Eigenvalue-eigenfunction problem for Steklov's smoothing operator and differential-difference equations of mixed type
It is shown that any \(\mu \in \mathbb{C}\) is an infinite multiplicity eigenvalue of the Steklov smoothing operator \(S_h\) acting on the space \(L^1_{loc}(\mathbb{R})\). For \(\mu \neq 0\) the eigenvalue-eigenfunction problem leads to studying a differential-difference equation of mixed type. An e...
Gespeichert in:
| Veröffentlicht in: | Rocznik Akademii Górniczo-Hutniczej im. Stanisława Staszica. Opuscula Mathematica Jg. 33; H. 1; S. 81 - 98 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
AGH Univeristy of Science and Technology Press
2013
|
| Schlagworte: | |
| ISSN: | 1232-9274 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | It is shown that any \(\mu \in \mathbb{C}\) is an infinite multiplicity eigenvalue of the Steklov smoothing operator \(S_h\) acting on the space \(L^1_{loc}(\mathbb{R})\). For \(\mu \neq 0\) the eigenvalue-eigenfunction problem leads to studying a differential-difference equation of mixed type. An existence and uniqueness theorem is proved for this equation. Further a transformation group is defined on a countably normed space of initial functions and the spectrum of the generator of this group is studied. Some possible generalizations are pointed out. |
|---|---|
| ISSN: | 1232-9274 |
| DOI: | 10.7494/OpMath.2013.33.1.81 |