Navier–Stokes equations on Riemannian manifolds

We study properties of the solutions to Navier–Stokes system on compact Riemannian manifolds. The motivation for such a formulation comes from atmospheric models as well as some thin film flows on curved surfaces. There are different choices of the diffusion operator which have been used in previous...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of geometry and physics Ročník 148; s. 103543
Hlavní autori: Samavaki, Maryam, Tuomela, Jukka
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.02.2020
Predmet:
ISSN:0393-0440, 1879-1662
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We study properties of the solutions to Navier–Stokes system on compact Riemannian manifolds. The motivation for such a formulation comes from atmospheric models as well as some thin film flows on curved surfaces. There are different choices of the diffusion operator which have been used in previous studies, and we make a few comments why the choice adopted below seems to us the correct one. This choice leads to the conclusion that Killing vector fields are essential in analyzing the qualitative properties of the flow. We give several results illustrating this and analyze also the linearized version of Navier–Stokes system which is interesting in numerical applications. Finally we consider the 2 dimensional case which has specific characteristics, and treat also the Coriolis effect which is essential in atmospheric flows.
AbstractList We study properties of the solutions to Navier–Stokes system on compact Riemannian manifolds. The motivation for such a formulation comes from atmospheric models as well as some thin film flows on curved surfaces. There are different choices of the diffusion operator which have been used in previous studies, and we make a few comments why the choice adopted below seems to us the correct one. This choice leads to the conclusion that Killing vector fields are essential in analyzing the qualitative properties of the flow. We give several results illustrating this and analyze also the linearized version of Navier–Stokes system which is interesting in numerical applications. Finally we consider the 2 dimensional case which has specific characteristics, and treat also the Coriolis effect which is essential in atmospheric flows.
ArticleNumber 103543
Author Tuomela, Jukka
Samavaki, Maryam
Author_xml – sequence: 1
  givenname: Maryam
  surname: Samavaki
  fullname: Samavaki, Maryam
  email: maryam.samavaki@uef.fi
– sequence: 2
  givenname: Jukka
  surname: Tuomela
  fullname: Tuomela, Jukka
BookMark eNqFkE1OwzAQRi1UJNrCFVAukDKOEyeWWIAqKEgVSPysLceegENrFzsgdccduCEnIaWwYdPVJ83ofZo3IzJw3iEhxxQmFCg_aSdP6Jer53WcZEBFP2RFzvbIkFalSCnn2YAMgQmWQp7DARnF2AIAzwUdEnqj3i2Gr4_P-86_YEzw9U111ruYeJfcWVwq56xySZ-28QsTD8l-oxYRj35zTB4vLx6mV-n8dnY9PZ-nmnHo0gbAFMKwutQKK8UEpVVdlBXjtRC54tRwUxg0vM5qaEoQFWOVKkqWlVD0KzYmp9teHXyMARupbfdzWheUXUgKcqMvW_mnLzf6cqvf4_wfvgp2qcJ6N3i2BbGX2_xGRm3RaTQ2oO6k8XZXxTfgDHvp
CitedBy_id crossref_primary_10_1016_j_apm_2022_08_001
crossref_primary_10_1088_1361_6544_acec26
crossref_primary_10_1088_1361_6544_ad2a8b
crossref_primary_10_1007_s00021_022_00742_y
crossref_primary_10_1016_j_bspc_2024_107183
crossref_primary_10_1080_14689367_2024_2427791
crossref_primary_10_1007_s00021_024_00870_7
crossref_primary_10_1016_j_cmpb_2023_107844
crossref_primary_10_1007_s00033_021_01568_w
crossref_primary_10_1016_j_jmaa_2022_126578
crossref_primary_10_1016_j_jmaa_2023_127358
crossref_primary_10_1016_j_cmpb_2023_107983
crossref_primary_10_1016_j_jfa_2022_109607
crossref_primary_10_1007_s00021_022_00718_y
crossref_primary_10_1088_1572_9494_ad7e97
crossref_primary_10_1063_5_0238189
crossref_primary_10_1088_1361_6544_acb62e
crossref_primary_10_1098_rspa_2024_0418
crossref_primary_10_1016_j_geomphys_2023_105080
crossref_primary_10_1103_PhysRevResearch_6_013133
crossref_primary_10_1016_j_jde_2024_10_030
crossref_primary_10_1134_S1560354724020011
crossref_primary_10_1007_s00030_025_01112_z
Cites_doi 10.2307/1970699
10.4007/annals.2019.189.1.3
10.1016/j.geomphys.2017.07.015
10.1016/S1570-8659(03)09003-3
10.1137/140971798
10.1007/PL00001493
10.1007/s12220-016-9691-1
10.1016/j.geomphys.2016.06.009
10.1007/s10665-007-9167-1
10.1215/ijm/1256044750
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.geomphys.2019.103543
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1879-1662
ExternalDocumentID 10_1016_j_geomphys_2019_103543
S0393044019302244
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HMJ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LZ3
M25
M38
M41
MHUIS
MO0
N9A
NCXOZ
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SHN
SME
SPC
SPCBC
SPD
SPG
SSQ
SSW
SSZ
T5K
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c360t-f00d59d3b7cae8a39118b57836b994a61d6d5ded6b2b0f7098338a57327056d53
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000512480400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0393-0440
IngestDate Tue Nov 18 21:40:00 EST 2025
Sat Nov 29 02:17:32 EST 2025
Fri Feb 23 02:49:05 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Killing vector fields
Curvature tensor
Navier–Stokes equations
Riemannian manifolds
57N16
53C21
76D05
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c360t-f00d59d3b7cae8a39118b57836b994a61d6d5ded6b2b0f7098338a57327056d53
OpenAccessLink https://doi.org/10.1016/j.geomphys.2019.103543
ParticipantIDs crossref_citationtrail_10_1016_j_geomphys_2019_103543
crossref_primary_10_1016_j_geomphys_2019_103543
elsevier_sciencedirect_doi_10_1016_j_geomphys_2019_103543
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationTitle Journal of geometry and physics
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cao, Rammaha, Titi (b2) 1999; 50
Chow, Chu, Glickenstein, Guenther, Isenberg, Ivey, Knopf, Lu, Luo, Ni (b4) 2007; vol. 135
Spivak (b13) 1999
Welsh (b17) 1986; 30
Hebey (b7) 1999; vol. 5
Petersen (b10) 2006; vol. 171
Pierfelice (b11) 2017; 27
Ebin, Marsden (b5) 1970; 92
Temam (b15) 2001
Temam, Miranville (b16) 2005
Kobayashi (b9) 2008; 60
Khavkine (b8) 2017; 113
Buckmaster, Vicol (b1) 2019; 189
Glowinski (b6) 2003
Taylor (b14) 2011; vol. 117
Reuther, Voigt (b12) 2015; 13
Chan, Czubak, Disconzi (b3) 2017; 121
Buckmaster (10.1016/j.geomphys.2019.103543_b1) 2019; 189
Reuther (10.1016/j.geomphys.2019.103543_b12) 2015; 13
Temam (10.1016/j.geomphys.2019.103543_b16) 2005
Cao (10.1016/j.geomphys.2019.103543_b2) 1999; 50
Chan (10.1016/j.geomphys.2019.103543_b3) 2017; 121
Petersen (10.1016/j.geomphys.2019.103543_b10) 2006; vol. 171
Chow (10.1016/j.geomphys.2019.103543_b4) 2007; vol. 135
Khavkine (10.1016/j.geomphys.2019.103543_b8) 2017; 113
Ebin (10.1016/j.geomphys.2019.103543_b5) 1970; 92
Glowinski (10.1016/j.geomphys.2019.103543_b6) 2003
Spivak (10.1016/j.geomphys.2019.103543_b13) 1999
Temam (10.1016/j.geomphys.2019.103543_b15) 2001
Kobayashi (10.1016/j.geomphys.2019.103543_b9) 2008; 60
Hebey (10.1016/j.geomphys.2019.103543_b7) 1999; vol. 5
Taylor (10.1016/j.geomphys.2019.103543_b14) 2011; vol. 117
Pierfelice (10.1016/j.geomphys.2019.103543_b11) 2017; 27
Welsh (10.1016/j.geomphys.2019.103543_b17) 1986; 30
References_xml – volume: vol. 117
  year: 2011
  ident: b14
  article-title: Partial differential equations III. Nonlinear equations
  publication-title: Applied Mathematical Sciences
– volume: vol. 135
  year: 2007
  ident: b4
  article-title: The Ricci flow: techniques and applications. Part I
  publication-title: Mathematical Surveys and Monographs
– start-page: 3
  year: 2003
  end-page: 1176
  ident: b6
  article-title: Finite element methods for incompressible viscous flow
  publication-title: Handbook of Numerical Analysis, Vol. IX
– volume: 50
  start-page: 341
  year: 1999
  end-page: 360
  ident: b2
  article-title: The Navier-Stokes equations on the rotating
  publication-title: Z. Angew. Math. Phys.
– volume: 113
  start-page: 131
  year: 2017
  end-page: 169
  ident: b8
  article-title: The Calabi complex and Killing sheaf cohomology
  publication-title: J. Geom. Phys.
– volume: 92
  start-page: 102
  year: 1970
  end-page: 163
  ident: b5
  article-title: Groups of diffeomorphisms and the motion of an incompressible fluid
  publication-title: Ann. of Math. (2)
– volume: vol. 171
  year: 2006
  ident: b10
  article-title: Riemannian geometry
  publication-title: Graduate Texts in Mathematics
– year: 1999
  ident: b13
  article-title: A Comprehensive Introduction to Differential Geometry, Vol. 2
– year: 2005
  ident: b16
  article-title: Mathematical Modeling in Continuum Mechanics
– volume: 60
  start-page: 55
  year: 2008
  end-page: 68
  ident: b9
  article-title: On the Navier-Stokes equations on manifolds with curvature
  publication-title: J. Eng. Math.
– year: 2001
  ident: b15
  article-title: Navier-Stokes equations
– volume: 27
  start-page: 577
  year: 2017
  end-page: 617
  ident: b11
  article-title: The incompressible Navier-Stokes equations on non-compact manifolds
  publication-title: J. Geom. Anal.
– volume: 121
  start-page: 335
  year: 2017
  end-page: 346
  ident: b3
  article-title: The formulation of the Navier-Stokes equations on Riemannian manifolds
  publication-title: J. Geom. Phys.
– volume: vol. 5
  year: 1999
  ident: b7
  article-title: Nonlinear analysis on manifolds: Sobolev spaces and inequalities
  publication-title: Courant Lecture Notes in Mathematics
– volume: 189
  start-page: 101
  year: 2019
  end-page: 144
  ident: b1
  article-title: Nonuniqueness of weak solutions to the Navier-Stokes equation
  publication-title: Ann. of Math. (2)
– volume: 30
  start-page: 9
  year: 1986
  end-page: 18
  ident: b17
  article-title: Manifolds that admit parallel vector fields
  publication-title: Illinois J. Math.
– volume: 13
  start-page: 632
  year: 2015
  end-page: 643
  ident: b12
  article-title: The interplay of curvature and vortices in flow on curved surfaces
  publication-title: Multiscale Model. Simul.
– volume: vol. 5
  year: 1999
  ident: 10.1016/j.geomphys.2019.103543_b7
  article-title: Nonlinear analysis on manifolds: Sobolev spaces and inequalities
– year: 2005
  ident: 10.1016/j.geomphys.2019.103543_b16
– volume: 92
  start-page: 102
  year: 1970
  ident: 10.1016/j.geomphys.2019.103543_b5
  article-title: Groups of diffeomorphisms and the motion of an incompressible fluid
  publication-title: Ann. of Math. (2)
  doi: 10.2307/1970699
– volume: 189
  start-page: 101
  issue: 1
  year: 2019
  ident: 10.1016/j.geomphys.2019.103543_b1
  article-title: Nonuniqueness of weak solutions to the Navier-Stokes equation
  publication-title: Ann. of Math. (2)
  doi: 10.4007/annals.2019.189.1.3
– volume: 121
  start-page: 335
  year: 2017
  ident: 10.1016/j.geomphys.2019.103543_b3
  article-title: The formulation of the Navier-Stokes equations on Riemannian manifolds
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2017.07.015
– volume: vol. 117
  year: 2011
  ident: 10.1016/j.geomphys.2019.103543_b14
  article-title: Partial differential equations III. Nonlinear equations
– volume: vol. 171
  year: 2006
  ident: 10.1016/j.geomphys.2019.103543_b10
  article-title: Riemannian geometry
– start-page: 3
  year: 2003
  ident: 10.1016/j.geomphys.2019.103543_b6
  article-title: Finite element methods for incompressible viscous flow
  doi: 10.1016/S1570-8659(03)09003-3
– year: 1999
  ident: 10.1016/j.geomphys.2019.103543_b13
– volume: 13
  start-page: 632
  issue: 2
  year: 2015
  ident: 10.1016/j.geomphys.2019.103543_b12
  article-title: The interplay of curvature and vortices in flow on curved surfaces
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/140971798
– volume: vol. 135
  year: 2007
  ident: 10.1016/j.geomphys.2019.103543_b4
  article-title: The Ricci flow: techniques and applications. Part I
– volume: 50
  start-page: 341
  issue: 3
  year: 1999
  ident: 10.1016/j.geomphys.2019.103543_b2
  article-title: The Navier-Stokes equations on the rotating 2-D sphere: Gevrey regularity and asymptotic degrees of freedom
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/PL00001493
– volume: 27
  start-page: 577
  issue: 1
  year: 2017
  ident: 10.1016/j.geomphys.2019.103543_b11
  article-title: The incompressible Navier-Stokes equations on non-compact manifolds
  publication-title: J. Geom. Anal.
  doi: 10.1007/s12220-016-9691-1
– volume: 113
  start-page: 131
  year: 2017
  ident: 10.1016/j.geomphys.2019.103543_b8
  article-title: The Calabi complex and Killing sheaf cohomology
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2016.06.009
– volume: 60
  start-page: 55
  issue: 1
  year: 2008
  ident: 10.1016/j.geomphys.2019.103543_b9
  article-title: On the Navier-Stokes equations on manifolds with curvature
  publication-title: J. Eng. Math.
  doi: 10.1007/s10665-007-9167-1
– volume: 30
  start-page: 9
  issue: 1
  year: 1986
  ident: 10.1016/j.geomphys.2019.103543_b17
  article-title: Manifolds that admit parallel vector fields
  publication-title: Illinois J. Math.
  doi: 10.1215/ijm/1256044750
– year: 2001
  ident: 10.1016/j.geomphys.2019.103543_b15
SSID ssj0006491
Score 2.466098
Snippet We study properties of the solutions to Navier–Stokes system on compact Riemannian manifolds. The motivation for such a formulation comes from atmospheric...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103543
SubjectTerms Curvature tensor
Killing vector fields
Navier–Stokes equations
Riemannian manifolds
Title Navier–Stokes equations on Riemannian manifolds
URI https://dx.doi.org/10.1016/j.geomphys.2019.103543
Volume 148
WOSCitedRecordID wos000512480400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006491
  issn: 0393-0440
  databaseCode: AIEXJ
  dateStart: 20180201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELagBYke-ClFlD_lwK1KceI4to8VKgKkripapL1FduKgdneTsput2hvvwBvyJIw7jneBFaUHLlFiaSaOP2c8tma-IeR1IqRK65TFhhoZZzqnseJGxFqmAjzYOk_K8qrYhBgM5HCoDn2VvtlVOQHRNPLiQp39V6ihDcB2qbM3gDsohQa4B9DhCrDD9Z-AH2i31PVBDOyoa0d2tmO_zvugt2bn04mduFpF8G87-ou6HWO67wov9YttJ7abIksTHoMEL_xIT_S5xrrXB3p6qSeLaA2QGmMY7nw00stnC7CRpCFOw-dUuei-DAmVgr1Eakxv8RLKOBIt_WGM8VzgdNf11HXQBdKp3YXAr-zXv61KIVawD0M7LXo9hdNToJ7bZD0VXIFJXt_7sD_8GFbhPMNqif0XLGWHr-7Rasdkydk4fkju-_GP9hDdR-SWbTbJA79jiLw9nm2SjYPAugtPdw8Rn8ckwUnw49t3hD8K8EdtEy3gjwL8W-Tzu_3jt-9jXxwjLllOu7imtOKqYkaU2krNYNGShrucHKMU_HNJlVe8slVuUkNrQZVkTGouWCrA5604e0LWmraxT0nErAEn1WZJnZmMwQYyTSuRG-F0S8HsNuH9yBSlZ453BUzGxd-x2SZvgtwZcqdcK6H6gS-8B4ieXQFz6hrZZzd-23NybzHpX5C1bjq3L8md8rw7mU1f-Qn1E3gEfl8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Navier%E2%80%93Stokes+equations+on+Riemannian+manifolds&rft.jtitle=Journal+of+geometry+and+physics&rft.au=Samavaki%2C+Maryam&rft.au=Tuomela%2C+Jukka&rft.date=2020-02-01&rft.issn=0393-0440&rft.volume=148&rft.spage=103543&rft_id=info:doi/10.1016%2Fj.geomphys.2019.103543&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geomphys_2019_103543
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0393-0440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0393-0440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0393-0440&client=summon