On the Convergence of Overlapping Schwarz Decomposition for Nonlinear Optimal Control
We study the convergence properties of an overlapping Schwarz decomposition algorithm for solving nonlinear optimal control problems (OCPs). The algorithm decomposes the time domain into a set of overlapping subdomains, and solves all subproblems defined over subdomains in parallel. The convergence...
Saved in:
| Published in: | IEEE transactions on automatic control Vol. 67; no. 11; pp. 5996 - 6011 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9286, 1558-2523 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We study the convergence properties of an overlapping Schwarz decomposition algorithm for solving nonlinear optimal control problems (OCPs). The algorithm decomposes the time domain into a set of overlapping subdomains, and solves all subproblems defined over subdomains in parallel. The convergence is attained by updating primal-dual information at the boundaries of overlapping subdomains. We show that the algorithm exhibits local linear convergence, and that the convergence rate improves exponentially with the overlap size. We also establish global convergence results for a general quadratic programming, which enables the application of the Schwarz scheme inside second-order optimization algorithms (e.g., sequential quadratic programming). The theoretical foundation of our convergence analysis is a sensitivity result of nonlinear OCPs, which we call "exponential decay of sensitivity" (EDS). Intuitively, EDS states that the impact of perturbations at domain boundaries (i.e., initial and terminal time) on the solution decays exponentially as one moves into the domain. Here, we expand a previous analysis available in the literature by showing that EDS holds for both primal and dual solutions of nonlinear OCPs, under uniform second-order sufficient condition, controllability condition, and boundedness condition. We conduct experiments with a quadrotor motion planning problem and a partial differential equations (PDE) control problem to validate our theory, and show that the approach is significantly more efficient than alternating direction method of multipliers and as efficient as the centralized interior-point solver. |
|---|---|
| AbstractList | We study the convergence properties of an overlapping Schwarz decomposition algorithm for solving nonlinear optimal control problems (OCPs). The algorithm decomposes the time domain into a set of overlapping subdomains, and solves all subproblems defined over subdomains in parallel. The convergence is attained by updating primal-dual information at the boundaries of overlapping subdomains. We show that the algorithm exhibits local linear convergence, and that the convergence rate improves exponentially with the overlap size. We also establish global convergence results for a general quadratic programming, which enables the application of the Schwarz scheme inside second-order optimization algorithms (e.g., sequential quadratic programming). The theoretical foundation of our convergence analysis is a sensitivity result of nonlinear OCPs, which we call “exponential decay of sensitivity” (EDS). Intuitively, EDS states that the impact of perturbations at domain boundaries (i.e., initial and terminal time) on the solution decays exponentially as one moves into the domain. Here, we expand a previous analysis available in the literature by showing that EDS holds for both primal and dual solutions of nonlinear OCPs, under uniform second-order sufficient condition, controllability condition, and boundedness condition. We conduct experiments with a quadrotor motion planning problem and a partial differential equations (PDE) control problem to validate our theory, and show that the approach is significantly more efficient than alternating direction method of multipliers and as efficient as the centralized interior-point solver. Here, we study the convergence properties of an overlapping Schwarz decomposition algorithm for solving nonlinear optimal control problems (OCPs). The algorithm decomposes the time domain into a set of overlapping subdomains, and solves all subproblems defined over subdomains in parallel. The convergence is attained by updating primal-dual information at the boundaries of overlapping subdomains. We show that the algorithm exhibits local linear convergence, and that the convergence rate improves exponentially with the overlap size. We also establish global convergence results for a general quadratic programming, which enables the application of the Schwarz scheme inside second-order optimization algorithms (e.g., sequential quadratic programming). The theoretical foundation of our convergence analysis is a sensitivity result of nonlinear OCPs, which we call "exponential decay of sensitivity" (EDS). Intuitively, EDS states that the impact of perturbations at domain boundaries (i.e., initial and terminal time) on the solution decays exponentially as one moves into the domain. Here, we expand a previous analysis available in the literature by showing that EDS holds for both primal and dual solutions of nonlinear OCPs, under uniform second-order sufficient condition, controllability condition, and boundedness condition. We conduct experiments with a quadrotor motion planning problem and a partial differential equations (PDE) control problem to validate our theory, and show that the approach is significantly more efficient than alternating direction method of multipliers and as efficient as the centralized interior-point solver. |
| Author | Shin, Sungho Na, Sen Anitescu, Mihai Zavala, Victor M. |
| Author_xml | – sequence: 1 givenname: Sen orcidid: 0000-0002-7977-5276 surname: Na fullname: Na, Sen email: senna@uchicago.edu organization: Department of Statistics, University of Chicago, Chicago, IL, USA – sequence: 2 givenname: Sungho orcidid: 0000-0002-9889-3278 surname: Shin fullname: Shin, Sungho email: sungho.shin@wisc.edu organization: Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA – sequence: 3 givenname: Mihai orcidid: 0000-0002-0787-5462 surname: Anitescu fullname: Anitescu, Mihai email: anitescu@mcs.anl.gov organization: Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA – sequence: 4 givenname: Victor M. orcidid: 0000-0002-5744-7378 surname: Zavala fullname: Zavala, Victor M. email: victor.zavala@wisc.edu organization: Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA |
| BackLink | https://www.osti.gov/servlets/purl/2333647$$D View this record in Osti.gov |
| BookMark | eNp9kEtLAzEURoMoWB97wU3Q9dS8ZjJZlvqEYhfWdchkMm3KNBmTVNFfb0rFhQtX4cL5vpt7TsCh884AcIHRGGMkbhaT6ZggQsYUC4ZqfgBGuCzrgpSEHoIRQrguBKmrY3AS4zqPFWN4BF7nDqaVgVPv3k1YGqcN9B2c56FXw2DdEr7o1YcKX_DWaL8ZfLTJegc7H-Czd711RgU4H5LdqH5Xk4Lvz8BRp_pozn_eU7C4v1tMH4vZ_OFpOpkVmlYoFV3bUVVy1hJEBadlJWirsWIdLxlnlDdVRxqt2kbolpmqQSUVpEWi1pirsqGn4Gpf62OyMmqbjF5p75zRSRJKacV4hq730BD829bEJNd-G1z-liSc1Hk9p3Wmqj2lg48xmE7mNrW7NAVle4mR3GmWWbPcaZY_mnMQ_QkOIasIn_9FLvcRa4z5xUXNkMCUfgPpVYlt |
| CODEN | IETAA9 |
| CitedBy_id | crossref_primary_10_1016_j_rser_2025_116190 crossref_primary_10_1080_00423114_2024_2407175 crossref_primary_10_1007_s10957_023_02335_9 crossref_primary_10_1016_j_apenergy_2024_122731 crossref_primary_10_1061_JWRMD5_WRENG_6491 crossref_primary_10_1287_ijoc_2022_0319 crossref_primary_10_1051_cocv_2025014 crossref_primary_10_1109_TAC_2022_3223323 crossref_primary_10_1287_moor_2023_1378 |
| Cites_doi | 10.1080/10556788.2014.911298 10.1109/cca.2013.6662901 10.1049/ip-cta:20040008 10.1109/tac.2007.900828 10.1109/TAC.2021.3137100 10.1109/tac.2022.3223323 10.1137/20M1356324 10.1109/cdc.2004.1428793 10.3182/20140824-6-za-1003.01577 10.2172/1123223 10.1016/j.compchemeng.2017.09.023 10.1137/16m1081543 10.1109/tac.2017.2694806 10.1016/j.compchemeng.2018.08.036 10.1109/tpwrs.2003.814883 10.1109/cdc40024.2019.9029974 10.1016/j.automatica.2003.11.005 10.1109/cdc.2015.7402830 10.1109/tcst.2007.894653 10.1109/tnn.2003.809424 10.1109/cdc40024.2019.9030139 10.1016/j.ifacol.2018.11.041 10.1016/S0967-0661(02)00186-7 10.1016/0167-8191(90)90060-m 10.1007/s10915-018-0757-z 10.1109/cdc.2015.7402938 10.1137/19m1265065 10.23919/acc.2018.8430780 10.1137/16m1081993 10.1137/s0363012902400713 10.1051/cocv/2021030 10.1007/978-1-4612-1394-9 10.1007/s10107-004-0559-y 10.1007/bf01585500 10.1016/j.automatica.2008.06.011 10.1109/icra.2011.5980244 10.1137/090762634 10.1007/bf00938540 10.1561/2200000016 10.1016/j.automatica.2019.108560 10.1088/1742-6596/1618/2/022004 10.1021/ie030070p 10.1016/j.ifacol.2016.07.214 10.1137/140990309 10.1016/j.jprocont.2020.03.015 10.1023/a:1021711402723 10.1016/j.ifacol.2021.08.322 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| CorporateAuthor | Argonne National Laboratory (ANL), Argonne, IL (United States) |
| CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States) |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D OIOZB OTOTI |
| DOI | 10.1109/TAC.2022.3194087 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2523 |
| EndPage | 6011 |
| ExternalDocumentID | 2333647 10_1109_TAC_2022_3194087 9840913 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Office of Science funderid: 10.13039/100006132 – fundername: National Science Foundation grantid: CNS-1545046; ECCS-1609183 funderid: 10.13039/501100008982 – fundername: U.S. Department of Energy funderid: 10.13039/100000015 – fundername: Office of Advanced Scientific Computing Research grantid: DE-AC02-06CH11347 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D OIOZB OTOTI RIG |
| ID | FETCH-LOGICAL-c360t-fdf3a574d2039735693dc1a4f7547437b6f2bcadb9cd4e6b05392d098c17a5b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000873894800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9286 |
| IngestDate | Mon Apr 22 04:53:52 EDT 2024 Mon Jun 30 10:08:13 EDT 2025 Sat Nov 29 05:41:06 EST 2025 Tue Nov 18 21:20:27 EST 2025 Wed Aug 27 02:14:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c360t-fdf3a574d2039735693dc1a4f7547437b6f2bcadb9cd4e6b05392d098c17a5b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AC02-06CH11357 USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) National Science Foundation (NSF) |
| ORCID | 0000-0002-0787-5462 0000-0002-7977-5276 0000-0002-9889-3278 0000-0002-5744-7378 0000000279775276 0000000257447378 0000000298893278 0000000207875462 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/2333647 |
| PQID | 2728574738 |
| PQPubID | 85475 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2728574738 crossref_citationtrail_10_1109_TAC_2022_3194087 ieee_primary_9840913 crossref_primary_10_1109_TAC_2022_3194087 osti_scitechconnect_2333647 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | IEEE transactions on automatic control |
| PublicationTitleAbbrev | TAC |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref47 ref44 ref43 Bonnans (ref41) 2000 ref49 ref8 ref7 ref9 Nocedal (ref42) 2006 ref4 ref3 ref6 ref5 HSL (ref51) 2007 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 (ref48) 2022 ref32 ref2 ref39 ref38 ref24 ref23 ref26 ref25 Rawlings (ref1) 2017 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref15 doi: 10.1080/10556788.2014.911298 – ident: ref23 doi: 10.1109/cca.2013.6662901 – ident: ref44 doi: 10.1049/ip-cta:20040008 – ident: ref7 doi: 10.1109/tac.2007.900828 – ident: ref37 doi: 10.1109/TAC.2021.3137100 – ident: ref29 doi: 10.1109/tac.2022.3223323 – ident: ref38 doi: 10.1137/20M1356324 – ident: ref10 doi: 10.1109/cdc.2004.1428793 – ident: ref16 doi: 10.3182/20140824-6-za-1003.01577 – ident: ref24 doi: 10.2172/1123223 – ident: ref21 doi: 10.1016/j.compchemeng.2017.09.023 – ident: ref43 doi: 10.1137/16m1081543 – ident: ref14 doi: 10.1109/tac.2017.2694806 – ident: ref49 doi: 10.1016/j.compchemeng.2018.08.036 – ident: ref6 doi: 10.1109/tpwrs.2003.814883 – ident: ref18 doi: 10.1109/cdc40024.2019.9029974 – ident: ref30 doi: 10.1016/j.automatica.2003.11.005 – ident: ref17 doi: 10.1109/cdc.2015.7402830 – ident: ref5 doi: 10.1109/tcst.2007.894653 – ident: ref8 doi: 10.1109/tnn.2003.809424 – ident: ref26 doi: 10.1109/cdc40024.2019.9030139 – ident: ref12 doi: 10.1016/j.ifacol.2018.11.041 – ident: ref2 doi: 10.1016/S0967-0661(02)00186-7 – ident: ref19 doi: 10.1016/0167-8191(90)90060-m – ident: ref36 doi: 10.1007/s10915-018-0757-z – ident: ref22 doi: 10.1109/cdc.2015.7402938 – ident: ref27 doi: 10.1137/19m1265065 – ident: ref9 doi: 10.23919/acc.2018.8430780 – ident: ref25 doi: 10.1137/16m1081993 – ident: ref31 doi: 10.1137/s0363012902400713 – year: 2007 ident: ref51 article-title: Collection of Fortran codes for large-scale scientific computation – ident: ref39 doi: 10.1051/cocv/2021030 – year: 2000 ident: ref41 publication-title: Perturbation Anal. of Optim. Problems doi: 10.1007/978-1-4612-1394-9 – ident: ref50 doi: 10.1007/s10107-004-0559-y – volume-title: Model Predictive Control: Theory, Computation, and Des year: 2017 ident: ref1 – year: 2006 ident: ref42 publication-title: Numer. Optim. – ident: ref45 doi: 10.1007/bf01585500 – ident: ref32 doi: 10.1016/j.automatica.2008.06.011 – ident: ref46 doi: 10.1109/icra.2011.5980244 – ident: ref33 doi: 10.1137/090762634 – ident: ref40 doi: 10.1007/bf00938540 – ident: ref11 doi: 10.1561/2200000016 – ident: ref47 doi: 10.1016/j.automatica.2019.108560 – year: 2022 ident: ref48 article-title: Nonlinear heat transfer in thin plate – ident: ref34 doi: 10.1088/1742-6596/1618/2/022004 – ident: ref4 doi: 10.1021/ie030070p – ident: ref13 doi: 10.1016/j.ifacol.2016.07.214 – ident: ref35 doi: 10.1137/140990309 – ident: ref3 doi: 10.1016/j.jprocont.2020.03.015 – ident: ref20 doi: 10.1023/a:1021711402723 – ident: ref28 doi: 10.1016/j.ifacol.2021.08.322 |
| SSID | ssj0016441 |
| Score | 2.4929624 |
| Snippet | We study the convergence properties of an overlapping Schwarz decomposition algorithm for solving nonlinear optimal control problems (OCPs). The algorithm... Here, we study the convergence properties of an overlapping Schwarz decomposition algorithm for solving nonlinear optimal control problems (OCPs). The... |
| SourceID | osti proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5996 |
| SubjectTerms | Algorithms Boundaries Convergence Decomposition Decomposition methods ENGINEERING Motion planning Nonlinear control nonlinear programming Optimal control Optimization overlapping parallel algorithms Partial differential equations Perturbation Perturbation methods Prediction algorithms Predictive control Quadratic programming Sensitivity Sensitivity analysis Trajectory |
| Title | On the Convergence of Overlapping Schwarz Decomposition for Nonlinear Optimal Control |
| URI | https://ieeexplore.ieee.org/document/9840913 https://www.proquest.com/docview/2728574738 https://www.osti.gov/servlets/purl/2333647 |
| Volume | 67 |
| WOSCitedRecordID | wos000873894800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2523 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016441 issn: 0018-9286 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1R1AM98FnEFqh84IJEWMd2YvuIFlAPaLcSi8TNcmynrQS7aFmo1F_fmSRESK2QOCWHJLb8MvaM_eYNwJE2NpCMd8aTxwClLFVmfJVneUJ3tNZVUbZVS670eGxub-33FTjpc2FSSg35LJ3SbXOWH-fhibbKhpaiESpR-0Hrss3V6k8MaF1vZ100YGH6I0luh9OzEQaCQmB8ahUn8tyrJaipqYKXOVrUP_Nxs8hcbryve5uw3jmT7KxFfwtW0mwbPr2SGNyBm8mMoY_HRsQubxItE5vXbPJM-3ikzfCDXYefv_3iDztPxC_vSFwMnVk2bnU0_IJNcGa5x6ZGLbP9M0wvL6ajb1lXSiELsuTLrI619IVWUXB0QGRRWhlD7lWtC4U-hK7KWlTBx8qGqFJZoWlaEbk1Ide-qOQurM7ms7QHjCsvVZQ2Jm9VbWqjEkdINQY-pEyfD2D4MrgudDLjVO3izjXhBrcO4XAEh-vgGMBx_8ZDK7HxxrM7NO79c92QD2Cf8HPoNZD0bSCOUFg6ISXJ4w_g4AVW11nooxNaGOy1lubL_7-5D2vUcpt3eACry8VTOoSP4Xn563Hxtfn5_gKDItUV |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RTxQxEJ4QNFEeREXCCWoffDFxvW7b3baP5JRAOO9IOBPemm7bVRK4I8cBib-emd1lQ6Ix8Wn3obvb9Ntpv2lnvgH4qI0NJOOd8eTRQSlLlRlf5VmekI7WuirKtmrJWE8m5uzMnqzB5z4XJqXUBJ-lL3TbnOXHRbihrbKhJW-EStQ-ocpZXbZWf2ZAK3s776IJC9MfSnI7nO2P0BUUAj1UqziFzz1ahJqqKnhZoE39MSM3y8zB5v918CW86Ogk22_xfwVraf4aNh6JDG7Bj-mcIctjI4ovb1ItE1vUbHpLO3mkzvCTnYZfd375m31NFGHehXExpLNs0ipp-CWb4txyiZ8atbHtb2B28G02Osy6YgpZkCVfZXWspS-0ioIjBZFFaWUMuVe1LhSyCF2VtaiCj5UNUaWyQuO0InJrQq59UcltWJ8v5mkHGFdeqihtTN6q2tRGJY6ganR9SJs-H8DwYXBd6ITGqd7FhWscDm4dwuEIDtfBMYBP_RNXrcjGP9pu0bj37bohH8Au4eeQN5D4baAoobByQkoSyB_A3gOsrrPRaye0MNhrLc3bv7_zAzw7nH0fu_HR5HgXnlMv2izEPVhfLW_SO3gablfn18v3zY94D8ZB2F4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Convergence+of+Overlapping+Schwarz+Decomposition+for+Nonlinear+Optimal+Control&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Na%2C+Sen&rft.au=Shin%2C+Sungho&rft.au=Anitescu%2C+Mihai&rft.au=Zavala%2C+Victor+M.&rft.date=2022-11-01&rft.pub=IEEE&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=67&rft.issue=11&rft_id=info:doi/10.1109%2FTAC.2022.3194087&rft.externalDocID=2333647 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |