A Penalized Likelihood Method for Classification With Matrix-Valued Predictors
We propose a penalized likelihood method to fit the linear discriminant analysis model when the predictor is matrix valued. We simultaneously estimate the means and the precision matrix, which we assume has a Kronecker product decomposition. Our penalties encourage pairs of response category mean ma...
Gespeichert in:
| Veröffentlicht in: | Journal of computational and graphical statistics Jg. 28; H. 1; S. 11 - 22 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Alexandria
Taylor & Francis
02.01.2019
American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 1061-8600, 1537-2715 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We propose a penalized likelihood method to fit the linear discriminant analysis model when the predictor is matrix valued. We simultaneously estimate the means and the precision matrix, which we assume has a Kronecker product decomposition. Our penalties encourage pairs of response category mean matrix estimators to have equal entries and also encourage zeros in the precision matrix estimator. To compute our estimators, we use a blockwise coordinate descent algorithm. To update the optimization variables corresponding to response category mean matrices, we use an alternating minimization algorithm that takes advantage of the Kronecker structure of the precision matrix. We show that our method can outperform relevant competitors in classification, even when our modeling assumptions are violated. We analyze three real datasets to demonstrate our method's applicability. Supplementary materials, including an R package implementing our method, are available online. |
|---|---|
| AbstractList | We propose a penalized likelihood method to fit the linear discriminant analysis model when the predictor is matrix valued. We simultaneously estimate the means and the precision matrix, which we assume has a Kronecker product decomposition. Our penalties encourage pairs of response category mean matrix estimators to have equal entries and also encourage zeros in the precision matrix estimator. To compute our estimators, we use a blockwise coordinate descent algorithm. To update the optimization variables corresponding to response category mean matrices, we use an alternating minimization algorithm that takes advantage of the Kronecker structure of the precision matrix. We show that our method can outperform relevant competitors in classification, even when our modeling assumptions are violated. We analyze three real datasets to demonstrate our method's applicability. Supplementary materials, including an R package implementing our method, are available online. |
| Author | Molstad, Aaron J. Rothman, Adam J. |
| Author_xml | – sequence: 1 givenname: Aaron J. surname: Molstad fullname: Molstad, Aaron J. email: amolstad@fredhutch.org organization: Biostatistics Program, Fred Hutchinson Cancer Research Center – sequence: 2 givenname: Adam J. surname: Rothman fullname: Rothman, Adam J. organization: School of Statistics, University of Minnesota |
| BookMark | eNqFkMlKQzEUhoMoOD6CcMH1rZmT4kYpTlCHhcMypBlo6vVGkxSHpze16sKFrk445_9OON8mWO1j7wDYRXCAoIT7CHIkOYQDDJEcICo4psMVsIEYES0WiK3Wd820i9A62Mx5BiFEfCg2wOVRc-163YV3Z5txeHBdmMZomwtXprX4mJpRp3MOPhhdQuyb-1CmzYUuKby2d7qbV-46ORtMiSlvgzWvu-x2vuoWuD05vhmdteOr0_PR0bg1hMPSejrB2FFtiOETSbhAEiGIGSZDgjlHRlNp4URIz63EzNaGl1YMpbCeYkbJFthb7n1K8XnuclGzOE_1jqwwRoIyxugidbBMmRRzTs4rE8rnFSXp0CkE1UKg-haoFgLVl8BKs1_0UwqPOr39y-0uuVmuSn4gyhBhUPI6P1zOQ1_1PuqXmDqrin7rYvJJ9yZkRf7-4gMo-ZFV |
| CitedBy_id | crossref_primary_10_1080_10618600_2019_1696208 crossref_primary_10_1109_LSP_2024_3378578 crossref_primary_10_1093_biostatistics_kxab007 crossref_primary_10_1002_sta4_720 crossref_primary_10_1016_j_jeconom_2021_09_014 crossref_primary_10_1016_j_patcog_2023_109803 crossref_primary_10_1007_s13171_021_00255_2 |
| Cites_doi | 10.1080/00949659908811970 10.1080/01621459.2014.998760 10.1214/13-AOS1187 10.1198/jcgs.2011.11051a 10.1016/j.jmva.2012.03.013 10.1016/j.jmva.2005.07.005 10.1137/120896219 10.3150/bj/1106314847 10.5705/ss.202016.0117 10.1137/0329006 10.1214/009053605000000200 10.1093/bioinformatics/btq046 10.1007/978-0-387-21706-2 10.1080/10618600.2015.1114491 10.32614/CRAN.package.eegkit 10.1561/2200000016 10.1109/SSP.2012.6319849 10.1111/biom.12633 10.1016/S0895-7177(97)00265-3 10.1371/journal.pbio.0030002 10.1109/TPAMI.2008.167 10.1111/j.1467-9868.2011.00783.x 10.1093/biostatistics/kxq023 10.1214/11-AOAS494 10.1214/11-BA606 10.1093/biostatistics/kxm045 10.1016/j.jmva.2015.05.019 10.1080/00401706.2014.965347 10.1093/biostatistics/kxs023 10.1561/2400000003 10.1093/biomet/asu049 10.1198/TECH.2011.08118 10.1080/01621459.2012.706133 10.1198/jcgs.2010.09188 10.1080/01621459.2016.1193022 10.1016/j.patrec.2004.09.007 10.1111/rssb.12031 10.1080/10618600.2014.948181 10.1214/09-AOS737 10.1016/j.cam.2012.09.017 10.1214/09-AOAS314 |
| ContentType | Journal Article |
| Copyright | 2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2019 2019 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America 2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America |
| Copyright_xml | – notice: 2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2019 – notice: 2019 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America – notice: 2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1080/10618600.2018.1476249 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1537-2715 |
| EndPage | 22 |
| ExternalDocumentID | 10_1080_10618600_2018_1476249 45135086 1476249 |
| Genre | Article |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 2AX 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABQDR ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB ADODI ADXHL AEGXH AELLO AENEX AEOZL AEPSL AEUPB AEYOC AFRVT AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P GTTXZ H13 HF~ HQ6 HZ~ H~P IPNFZ IPSME J.P JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS UT5 UU3 WZA XWC ZGOLN ~S~ AAYXX CITATION JQ2 |
| ID | FETCH-LOGICAL-c360t-f4b22e4ac3c6b8367181102523932661ca48d0b78f6d825d1caf8d7987df42543 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465333200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1061-8600 |
| IngestDate | Wed Aug 13 09:38:42 EDT 2025 Sat Nov 29 07:48:48 EST 2025 Tue Nov 18 22:02:54 EST 2025 Tue Nov 11 03:03:29 EST 2025 Mon Oct 20 23:49:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c360t-f4b22e4ac3c6b8367181102523932661ca48d0b78f6d825d1caf8d7987df42543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2217455544 |
| PQPubID | 29738 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2217455544 informaworld_taylorfrancis_310_1080_10618600_2018_1476249 jstor_primary_45135086 crossref_citationtrail_10_1080_10618600_2018_1476249 crossref_primary_10_1080_10618600_2018_1476249 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-02 |
| PublicationDateYYYYMMDD | 2019-01-02 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of computational and graphical statistics |
| PublicationYear | 2019 |
| Publisher | Taylor & Francis American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America – name: Taylor & Francis Ltd |
| References | cit0011 cit0033 cit0034 cit0031 cit0010 Zhang Y. (cit0043) 2010 cit0030 Gupta A. K. (cit0012) 2000 cit0019 cit0017 cit0039 cit0018 Buuren S. van (cit0005) 2010; 45 cit0037 cit0016 cit0038 cit0013 cit0035 cit0014 cit0036 cit0022 cit0044 cit0001 cit0023 cit0045 cit0020 cit0042 cit0021 cit0040 cit0041 R Core Team (cit0032) 2017 Lyu T. (cit0025) 2017; 18 cit0008 cit0009 cit0006 cit0028 cit0007 cit0029 cit0004 cit0026 cit0027 cit0002 cit0024 cit0046 cit0003 cit0047 |
| References_xml | – ident: cit0008 doi: 10.1080/00949659908811970 – ident: cit0029 doi: 10.1080/01621459.2014.998760 – volume: 45 start-page: 1 year: 2010 ident: cit0005 publication-title: Journal of Statistical Software – ident: cit0046 doi: 10.1214/13-AOS1187 – ident: cit0038 doi: 10.1198/jcgs.2011.11051a – ident: cit0020 doi: 10.1016/j.jmva.2012.03.013 – ident: cit0028 doi: 10.1016/j.jmva.2005.07.005 – ident: cit0010 doi: 10.1137/120896219 – ident: cit0003 doi: 10.3150/bj/1106314847 – ident: cit0026 doi: 10.5705/ss.202016.0117 – ident: cit0035 doi: 10.1137/0329006 – ident: cit0017 doi: 10.1214/009053605000000200 – ident: cit0031 doi: 10.1093/bioinformatics/btq046 – ident: cit0037 doi: 10.1007/978-0-387-21706-2 – ident: cit0047 doi: 10.1080/10618600.2015.1114491 – ident: cit0013 doi: 10.32614/CRAN.package.eegkit – ident: cit0004 doi: 10.1561/2200000016 – ident: cit0036 doi: 10.1109/SSP.2012.6319849 – ident: cit0040 doi: 10.1111/biom.12633 – volume-title: R: A Language and Environment for Statistical Computing year: 2017 ident: cit0032 – ident: cit0018 doi: 10.1016/S0895-7177(97)00265-3 – ident: cit0002 doi: 10.1371/journal.pbio.0030002 – ident: cit0019 doi: 10.1109/TPAMI.2008.167 – ident: cit0039 doi: 10.1111/j.1467-9868.2011.00783.x – ident: cit0011 doi: 10.1093/biostatistics/kxq023 – ident: cit0042 doi: 10.1214/11-AOAS494 – ident: cit0014 doi: 10.1214/11-BA606 – ident: cit0009 doi: 10.1093/biostatistics/kxm045 – ident: cit0033 doi: 10.1016/j.jmva.2015.05.019 – ident: cit0044 doi: 10.1080/00401706.2014.965347 – ident: cit0016 doi: 10.1093/biostatistics/kxs023 – ident: cit0030 doi: 10.1561/2400000003 – ident: cit0041 doi: 10.1093/biomet/asu049 – ident: cit0007 doi: 10.1198/TECH.2011.08118 – ident: cit0021 doi: 10.1080/01621459.2012.706133 – ident: cit0034 doi: 10.1198/jcgs.2010.09188 – ident: cit0023 doi: 10.1080/01621459.2016.1193022 – ident: cit0024 doi: 10.1016/j.patrec.2004.09.007 – ident: cit0045 doi: 10.1111/rssb.12031 – ident: cit0006 doi: 10.1080/10618600.2014.948181 – volume: 18 start-page: 434 year: 2017 ident: cit0025 publication-title: Biostatistics – volume-title: Matrix Variate Distributions year: 2000 ident: cit0012 – ident: cit0022 doi: 10.1214/09-AOS737 – ident: cit0027 doi: 10.1016/j.cam.2012.09.017 – ident: cit0001 doi: 10.1214/09-AOAS314 – start-page: 2550 year: 2010 ident: cit0043 publication-title: Advances in Neural Information Processing Systems |
| SSID | ssj0001697 |
| Score | 2.3038845 |
| Snippet | We propose a penalized likelihood method to fit the linear discriminant analysis model when the predictor is matrix valued. We simultaneously estimate the... |
| SourceID | proquest crossref jstor informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 11 |
| SubjectTerms | Algorithms Alternating minimization algorithm Classification Discriminant analysis Estimators Mathematical models Matrix methods Optimization Optimization with Penalization Penalized likelihood |
| Title | A Penalized Likelihood Method for Classification With Matrix-Valued Predictors |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2018.1476249 https://www.jstor.org/stable/45135086 https://www.proquest.com/docview/2217455544 |
| Volume | 28 |
| WOSCitedRecordID | wos000465333200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1537-2715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: TFW dateStart: 19920301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG8M8YAHP1AiiqYHr1PpurU7EiPxAIQDordlXdtIJGhgGONf73tdRyTGeNDjlrx1a99n9-vvEXIhYpUngqnAcM0DnicyUCYGu4rAM4bCKumwOZO-GA7l42My8mjCpYdVYg1tS6II56vRuDO1rBBxV1jFSAjUCMySYOpgzxyP8EFmj6C-ce9h7Ys7vr0KSAQoUp3h-ekpG9Fpg7u0wit-89kuEPX2_uET9smuz0Jpt1SbA7Jl5g2yM1hTuC4bpI5paMnifEiGXToymLJ_GE3702czmyIdMh24_tMU3p-67pqIO3JLTR-mxRMdIP__ezDJZiuQGy3wpxB29zki973b8c1d4DsxBHkYXxeB5Yoxw7M8zGMlwxgCGqQNLEL-NIzwSI2ur5WQNtZQcmq4YaUWiRTacjxu3yS1-cvcHBPaYTpSUFMyKzSPMpFJDRWYMllmQUkUaxFerUCae5py7JYxSzuezbSauxTnLvVz1yKXa7HXkqfjN4Hk6_KmhdsgsWU3kzT8RbbpdGE9Eo86IWS6cYu0K-VIvS9YpgyrvgjSNn7yhzFPSR0uE7f7w9qkVixW5oxs52-gCotzp_WfUM35_g |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH_oFJwHv8X5mYPXqmvTJj2KOBS34WF-3ELTJDgcU-Ym4l_ve2k7FBEPem15DUneZ_ry-wEcikTnqQh1YLnhAc9TGWiboF3F6Bkj4bT0vTm3bdHtyvv79PNdGGqrpBraFUAR3leTcdNhdNUSd0xljMRITZ1ZEm0dDZqnszBH7HRUgPVad1Nv3CwJVlAkIJnqFs9Pn_kSn76gl1Ydi9-8tg9FreX_mMQKLJWJKDstNGcVZuxwDRY7UxTXlzWoUyZaADmvQ_eUXVvK2t-tYe3-ox30CRGZdTwFNcMJME-wSa1HfrfZXX_8wDpEAfAW3GaDCcpdj-i_EBH8bMBN67x3dhGUZAxBHiUn48BxHYaWZ3mUJ1riOmNqgMlJTBBqFOQJHd2caCFdYrDqNPjASSNSKYzjdON-E2rDp6HdAtYMTayxrAydMDzORCYNFmHaZplDPdFhA3i1BSovkcqJMGOgmiWgabV2itZOlWvXgKOp2HMB1fGbQPp5f9XYn5G4gtBERb_IbnplmI7E42aEyW7SgN1KO1TpDl5USIVfjJkb3_7DmAewcNHrtFX7snu1A3V8lfrDoHAXauPRxO7BfP6KajHa9ybwASHf_iE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFH8aMCF2AMZAK-PDB67ZqOPEzhExKtDaqge-blYc21q1qlRtmRB__d5znAo0IQ5wTfTixH6fzvPvB3Akc1MVkpvECSsSURUqMS5Hu8rQM6bSGxV6c667st9Xt7fFIHYTzmJbJdXQvgaKCL6ajHtifdMR94OqGIWBmhqzFJo62rMolmAFU-eMFPuyc7Nwxu3Ir4IiCck0h3heesyz8PQMvLRpWPzPaYdI1Nl4h2_YhPWYhrKTWm8-wwc33oJPvQWG62wL1igPrWGcv0D_hA0c5eyPzrLu8I8bDQkPmfUCATXD92eBXpMaj8Jas5vh_DfrEQHAQ3Jdju5RbjClv0JE77MNV52zy9PzJFIxJFWaH88TLwznTpRVWuVGpTlGNMwbeEYAahTiCRvdHhupfG6x5rR4wSsrCyWtF3TefgeWx3dj9xVYm9vMYFHJvbQiK2WpLJZgxpWlRy0xvAWiWQFdRZxyossY6XaEM23mTtPc6Th3Lfi-EJvUQB2vCRRPl1fPww6Jr-lMdPqK7E7QhcVIImunmOrmLdhrlENHZzDTnMq-DPM2sfuGMQ9hdfCzo7sX_V_fYA3vFGEniO_B8nx67_bhY_UXtWJ6EAzgHxZP_NM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Penalized+Likelihood+Method+for+Classification+With+Matrix-Valued+Predictors&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Molstad%2C+Aaron+J&rft.au=Rothman%2C+Adam+J&rft.date=2019-01-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=28&rft.issue=1&rft.spage=11&rft_id=info:doi/10.1080%2F10618600.2018.1476249&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |