.105582_bib9 article-title: Numerical simulation of fibre deposition in oral and large bronchial airways in comparison with experiments publication-title: Journal of Aerosol Science doi: 10.1016/j.jaerosci.2019.06.003 – volume: 3 start-page: e166 year: 2019 ident: 10.1016/j.jaerosci.2020.105582_bib1 article-title: Global, national, and urban burdens of pediatric asthma incidence attributable to ambient NO2 pollution: Estimates from global datasets publication-title: Lancet Planet Health doi: 10.1016/S2542-5196(19)30046-4 – volume: 113 start-page: 77 year: 2018 ident: 10.1016/j.jaerosci.2020.105582_bib16 article-title: Regional aerosol deposition in the human airways: The SimInhale benchmark case and the critical assessment of in silico methods publication-title: European Journal of Pharmaceutical Sciences doi: 10.1016/j.ejps.2017.09.003 – year: 2018 ident: 10.1016/j.jaerosci.2020.105582_bib27 – volume: 55 start-page: 829 year: 2003 ident: 10.1016/j.jaerosci.2020.105582_bib22 article-title: In silico modelling of asthma publication-title: Aerosol Drug Delivery Reviews doi: 10.1016/S0169-409X(03)00080-2 – volume: 30 start-page: 411 year: 2007 ident: 10.1016/j.jaerosci.2020.105582_bib26 article-title: Lung function decline in asthma publication-title: European Respiratory Journal doi: 10.1183/09031936.00080007 – volume: 117 start-page: 149 year: 2018 ident: 10.1016/j.jaerosci.2020.105582_bib3 article-title: Deposition of glass fibres in a physically realistic replica of the human respiratory tract publication-title: Journal of Aerosol Science doi: 10.1016/j.jaerosci.2017.11.006 – start-page: 1 year: 2018 ident: 10.1016/j.jaerosci.2020.105582_bib6 article-title: A feasible computational fluid dynamics study for relationships of structural and functional alterations with particle depositions in severe asthmatic lungs publication-title: Computational and Mathematical Methods in Medicine doi: 10.1155/2018/6564854 |
| SSID | ssj0007915 |
| Score | 2.391331 |
| Snippet | Quantification of airway deposition of aerosol particles is essential for the assessment of health risks of detrimental particles. Knowledge of deposition... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105582 |
| SubjectTerms | Airway deposition measurement Airway deposition simulation Asthma Micron-size particles |
| Title | The role of the combined use of experimental and computational methods in revealing the differences between the micron-size particle deposition patterns in healthy and asthmatic subjects |
| URI | https://dx.doi.org/10.1016/j.jaerosci.2020.105582 |
| Volume | 147 |
| WOSCitedRecordID | wos000540032700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007915 issn: 0021-8502 databaseCode: AIEXJ dateStart: 19950901 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEBQQy0s-IC4oSxJv1smxqlrBCioORdpbZOchst1mo2SzqvrT-E_8B2b8SLJQKD1wiXYt2U40n-2Z8XwzhLxxkyCVPHJVlLgzZbl0JEu5kyHNEY4csJtV1ZJP_PQ0XCyiL6PRD8uF2a54WYaXl1H1X0UNbSBspM7eQtzdoNAAv0Ho8ASxw_OfBW9jBlGrhDnA-gW9stVu-52c_obVVrUb6xTUJaUbzXPZghpp-VS2lAqGcNnoLmy_wJC-0mmKq-xdZd4HA2xNNBhmbkWnoxpRsy51yifRbL7pfLFNK9Eb1PxBURYZnORrw93sgXgi6nPNRsPL_tCrK3Xp76VdjFFxpaoZKOUca053pKR5loJKoL3GczGIX0kM_Wcuzls5dIiA9WsjvnqCgueEgbu7yeu8nmabxqqguubRbyeIdmYsJ0v1cUkxwSkmfYfdlN2_HKVdgKONnVvGdpwYx4n1OHfIvs-DCDbh_cOPx4t5pzrwyJTcMF8woLRf_0bXa1MDDensIXlgJEYPNQQekVFWHpD7g4SXB2T8GWy0da2ucuhberQqAAHq32PyHYBLEbh0nVMAFrXApQBcbBsClwKC6A5wqQEuLUraAVeNMwAuNcBV7QPgUgtc2gOXWuDiiAa4atoOuNQC9wn5enJ8dvTBMZVFnITN3I2T50Hgz7Kpm-KtNEu8MJIuF7BrMTETSOYGO1pIX4Zylk89ISM_DXLJ4bTjLGWSPSV75brMnhEqwymmHcwzEYZgWjAwwPLcTfyZZL4reDQmgZVQnJi0-1j9ZRX_HSNj8r7rV-nEMzf2iCwAYrMitVocA7Zv6Pv81rO9IPf6xfeS7G3qNntF7iZbWM_1awPsnzlb88Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+the+combined+use+of+experimental+and+computational+methods+in+revealing+the+differences+between+the+micron-size+particle+deposition+patterns+in+healthy+and+asthmatic+subjects&rft.jtitle=Journal+of+aerosol+science&rft.au=Farkas%2C+%C3%81rp%C3%A1d&rft.au=Lizal%2C+Frantisek&rft.au=Jedelsky%2C+Jan&rft.au=Elcner%2C+Jakub&rft.date=2020-09-01&rft.issn=0021-8502&rft.volume=147&rft.spage=105582&rft_id=info:doi/10.1016%2Fj.jaerosci.2020.105582&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jaerosci_2020_105582 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8502&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8502&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8502&client=summon |