Eigenvalue-eigenfunction problem for Steklov's smoothing operator and differential-difference equations of mixed type
It is shown that any \(\mu \in \mathbb{C}\) is an infinite multiplicity eigenvalue of the Steklov smoothing operator \(S_h\) acting on the space \(L^1_{loc}(\mathbb{R})\). For \(\mu \neq 0\) the eigenvalue-eigenfunction problem leads to studying a differential-difference equation of mixed type. An e...
Uloženo v:
| Vydáno v: | Rocznik Akademii Górniczo-Hutniczej im. Stanisława Staszica. Opuscula Mathematica Ročník 33; číslo 1; s. 81 - 98 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
AGH Univeristy of Science and Technology Press
2013
|
| Témata: | |
| ISSN: | 1232-9274 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | It is shown that any \(\mu \in \mathbb{C}\) is an infinite multiplicity eigenvalue of the Steklov smoothing operator \(S_h\) acting on the space \(L^1_{loc}(\mathbb{R})\). For \(\mu \neq 0\) the eigenvalue-eigenfunction problem leads to studying a differential-difference equation of mixed type. An existence and uniqueness theorem is proved for this equation. Further a transformation group is defined on a countably normed space of initial functions and the spectrum of the generator of this group is studied. Some possible generalizations are pointed out. |
|---|---|
| ISSN: | 1232-9274 |
| DOI: | 10.7494/OpMath.2013.33.1.81 |