On the Convergence of Overlapping Schwarz Decomposition for Nonlinear Optimal Control

We study the convergence properties of an overlapping Schwarz decomposition algorithm for solving nonlinear optimal control problems (OCPs). The algorithm decomposes the time domain into a set of overlapping subdomains, and solves all subproblems defined over subdomains in parallel. The convergence...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control Vol. 67; no. 11; pp. 5996 - 6011
Main Authors: Na, Sen, Shin, Sungho, Anitescu, Mihai, Zavala, Victor M.
Format: Journal Article
Language:English
Published: New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9286, 1558-2523
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study the convergence properties of an overlapping Schwarz decomposition algorithm for solving nonlinear optimal control problems (OCPs). The algorithm decomposes the time domain into a set of overlapping subdomains, and solves all subproblems defined over subdomains in parallel. The convergence is attained by updating primal-dual information at the boundaries of overlapping subdomains. We show that the algorithm exhibits local linear convergence, and that the convergence rate improves exponentially with the overlap size. We also establish global convergence results for a general quadratic programming, which enables the application of the Schwarz scheme inside second-order optimization algorithms (e.g., sequential quadratic programming). The theoretical foundation of our convergence analysis is a sensitivity result of nonlinear OCPs, which we call "exponential decay of sensitivity" (EDS). Intuitively, EDS states that the impact of perturbations at domain boundaries (i.e., initial and terminal time) on the solution decays exponentially as one moves into the domain. Here, we expand a previous analysis available in the literature by showing that EDS holds for both primal and dual solutions of nonlinear OCPs, under uniform second-order sufficient condition, controllability condition, and boundedness condition. We conduct experiments with a quadrotor motion planning problem and a partial differential equations (PDE) control problem to validate our theory, and show that the approach is significantly more efficient than alternating direction method of multipliers and as efficient as the centralized interior-point solver.
AbstractList We study the convergence properties of an overlapping Schwarz decomposition algorithm for solving nonlinear optimal control problems (OCPs). The algorithm decomposes the time domain into a set of overlapping subdomains, and solves all subproblems defined over subdomains in parallel. The convergence is attained by updating primal-dual information at the boundaries of overlapping subdomains. We show that the algorithm exhibits local linear convergence, and that the convergence rate improves exponentially with the overlap size. We also establish global convergence results for a general quadratic programming, which enables the application of the Schwarz scheme inside second-order optimization algorithms (e.g., sequential quadratic programming). The theoretical foundation of our convergence analysis is a sensitivity result of nonlinear OCPs, which we call “exponential decay of sensitivity” (EDS). Intuitively, EDS states that the impact of perturbations at domain boundaries (i.e., initial and terminal time) on the solution decays exponentially as one moves into the domain. Here, we expand a previous analysis available in the literature by showing that EDS holds for both primal and dual solutions of nonlinear OCPs, under uniform second-order sufficient condition, controllability condition, and boundedness condition. We conduct experiments with a quadrotor motion planning problem and a partial differential equations (PDE) control problem to validate our theory, and show that the approach is significantly more efficient than alternating direction method of multipliers and as efficient as the centralized interior-point solver.
Here, we study the convergence properties of an overlapping Schwarz decomposition algorithm for solving nonlinear optimal control problems (OCPs). The algorithm decomposes the time domain into a set of overlapping subdomains, and solves all subproblems defined over subdomains in parallel. The convergence is attained by updating primal-dual information at the boundaries of overlapping subdomains. We show that the algorithm exhibits local linear convergence, and that the convergence rate improves exponentially with the overlap size. We also establish global convergence results for a general quadratic programming, which enables the application of the Schwarz scheme inside second-order optimization algorithms (e.g., sequential quadratic programming). The theoretical foundation of our convergence analysis is a sensitivity result of nonlinear OCPs, which we call "exponential decay of sensitivity" (EDS). Intuitively, EDS states that the impact of perturbations at domain boundaries (i.e., initial and terminal time) on the solution decays exponentially as one moves into the domain. Here, we expand a previous analysis available in the literature by showing that EDS holds for both primal and dual solutions of nonlinear OCPs, under uniform second-order sufficient condition, controllability condition, and boundedness condition. We conduct experiments with a quadrotor motion planning problem and a partial differential equations (PDE) control problem to validate our theory, and show that the approach is significantly more efficient than alternating direction method of multipliers and as efficient as the centralized interior-point solver.
Author Shin, Sungho
Na, Sen
Anitescu, Mihai
Zavala, Victor M.
Author_xml – sequence: 1
  givenname: Sen
  orcidid: 0000-0002-7977-5276
  surname: Na
  fullname: Na, Sen
  email: senna@uchicago.edu
  organization: Department of Statistics, University of Chicago, Chicago, IL, USA
– sequence: 2
  givenname: Sungho
  orcidid: 0000-0002-9889-3278
  surname: Shin
  fullname: Shin, Sungho
  email: sungho.shin@wisc.edu
  organization: Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
– sequence: 3
  givenname: Mihai
  orcidid: 0000-0002-0787-5462
  surname: Anitescu
  fullname: Anitescu, Mihai
  email: anitescu@mcs.anl.gov
  organization: Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
– sequence: 4
  givenname: Victor M.
  orcidid: 0000-0002-5744-7378
  surname: Zavala
  fullname: Zavala, Victor M.
  email: victor.zavala@wisc.edu
  organization: Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
BackLink https://www.osti.gov/servlets/purl/2333647$$D View this record in Osti.gov
BookMark eNp9kEtLAzEURoMoWB97wU3Q9dS8ZjJZlvqEYhfWdchkMm3KNBmTVNFfb0rFhQtX4cL5vpt7TsCh884AcIHRGGMkbhaT6ZggQsYUC4ZqfgBGuCzrgpSEHoIRQrguBKmrY3AS4zqPFWN4BF7nDqaVgVPv3k1YGqcN9B2c56FXw2DdEr7o1YcKX_DWaL8ZfLTJegc7H-Czd711RgU4H5LdqH5Xk4Lvz8BRp_pozn_eU7C4v1tMH4vZ_OFpOpkVmlYoFV3bUVVy1hJEBadlJWirsWIdLxlnlDdVRxqt2kbolpmqQSUVpEWi1pirsqGn4Gpf62OyMmqbjF5p75zRSRJKacV4hq730BD829bEJNd-G1z-liSc1Hk9p3Wmqj2lg48xmE7mNrW7NAVle4mR3GmWWbPcaZY_mnMQ_QkOIasIn_9FLvcRa4z5xUXNkMCUfgPpVYlt
CODEN IETAA9
CitedBy_id crossref_primary_10_1016_j_rser_2025_116190
crossref_primary_10_1080_00423114_2024_2407175
crossref_primary_10_1007_s10957_023_02335_9
crossref_primary_10_1016_j_apenergy_2024_122731
crossref_primary_10_1061_JWRMD5_WRENG_6491
crossref_primary_10_1287_ijoc_2022_0319
crossref_primary_10_1051_cocv_2025014
crossref_primary_10_1109_TAC_2022_3223323
crossref_primary_10_1287_moor_2023_1378
Cites_doi 10.1080/10556788.2014.911298
10.1109/cca.2013.6662901
10.1049/ip-cta:20040008
10.1109/tac.2007.900828
10.1109/TAC.2021.3137100
10.1109/tac.2022.3223323
10.1137/20M1356324
10.1109/cdc.2004.1428793
10.3182/20140824-6-za-1003.01577
10.2172/1123223
10.1016/j.compchemeng.2017.09.023
10.1137/16m1081543
10.1109/tac.2017.2694806
10.1016/j.compchemeng.2018.08.036
10.1109/tpwrs.2003.814883
10.1109/cdc40024.2019.9029974
10.1016/j.automatica.2003.11.005
10.1109/cdc.2015.7402830
10.1109/tcst.2007.894653
10.1109/tnn.2003.809424
10.1109/cdc40024.2019.9030139
10.1016/j.ifacol.2018.11.041
10.1016/S0967-0661(02)00186-7
10.1016/0167-8191(90)90060-m
10.1007/s10915-018-0757-z
10.1109/cdc.2015.7402938
10.1137/19m1265065
10.23919/acc.2018.8430780
10.1137/16m1081993
10.1137/s0363012902400713
10.1051/cocv/2021030
10.1007/978-1-4612-1394-9
10.1007/s10107-004-0559-y
10.1007/bf01585500
10.1016/j.automatica.2008.06.011
10.1109/icra.2011.5980244
10.1137/090762634
10.1007/bf00938540
10.1561/2200000016
10.1016/j.automatica.2019.108560
10.1088/1742-6596/1618/2/022004
10.1021/ie030070p
10.1016/j.ifacol.2016.07.214
10.1137/140990309
10.1016/j.jprocont.2020.03.015
10.1023/a:1021711402723
10.1016/j.ifacol.2021.08.322
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
CorporateAuthor Argonne National Laboratory (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Laboratory (ANL), Argonne, IL (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
OIOZB
OTOTI
DOI 10.1109/TAC.2022.3194087
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 6011
ExternalDocumentID 2333647
10_1109_TAC_2022_3194087
9840913
Genre orig-research
GrantInformation_xml – fundername: Office of Science
  funderid: 10.13039/100006132
– fundername: National Science Foundation
  grantid: CNS-1545046; ECCS-1609183
  funderid: 10.13039/501100008982
– fundername: U.S. Department of Energy
  funderid: 10.13039/100000015
– fundername: Office of Advanced Scientific Computing Research
  grantid: DE-AC02-06CH11347
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
OIOZB
OTOTI
RIG
ID FETCH-LOGICAL-c360t-fdf3a574d2039735693dc1a4f7547437b6f2bcadb9cd4e6b05392d098c17a5b3
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000873894800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
IngestDate Mon Apr 22 04:53:52 EDT 2024
Mon Jun 30 10:08:13 EDT 2025
Sat Nov 29 05:41:06 EST 2025
Tue Nov 18 21:20:27 EST 2025
Wed Aug 27 02:14:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-fdf3a574d2039735693dc1a4f7547437b6f2bcadb9cd4e6b05392d098c17a5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC02-06CH11357
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
National Science Foundation (NSF)
ORCID 0000-0002-0787-5462
0000-0002-7977-5276
0000-0002-9889-3278
0000-0002-5744-7378
0000000279775276
0000000257447378
0000000298893278
0000000207875462
OpenAccessLink https://www.osti.gov/servlets/purl/2333647
PQID 2728574738
PQPubID 85475
PageCount 16
ParticipantIDs proquest_journals_2728574738
crossref_citationtrail_10_1109_TAC_2022_3194087
ieee_primary_9840913
crossref_primary_10_1109_TAC_2022_3194087
osti_scitechconnect_2333647
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref47
ref44
ref43
Bonnans (ref41) 2000
ref49
ref8
ref7
ref9
Nocedal (ref42) 2006
ref4
ref3
ref6
ref5
HSL (ref51) 2007
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
(ref48) 2022
ref32
ref2
ref39
ref38
ref24
ref23
ref26
ref25
Rawlings (ref1) 2017
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref15
  doi: 10.1080/10556788.2014.911298
– ident: ref23
  doi: 10.1109/cca.2013.6662901
– ident: ref44
  doi: 10.1049/ip-cta:20040008
– ident: ref7
  doi: 10.1109/tac.2007.900828
– ident: ref37
  doi: 10.1109/TAC.2021.3137100
– ident: ref29
  doi: 10.1109/tac.2022.3223323
– ident: ref38
  doi: 10.1137/20M1356324
– ident: ref10
  doi: 10.1109/cdc.2004.1428793
– ident: ref16
  doi: 10.3182/20140824-6-za-1003.01577
– ident: ref24
  doi: 10.2172/1123223
– ident: ref21
  doi: 10.1016/j.compchemeng.2017.09.023
– ident: ref43
  doi: 10.1137/16m1081543
– ident: ref14
  doi: 10.1109/tac.2017.2694806
– ident: ref49
  doi: 10.1016/j.compchemeng.2018.08.036
– ident: ref6
  doi: 10.1109/tpwrs.2003.814883
– ident: ref18
  doi: 10.1109/cdc40024.2019.9029974
– ident: ref30
  doi: 10.1016/j.automatica.2003.11.005
– ident: ref17
  doi: 10.1109/cdc.2015.7402830
– ident: ref5
  doi: 10.1109/tcst.2007.894653
– ident: ref8
  doi: 10.1109/tnn.2003.809424
– ident: ref26
  doi: 10.1109/cdc40024.2019.9030139
– ident: ref12
  doi: 10.1016/j.ifacol.2018.11.041
– ident: ref2
  doi: 10.1016/S0967-0661(02)00186-7
– ident: ref19
  doi: 10.1016/0167-8191(90)90060-m
– ident: ref36
  doi: 10.1007/s10915-018-0757-z
– ident: ref22
  doi: 10.1109/cdc.2015.7402938
– ident: ref27
  doi: 10.1137/19m1265065
– ident: ref9
  doi: 10.23919/acc.2018.8430780
– ident: ref25
  doi: 10.1137/16m1081993
– ident: ref31
  doi: 10.1137/s0363012902400713
– year: 2007
  ident: ref51
  article-title: Collection of Fortran codes for large-scale scientific computation
– ident: ref39
  doi: 10.1051/cocv/2021030
– year: 2000
  ident: ref41
  publication-title: Perturbation Anal. of Optim. Problems
  doi: 10.1007/978-1-4612-1394-9
– ident: ref50
  doi: 10.1007/s10107-004-0559-y
– volume-title: Model Predictive Control: Theory, Computation, and Des
  year: 2017
  ident: ref1
– year: 2006
  ident: ref42
  publication-title: Numer. Optim.
– ident: ref45
  doi: 10.1007/bf01585500
– ident: ref32
  doi: 10.1016/j.automatica.2008.06.011
– ident: ref46
  doi: 10.1109/icra.2011.5980244
– ident: ref33
  doi: 10.1137/090762634
– ident: ref40
  doi: 10.1007/bf00938540
– ident: ref11
  doi: 10.1561/2200000016
– ident: ref47
  doi: 10.1016/j.automatica.2019.108560
– year: 2022
  ident: ref48
  article-title: Nonlinear heat transfer in thin plate
– ident: ref34
  doi: 10.1088/1742-6596/1618/2/022004
– ident: ref4
  doi: 10.1021/ie030070p
– ident: ref13
  doi: 10.1016/j.ifacol.2016.07.214
– ident: ref35
  doi: 10.1137/140990309
– ident: ref3
  doi: 10.1016/j.jprocont.2020.03.015
– ident: ref20
  doi: 10.1023/a:1021711402723
– ident: ref28
  doi: 10.1016/j.ifacol.2021.08.322
SSID ssj0016441
Score 2.4929624
Snippet We study the convergence properties of an overlapping Schwarz decomposition algorithm for solving nonlinear optimal control problems (OCPs). The algorithm...
Here, we study the convergence properties of an overlapping Schwarz decomposition algorithm for solving nonlinear optimal control problems (OCPs). The...
SourceID osti
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5996
SubjectTerms Algorithms
Boundaries
Convergence
Decomposition
Decomposition methods
ENGINEERING
Motion planning
Nonlinear control
nonlinear programming
Optimal control
Optimization
overlapping
parallel algorithms
Partial differential equations
Perturbation
Perturbation methods
Prediction algorithms
Predictive control
Quadratic programming
Sensitivity
Sensitivity analysis
Trajectory
Title On the Convergence of Overlapping Schwarz Decomposition for Nonlinear Optimal Control
URI https://ieeexplore.ieee.org/document/9840913
https://www.proquest.com/docview/2728574738
https://www.osti.gov/servlets/purl/2333647
Volume 67
WOSCitedRecordID wos000873894800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1R1AM98FnEFqh84IJEWMd2YvuIFlAPaLcSi8TNcmynrQS7aFmo1F_fmSRESK2QOCWHJLb8MvaM_eYNwJE2NpCMd8aTxwClLFVmfJVneUJ3tNZVUbZVS670eGxub-33FTjpc2FSSg35LJ3SbXOWH-fhibbKhpaiESpR-0Hrss3V6k8MaF1vZ100YGH6I0luh9OzEQaCQmB8ahUn8tyrJaipqYKXOVrUP_Nxs8hcbryve5uw3jmT7KxFfwtW0mwbPr2SGNyBm8mMoY_HRsQubxItE5vXbPJM-3ikzfCDXYefv_3iDztPxC_vSFwMnVk2bnU0_IJNcGa5x6ZGLbP9M0wvL6ajb1lXSiELsuTLrI619IVWUXB0QGRRWhlD7lWtC4U-hK7KWlTBx8qGqFJZoWlaEbk1Ide-qOQurM7ms7QHjCsvVZQ2Jm9VbWqjEkdINQY-pEyfD2D4MrgudDLjVO3izjXhBrcO4XAEh-vgGMBx_8ZDK7HxxrM7NO79c92QD2Cf8HPoNZD0bSCOUFg6ISXJ4w_g4AVW11nooxNaGOy1lubL_7-5D2vUcpt3eACry8VTOoSP4Xn563Hxtfn5_gKDItUV
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RTxQxEJ4QNFEeREXCCWoffDFxvW7b3baP5JRAOO9IOBPemm7bVRK4I8cBib-emd1lQ6Ix8Wn3obvb9Ntpv2lnvgH4qI0NJOOd8eTRQSlLlRlf5VmekI7WuirKtmrJWE8m5uzMnqzB5z4XJqXUBJ-lL3TbnOXHRbihrbKhJW-EStQ-ocpZXbZWf2ZAK3s776IJC9MfSnI7nO2P0BUUAj1UqziFzz1ahJqqKnhZoE39MSM3y8zB5v918CW86Ogk22_xfwVraf4aNh6JDG7Bj-mcIctjI4ovb1ItE1vUbHpLO3mkzvCTnYZfd375m31NFGHehXExpLNs0ipp-CWb4txyiZ8atbHtb2B28G02Osy6YgpZkCVfZXWspS-0ioIjBZFFaWUMuVe1LhSyCF2VtaiCj5UNUaWyQuO0InJrQq59UcltWJ8v5mkHGFdeqihtTN6q2tRGJY6ganR9SJs-H8DwYXBd6ITGqd7FhWscDm4dwuEIDtfBMYBP_RNXrcjGP9pu0bj37bohH8Au4eeQN5D4baAoobByQkoSyB_A3gOsrrPRaye0MNhrLc3bv7_zAzw7nH0fu_HR5HgXnlMv2izEPVhfLW_SO3gablfn18v3zY94D8ZB2F4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Convergence+of+Overlapping+Schwarz+Decomposition+for+Nonlinear+Optimal+Control&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Na%2C+Sen&rft.au=Shin%2C+Sungho&rft.au=Anitescu%2C+Mihai&rft.au=Zavala%2C+Victor+M.&rft.date=2022-11-01&rft.pub=IEEE&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=67&rft.issue=11&rft_id=info:doi/10.1109%2FTAC.2022.3194087&rft.externalDocID=2333647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon