Eigenvalue-eigenfunction problem for Steklov's smoothing operator and differential-difference equations of mixed type

It is shown that any \(\mu \in \mathbb{C}\) is an infinite multiplicity eigenvalue of the Steklov smoothing operator \(S_h\) acting on the space \(L^1_{loc}(\mathbb{R})\). For \(\mu \neq 0\) the eigenvalue-eigenfunction problem leads to studying a differential-difference equation of mixed type. An e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Rocznik Akademii Górniczo-Hutniczej im. Stanisława Staszica. Opuscula Mathematica Ročník 33; číslo 1; s. 81 - 98
Hlavní autoři: Iakovlev, Serguei I., Iakovleva, Valentina
Médium: Journal Article
Jazyk:angličtina
Vydáno: AGH Univeristy of Science and Technology Press 2013
Témata:
ISSN:1232-9274
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:It is shown that any \(\mu \in \mathbb{C}\) is an infinite multiplicity eigenvalue of the Steklov smoothing operator \(S_h\) acting on the space \(L^1_{loc}(\mathbb{R})\). For \(\mu \neq 0\) the eigenvalue-eigenfunction problem leads to studying a differential-difference equation of mixed type. An existence and uniqueness theorem is proved for this equation. Further a transformation group is defined on a countably normed space of initial functions and the spectrum of the generator of this group is studied. Some possible generalizations are pointed out.
ISSN:1232-9274
DOI:10.7494/OpMath.2013.33.1.81