A gradient stable scheme for a phase field model for the moving contact line problem

In this paper, an efficient numerical scheme is designed for a phase field model for the moving contact line problem, which consists of a coupled system of the Cahn–Hilliard and Navier–Stokes equations with the generalized Navier boundary condition [1,2,4]. The nonlinear version of the scheme is sem...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational physics Ročník 231; číslo 4; s. 1372 - 1386
Hlavní autoři: Gao, Min, Wang, Xiao-Ping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Inc 20.02.2012
Elsevier
Témata:
ISSN:0021-9991, 1090-2716
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, an efficient numerical scheme is designed for a phase field model for the moving contact line problem, which consists of a coupled system of the Cahn–Hilliard and Navier–Stokes equations with the generalized Navier boundary condition [1,2,4]. The nonlinear version of the scheme is semi-implicit in time and is based on a convex splitting of the Cahn–Hilliard free energy (including the boundary energy) together with a projection method for the Navier–Stokes equations. We show, under certain conditions, the scheme has the total energy decaying property and is unconditionally stable. The linearized scheme is easy to implement and introduces only mild CFL time constraint. Numerical tests are carried out to verify the accuracy and stability of the scheme. The behavior of the solution near the contact line is examined. It is verified that, when the interface intersects with the boundary, the consistent splitting scheme [21,22] for the Navier Stokes equations has the better accuracy for pressure.
AbstractList In this paper, an efficient numerical scheme is designed for a phase field model for the moving contact line problem, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition. The nonlinear version of the scheme is semi-implicit in time and is based on a convex splitting of the Cahn-Hilliard free energy (including the boundary energy) together with a projection method for the Navier-Stokes equations. We show, under certain conditions, the scheme has the total energy decaying property and is unconditionally stable. The linearized scheme is easy to implement and introduces only mild CFL time constraint. Numerical tests are carried out to verify the accuracy and stability of the scheme. The behavior of the solution near the contact line is examined. It is verified that, when the interface intersects with the boundary, the consistent splitting scheme and for the Navier Stokes equations has the better accuracy for pressure.
In this paper, an efficient numerical scheme is designed for a phase field model for the moving contact line problem, which consists of a coupled system of the Cahn–Hilliard and Navier–Stokes equations with the generalized Navier boundary condition [1,2,4]. The nonlinear version of the scheme is semi-implicit in time and is based on a convex splitting of the Cahn–Hilliard free energy (including the boundary energy) together with a projection method for the Navier–Stokes equations. We show, under certain conditions, the scheme has the total energy decaying property and is unconditionally stable. The linearized scheme is easy to implement and introduces only mild CFL time constraint. Numerical tests are carried out to verify the accuracy and stability of the scheme. The behavior of the solution near the contact line is examined. It is verified that, when the interface intersects with the boundary, the consistent splitting scheme [21,22] for the Navier Stokes equations has the better accuracy for pressure.
Author Gao, Min
Wang, Xiao-Ping
Author_xml – sequence: 1
  givenname: Min
  surname: Gao
  fullname: Gao, Min
  email: gaomin@ust.hk
– sequence: 2
  givenname: Xiao-Ping
  surname: Wang
  fullname: Wang, Xiao-Ping
  email: mawang@ust.hk
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25929503$$DView record in Pascal Francis
BookMark eNp9kcFO3DAQhq2KSl0oD8DNFyQu2c4kjhOLE0LQVlqpF3q2HHvCeuUki22QeHu8XcShB072jL9_Rvp8yk7mZSbGLhDWCCh_7NY7u1_XgFjqNWD7ha0QFFR1h_KErQBqrJRS-I2dprQDgL4V_Yo93PDHaJynOfOUzRCIJ7ulifi4RG74fmtSuXsKjk-Lo_Cvn7dUqhc_P3K7zNnYzIOfie_jUiZM39nX0YRE5-_nGft7f_dw-6va_Pn5-_ZmU9lGQq5GdJY6i41A20oSSogBhQXVu8EMBtpBtoMQUjhlZN0LN4ixQ2ylEH15HJszdnWcW_Y-PVPKevLJUghmpuU5aZQdNl0HnSro5TtqkjVhjGa2Pul99JOJr7puVa1aaAqHR87GJaVI4weCoA-m9U4X0_pg-tAqpkum-y9jfTbZFzPR-PBp8vqYpGLpxVPUyZavsOR8JJu1W_wn6TdkZpkn
CODEN JCTPAH
CitedBy_id crossref_primary_10_1007_s10444_023_10031_5
crossref_primary_10_1137_23M1546816
crossref_primary_10_1016_j_jcp_2019_109179
crossref_primary_10_1155_2014_871021
crossref_primary_10_1016_j_cnsns_2015_06_012
crossref_primary_10_1137_17M1125005
crossref_primary_10_1002_fld_4349
crossref_primary_10_1137_20M1317773
crossref_primary_10_1002_adfm_202213621
crossref_primary_10_1017_jfm_2022_33
crossref_primary_10_1016_j_jcp_2014_07_038
crossref_primary_10_1051_m2an_2025039
crossref_primary_10_1002_num_22341
crossref_primary_10_1007_s00205_013_0713_x
crossref_primary_10_1016_j_jcp_2019_109170
crossref_primary_10_1016_j_jcp_2022_111149
crossref_primary_10_1017_jfm_2014_696
crossref_primary_10_1017_jfm_2018_428
crossref_primary_10_1137_130940992
crossref_primary_10_1016_j_jcp_2014_02_043
crossref_primary_10_1137_18M1223459
crossref_primary_10_1080_00036811_2015_1102893
crossref_primary_10_1016_j_cpc_2013_08_016
crossref_primary_10_1016_j_cma_2017_08_011
crossref_primary_10_1016_j_jcp_2017_10_002
crossref_primary_10_1016_j_jcp_2022_110968
crossref_primary_10_3390_ma16175932
crossref_primary_10_1017_jfm_2019_664
crossref_primary_10_1016_j_jcp_2012_07_027
crossref_primary_10_1007_s10494_015_9655_8
crossref_primary_10_3934_ipi_2013_7_947
crossref_primary_10_1007_s10444_020_09764_4
crossref_primary_10_1007_s10915_017_0448_1
crossref_primary_10_3934_dcdsb_2023163
crossref_primary_10_1002_fld_4200
crossref_primary_10_1007_s10915_019_00934_1
crossref_primary_10_1007_s10915_022_01863_2
crossref_primary_10_1007_s13160_014_0151_7
crossref_primary_10_1016_j_jcp_2017_01_026
crossref_primary_10_1016_j_ijmultiphaseflow_2017_12_016
crossref_primary_10_1007_s00205_019_01383_8
crossref_primary_10_1016_j_ijmultiphaseflow_2017_04_008
crossref_primary_10_1063_5_0220227
crossref_primary_10_1016_j_cpc_2019_106870
crossref_primary_10_1016_j_jcp_2019_109006
crossref_primary_10_1007_s10915_017_0391_1
crossref_primary_10_1016_j_jmaa_2018_06_075
crossref_primary_10_1016_j_jcp_2016_05_016
crossref_primary_10_1002_fld_5100
crossref_primary_10_1016_j_jcp_2019_108959
crossref_primary_10_1016_j_jcp_2014_12_046
crossref_primary_10_1016_j_cma_2016_09_003
crossref_primary_10_1016_j_jcp_2014_04_054
crossref_primary_10_1016_j_jcp_2020_109521
crossref_primary_10_1007_s00526_016_0992_9
crossref_primary_10_1016_j_apm_2020_02_022
crossref_primary_10_1016_j_jcp_2019_04_037
crossref_primary_10_1016_j_apm_2018_12_017
Cites_doi 10.1016/j.jcp.2003.07.035
10.1017/S0022112008001456
10.1017/S0022112006001935
10.1006/jcph.2001.6715
10.1103/PhysRevE.68.016306
10.1017/S0022112004000370
10.1016/j.cma.2005.10.010
10.1007/PL00005429
10.3934/dcds.2010.28.1669
10.1137/080738143
10.1090/S0025-5718-06-01915-6
10.1016/j.physa.2004.08.076
10.1016/j.jcp.2004.02.009
10.1016/j.jcp.2009.01.009
10.1016/j.jcp.2009.04.020
10.1016/j.physa.2009.01.026
10.1016/j.jcp.2007.06.028
10.1016/j.jcp.2003.07.009
10.1103/PhysRevE.68.066703
10.1016/j.jcp.2011.03.022
10.1016/j.jcp.2006.02.021
10.1137/0728069
ContentType Journal Article
Copyright 2011 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2011.10.015
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1090-2716
EndPage 1386
ExternalDocumentID 25929503
10_1016_j_jcp_2011_10_015
S0021999111006152
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6OB
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSQ
SSV
SSZ
T5K
T9H
TN5
UPT
UQL
WUQ
XFK
YQT
ZMT
ZU3
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c360t-f1dce7c1341c56e4944b14c098dbaba05b65b4464d9a6284db4f7115644805bf3
ISICitedReferencesCount 81
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000300462100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Sun Nov 09 13:51:54 EST 2025
Mon Jul 21 09:15:00 EDT 2025
Sat Nov 29 06:46:04 EST 2025
Tue Nov 18 20:57:59 EST 2025
Fri Feb 23 02:18:52 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Navier–Stokes equations
Moving contact line
Convex splitting
Cahn–Hilliard equation
Phase field
Cahn-Hilliard equation
Total energy
Cahn Hilliard equation
Boundary conditions
Models
Calculation
Free energy
Navier-Stokes equations
Calculation methods
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c360t-f1dce7c1341c56e4944b14c098dbaba05b65b4464d9a6284db4f7115644805bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671377079
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_1671377079
pascalfrancis_primary_25929503
crossref_primary_10_1016_j_jcp_2011_10_015
crossref_citationtrail_10_1016_j_jcp_2011_10_015
elsevier_sciencedirect_doi_10_1016_j_jcp_2011_10_015
PublicationCentury 2000
PublicationDate 2012-02-20
PublicationDateYYYYMMDD 2012-02-20
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-20
  day: 20
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Journal of computational physics
PublicationYear 2012
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Qian, Wang, Sheng (b0015) 2006; 1
Yang, Feng, Liu, Shen (b0070) 2006; 218
Choi, Lee, Jeong, Kim (b0040) 2009; 388
He, Glowinski, Wang (b0125) 2011; 230
Shen, Yang (b0080) 2010; 28
Mello, Filho (b0055) 2005; 347
Wise, Wang, Lowengrub (b0100) 2009; 47
Guermond, Shen (b0130) 2003; 192
Feng, He, Liu (b0085) 2007; 76
Guermond, Minev, Shen (b0110) 2006; 195
Kim, Kang, Lowengrub (b0090) 2004; 193
Wang, Qian, Sheng (b0010) 2008; 605
Yue, Feng, Liu, Shen (b0065) 2004; 515
Du, Nicolaides (b0030) 1991; 28
Furihata (b0035) 2001; 87
Brown, Cortez, Minion (b0115) 2001; 168
Qian, Wang, Sheng (b0005) 2003; 68
Shen, Yang (b0075) 2009; 228
Johnston, Liu (b0105) 2004; 199
Qian, Wang, Sheng (b0020) 2006; 564
D.J. Eyre, An unconditionally stable one-step scheme for gradient systems, Unpublished article, June 1998.
Ding, Spelt, Shu (b0120) 2007; 266
Vollmayr-Lee, Rutenberg (b0060) 2003; 68
Sun (b0025) 1995; 64
Hu, Wise, Wang, Lowengrub (b0095) 2009; 228
Eyre (b0050) 1998
Eyre (10.1016/j.jcp.2011.10.015_b0050) 1998
Wise (10.1016/j.jcp.2011.10.015_b0100) 2009; 47
Qian (10.1016/j.jcp.2011.10.015_b0005) 2003; 68
Guermond (10.1016/j.jcp.2011.10.015_b0110) 2006; 195
Yang (10.1016/j.jcp.2011.10.015_b0070) 2006; 218
Mello (10.1016/j.jcp.2011.10.015_b0055) 2005; 347
Qian (10.1016/j.jcp.2011.10.015_b0015) 2006; 1
Furihata (10.1016/j.jcp.2011.10.015_b0035) 2001; 87
Kim (10.1016/j.jcp.2011.10.015_b0090) 2004; 193
10.1016/j.jcp.2011.10.015_b0045
Guermond (10.1016/j.jcp.2011.10.015_b0130) 2003; 192
Hu (10.1016/j.jcp.2011.10.015_b0095) 2009; 228
Du (10.1016/j.jcp.2011.10.015_b0030) 1991; 28
Wang (10.1016/j.jcp.2011.10.015_b0010) 2008; 605
Qian (10.1016/j.jcp.2011.10.015_b0020) 2006; 564
Feng (10.1016/j.jcp.2011.10.015_b0085) 2007; 76
Johnston (10.1016/j.jcp.2011.10.015_b0105) 2004; 199
Shen (10.1016/j.jcp.2011.10.015_b0080) 2010; 28
Ding (10.1016/j.jcp.2011.10.015_b0120) 2007; 266
Vollmayr-Lee (10.1016/j.jcp.2011.10.015_b0060) 2003; 68
Shen (10.1016/j.jcp.2011.10.015_b0075) 2009; 228
Sun (10.1016/j.jcp.2011.10.015_b0025) 1995; 64
Choi (10.1016/j.jcp.2011.10.015_b0040) 2009; 388
Brown (10.1016/j.jcp.2011.10.015_b0115) 2001; 168
He (10.1016/j.jcp.2011.10.015_b0125) 2011; 230
Yue (10.1016/j.jcp.2011.10.015_b0065) 2004; 515
References_xml – volume: 266
  start-page: 2078
  year: 2007
  end-page: 2095
  ident: b0120
  article-title: Diffuse interface model for incompressible two-phase flows with large density ratios
  publication-title: J. Comput. Phys.
– volume: 605
  start-page: 59
  year: 2008
  end-page: 78
  ident: b0010
  article-title: Moving contact line on chemically patterned surfaces
  publication-title: J. Fluid Mech.
– volume: 230
  start-page: 4991
  year: 2011
  end-page: 5009
  ident: b0125
  article-title: A least-squares/finite element method for the numerical solution of the Navier–Stokes–Cahn–Hilliard system modeling the motion of the contact line
  publication-title: J. Comput. Phys.
– volume: 199
  start-page: 221
  year: 2004
  end-page: 259
  ident: b0105
  article-title: Accurate, stable and efficient Navier–Stokes solvers based on explicit treatment of the pressure term
  publication-title: J. Comput. Phys.
– volume: 168
  start-page: 464
  year: 2001
  end-page: 499
  ident: b0115
  article-title: Accurate projection methods for the incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
– volume: 347
  start-page: 429
  year: 2005
  end-page: 443
  ident: b0055
  article-title: Numerical study of the Cahn–Hilliard equations in one, two and three dimensions
  publication-title: Phys. A
– volume: 76
  start-page: 539
  year: 2007
  end-page: 571
  ident: b0085
  article-title: Analysis of finite element approximations of a phase field model for two-phase fluids
  publication-title: Math. Comput.
– start-page: 39
  year: 1998
  end-page: 46
  ident: b0050
  publication-title: Computational and Mathematical Models of Microstructural Evolution
– volume: 87
  start-page: 675
  year: 2001
  end-page: 699
  ident: b0035
  article-title: A stable and conservative finite difference scheme for the Cahn–Hilliard equation
  publication-title: Numer. Math.
– volume: 68
  start-page: 066703
  year: 2003
  ident: b0060
  article-title: Fast and accurate coarsening simulation with an unconditionally stable time step
  publication-title: Phys. Rev. E
– volume: 28
  start-page: 1310
  year: 1991
  end-page: 1322
  ident: b0030
  article-title: Numerical analysis of a continuum model of phase transition
  publication-title: SIAM J. Numer. Anal.
– volume: 228
  start-page: 5323
  year: 2009
  end-page: 5339
  ident: b0095
  article-title: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase filed crystal equation
  publication-title: J. Comput. Phys.
– volume: 47
  start-page: 2269
  year: 2009
  end-page: 2288
  ident: b0100
  article-title: An energy-stable and convergent finite-difference scheme for the phase field crystal equation
  publication-title: SIAM J. Numer. Anal.
– volume: 68
  start-page: 016306
  year: 2003
  ident: b0005
  article-title: Molecular scale contact line hydrodynamics of immiscible flows
  publication-title: Phys. Rev. E
– volume: 64
  start-page: 1463
  year: 1995
  ident: b0025
  article-title: A second-order accurate linearized difference scheme for the two-dimensional Cahn–Hilliard equation
  publication-title: Math. Comput.
– volume: 218
  start-page: 417
  year: 2006
  end-page: 428
  ident: b0070
  article-title: Numerical simulations of jet pinching-off and drop formation using energetic variational phase-field method
  publication-title: J. Comput. Phys.
– volume: 388
  start-page: 1791
  year: 2009
  end-page: 1803
  ident: b0040
  article-title: An unconditionally gradient stable numerical method for solving the Allen–Cahn equation
  publication-title: Phys. A
– reference: D.J. Eyre, An unconditionally stable one-step scheme for gradient systems, Unpublished article, June 1998.
– volume: 195
  start-page: 6011
  year: 2006
  end-page: 6045
  ident: b0110
  article-title: An overview of projection methods for incompressible flows
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 515
  start-page: 293
  year: 2004
  end-page: 317
  ident: b0065
  article-title: A diffuse-interface method for simulating two-phase flows of complex fluids
  publication-title: J. Fluid Mech.
– volume: 192
  start-page: 262
  year: 2003
  end-page: 276
  ident: b0130
  article-title: A new class of truly consistent splitting schemes for incompressible flows
  publication-title: J. Comput. Phys.
– volume: 1
  start-page: 1
  year: 2006
  end-page: 52
  ident: b0015
  article-title: Molecular hydrodynamics of the moving contact line in two-phase immiscible flows
  publication-title: Commun. Comput. Phys.
– volume: 564
  start-page: 306
  year: 2006
  end-page: 333
  ident: b0020
  article-title: A variational approach to the moving contact line hydrodynamics
  publication-title: J. Fluid Mech.
– volume: 228
  start-page: 2978
  year: 2009
  end-page: 2992
  ident: b0075
  article-title: An efficient moving mesh spectral method for the phase-field model of two-phase flows
  publication-title: J. Comput. Phys.
– volume: 193
  start-page: 511
  year: 2004
  end-page: 543
  ident: b0090
  article-title: Conservative multigrid methods for Cahn–Hilliard fluids
  publication-title: J. Comput. Phys.
– volume: 28
  start-page: 1669
  year: 2010
  end-page: 1691
  ident: b0080
  article-title: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations
  publication-title: DCDS-A
– volume: 193
  start-page: 511
  year: 2004
  ident: 10.1016/j.jcp.2011.10.015_b0090
  article-title: Conservative multigrid methods for Cahn–Hilliard fluids
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.07.035
– volume: 605
  start-page: 59
  year: 2008
  ident: 10.1016/j.jcp.2011.10.015_b0010
  article-title: Moving contact line on chemically patterned surfaces
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112008001456
– volume: 564
  start-page: 306
  year: 2006
  ident: 10.1016/j.jcp.2011.10.015_b0020
  article-title: A variational approach to the moving contact line hydrodynamics
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112006001935
– volume: 168
  start-page: 464
  issue: 2
  year: 2001
  ident: 10.1016/j.jcp.2011.10.015_b0115
  article-title: Accurate projection methods for the incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6715
– volume: 68
  start-page: 016306
  year: 2003
  ident: 10.1016/j.jcp.2011.10.015_b0005
  article-title: Molecular scale contact line hydrodynamics of immiscible flows
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.68.016306
– volume: 1
  start-page: 1
  year: 2006
  ident: 10.1016/j.jcp.2011.10.015_b0015
  article-title: Molecular hydrodynamics of the moving contact line in two-phase immiscible flows
  publication-title: Commun. Comput. Phys.
– volume: 515
  start-page: 293
  year: 2004
  ident: 10.1016/j.jcp.2011.10.015_b0065
  article-title: A diffuse-interface method for simulating two-phase flows of complex fluids
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004000370
– volume: 195
  start-page: 6011
  year: 2006
  ident: 10.1016/j.jcp.2011.10.015_b0110
  article-title: An overview of projection methods for incompressible flows
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.10.010
– ident: 10.1016/j.jcp.2011.10.015_b0045
– volume: 87
  start-page: 675
  issue: 4
  year: 2001
  ident: 10.1016/j.jcp.2011.10.015_b0035
  article-title: A stable and conservative finite difference scheme for the Cahn–Hilliard equation
  publication-title: Numer. Math.
  doi: 10.1007/PL00005429
– start-page: 39
  year: 1998
  ident: 10.1016/j.jcp.2011.10.015_b0050
– volume: 28
  start-page: 1669
  issue: 4
  year: 2010
  ident: 10.1016/j.jcp.2011.10.015_b0080
  article-title: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations
  publication-title: DCDS-A
  doi: 10.3934/dcds.2010.28.1669
– volume: 47
  start-page: 2269
  issue: 3
  year: 2009
  ident: 10.1016/j.jcp.2011.10.015_b0100
  article-title: An energy-stable and convergent finite-difference scheme for the phase field crystal equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080738143
– volume: 76
  start-page: 539
  issue: 258
  year: 2007
  ident: 10.1016/j.jcp.2011.10.015_b0085
  article-title: Analysis of finite element approximations of a phase field model for two-phase fluids
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-06-01915-6
– volume: 347
  start-page: 429
  year: 2005
  ident: 10.1016/j.jcp.2011.10.015_b0055
  article-title: Numerical study of the Cahn–Hilliard equations in one, two and three dimensions
  publication-title: Phys. A
  doi: 10.1016/j.physa.2004.08.076
– volume: 199
  start-page: 221
  year: 2004
  ident: 10.1016/j.jcp.2011.10.015_b0105
  article-title: Accurate, stable and efficient Navier–Stokes solvers based on explicit treatment of the pressure term
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.02.009
– volume: 228
  start-page: 2978
  year: 2009
  ident: 10.1016/j.jcp.2011.10.015_b0075
  article-title: An efficient moving mesh spectral method for the phase-field model of two-phase flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.01.009
– volume: 228
  start-page: 5323
  year: 2009
  ident: 10.1016/j.jcp.2011.10.015_b0095
  article-title: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase filed crystal equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.04.020
– volume: 64
  start-page: 1463
  issue: 212
  year: 1995
  ident: 10.1016/j.jcp.2011.10.015_b0025
  article-title: A second-order accurate linearized difference scheme for the two-dimensional Cahn–Hilliard equation
  publication-title: Math. Comput.
– volume: 388
  start-page: 1791
  year: 2009
  ident: 10.1016/j.jcp.2011.10.015_b0040
  article-title: An unconditionally gradient stable numerical method for solving the Allen–Cahn equation
  publication-title: Phys. A
  doi: 10.1016/j.physa.2009.01.026
– volume: 266
  start-page: 2078
  year: 2007
  ident: 10.1016/j.jcp.2011.10.015_b0120
  article-title: Diffuse interface model for incompressible two-phase flows with large density ratios
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.06.028
– volume: 192
  start-page: 262
  year: 2003
  ident: 10.1016/j.jcp.2011.10.015_b0130
  article-title: A new class of truly consistent splitting schemes for incompressible flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.07.009
– volume: 68
  start-page: 066703
  issue: 8
  year: 2003
  ident: 10.1016/j.jcp.2011.10.015_b0060
  article-title: Fast and accurate coarsening simulation with an unconditionally stable time step
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.68.066703
– volume: 230
  start-page: 4991
  issue: 12
  year: 2011
  ident: 10.1016/j.jcp.2011.10.015_b0125
  article-title: A least-squares/finite element method for the numerical solution of the Navier–Stokes–Cahn–Hilliard system modeling the motion of the contact line
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.03.022
– volume: 218
  start-page: 417
  year: 2006
  ident: 10.1016/j.jcp.2011.10.015_b0070
  article-title: Numerical simulations of jet pinching-off and drop formation using energetic variational phase-field method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.02.021
– volume: 28
  start-page: 1310
  issue: 5
  year: 1991
  ident: 10.1016/j.jcp.2011.10.015_b0030
  article-title: Numerical analysis of a continuum model of phase transition
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0728069
SSID ssj0008548
Score 2.3814569
Snippet In this paper, an efficient numerical scheme is designed for a phase field model for the moving contact line problem, which consists of a coupled system of the...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1372
SubjectTerms Accuracy
Boundaries
Cahn–Hilliard equation
Computational techniques
Contact
Convex splitting
Exact sciences and technology
Free energy
Mathematical analysis
Mathematical methods in physics
Mathematical models
Moving contact line
Navier-Stokes equations
Phase field
Physics
Splitting
Title A gradient stable scheme for a phase field model for the moving contact line problem
URI https://dx.doi.org/10.1016/j.jcp.2011.10.015
https://www.proquest.com/docview/1671377079
Volume 231
WOSCitedRecordID wos000300462100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZQBxLSxGWAKJfJSDxRBcWJE8ePERowBKUPRepbZDvOaMXSqOmm_XyOb9lNG_DAS1S5TVL5-3LO8cnncxB6q1mdUqbqqJZaRFSkTVQolUZSE9JIJhsuLNJf2XRaLBZ85vXzvW0nwNq2ODvj3X-FGsYAbLN19h_gHi4KA_AZQIcjwA7HvwK-nBxtrI5ra_IEZmMULGD1sSvuLSbdT_BbEytcc21wBqHhsUsuGPG62Thp40_fb-aGEFbZlhAhneiSJEOM_u1wOvlUfh-sful2Ry2WYh3NgsP0-QYj3EiiJD5PgnmPfdGoGpUHd023glFNvG1fXkwZWBNJUterx7tbkrpS2NdMucsqrN6vVOcqrRoRntv6ebls9hV3NogMYWGX8MxUgt1JWMaLEdopDw8WXwZHXWTUOWr__8NLbyv_u3Lbm8KW3U708DA1rgvKNYduo5T5I_TAY4NLR4vH6I5u99BDv9TA3pD3e-jezIH1BM1LHPiCHV-w4wsGXmCBLV-w5Qu2fLHjwBfs-II9X7DhC_Z8eYp-fDyYf_gc-VYbkUrzeBs1pFaaKVPdT2W5ppxSSaiKeVFLIUWcyTyTlOa0hmcXIppa0oYRU2iIFvBlkz5Do3bd6ucIx4oRXSia0LqhgiiY2FRLKXmcFw2R-RjFYSYr5evQm3Yov6ogOFxVMPmVmXwzBJM_Ru-GUzpXhOW2H9MAT-WjSBcdVsCs207bvwTlcKNAozF6E7CtwASb92qi1euTviI5M3U7Y8Zf_OkiL9H982fqFRptNyf6NbqrTrfLfrPvCfoblfymxQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+gradient+stable+scheme+for+a+phase+field+model+for+the+moving+contact+line+problem&rft.jtitle=Journal+of+computational+physics&rft.au=MIN+GAO&rft.au=WANG%2C+Xiao-Ping&rft.date=2012-02-20&rft.pub=Elsevier&rft.issn=0021-9991&rft.volume=231&rft.issue=4&rft.spage=1372&rft.epage=1386&rft_id=info:doi/10.1016%2Fj.jcp.2011.10.015&rft.externalDBID=n%2Fa&rft.externalDocID=25929503
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon