An efficient hybrid multi-objective memetic algorithm for the frequency assignment problem

This paper investigates hybridization of multi-objective memetic algorithm and artificial immune system (AIS) for the Frequency Assignment Problem (FAP) in cellular mobile networks. The considered objectives to minimize are the total interference, the maximal interference, and the number of used fre...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering applications of artificial intelligence Ročník 87; s. 103265
Hlavní autoři: Kiouche, Abd Errahmane, Bessedik, Malika, Benbouzid-SiTayeb, Fatima, Keddar, Mohamed Reda
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2020
Témata:
ISSN:0952-1976, 1873-6769
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper investigates hybridization of multi-objective memetic algorithm and artificial immune system (AIS) for the Frequency Assignment Problem (FAP) in cellular mobile networks. The considered objectives to minimize are the total interference, the maximal interference, and the number of used frequencies. The proposed approach integrates FAP-specific local search into the evolutionary process to overcome the shortcoming of the multi-objective genetic algorithm, as well as clonal selection and receptor editing, which aims to improve the algorithm exploration and exploitation abilities. Based on the hypervolume metric, the proposed hybrid multi-objective algorithm produces high quality solutions as proved by the tests performed over COST259 instances and corroborated by the comparisons with the most frequently referred algorithms in the related literature. Furthermore, the effect and the behaviour of the main parameters of our algorithm and the interaction between them are analysed using the Design of Experiment (DOE). [Display omitted] •The proposed approach is a multi-objective memetic algorithm that integrates immune operators in its evolutionary process to improve the algorithm exploration and exploitation abilities.•As application, we deal with the Frequency Assignment Problem (FAP) in cellular networks considering three objectives to minimize: the total interference, the maximal interference, and the number of used frequencies.•The proposed approach integrates FAP-specific local search into the evolutionary process as well as clonal selection and receptor editing inherited from AIS.•The behaviour of the main algorithm factors and the interaction between them are analysed using the ANOVA statistical test.•The performances of the newly proposed algorithm are measured in terms of hypervolume on COST259 instances.
AbstractList This paper investigates hybridization of multi-objective memetic algorithm and artificial immune system (AIS) for the Frequency Assignment Problem (FAP) in cellular mobile networks. The considered objectives to minimize are the total interference, the maximal interference, and the number of used frequencies. The proposed approach integrates FAP-specific local search into the evolutionary process to overcome the shortcoming of the multi-objective genetic algorithm, as well as clonal selection and receptor editing, which aims to improve the algorithm exploration and exploitation abilities. Based on the hypervolume metric, the proposed hybrid multi-objective algorithm produces high quality solutions as proved by the tests performed over COST259 instances and corroborated by the comparisons with the most frequently referred algorithms in the related literature. Furthermore, the effect and the behaviour of the main parameters of our algorithm and the interaction between them are analysed using the Design of Experiment (DOE). [Display omitted] •The proposed approach is a multi-objective memetic algorithm that integrates immune operators in its evolutionary process to improve the algorithm exploration and exploitation abilities.•As application, we deal with the Frequency Assignment Problem (FAP) in cellular networks considering three objectives to minimize: the total interference, the maximal interference, and the number of used frequencies.•The proposed approach integrates FAP-specific local search into the evolutionary process as well as clonal selection and receptor editing inherited from AIS.•The behaviour of the main algorithm factors and the interaction between them are analysed using the ANOVA statistical test.•The performances of the newly proposed algorithm are measured in terms of hypervolume on COST259 instances.
ArticleNumber 103265
Author Kiouche, Abd Errahmane
Benbouzid-SiTayeb, Fatima
Keddar, Mohamed Reda
Bessedik, Malika
Author_xml – sequence: 1
  givenname: Abd Errahmane
  surname: Kiouche
  fullname: Kiouche, Abd Errahmane
  email: ca_kiouche@esi.dz
– sequence: 2
  givenname: Malika
  surname: Bessedik
  fullname: Bessedik, Malika
  email: m_bessedik@esi.dz
– sequence: 3
  givenname: Fatima
  surname: Benbouzid-SiTayeb
  fullname: Benbouzid-SiTayeb, Fatima
  email: f_sitayeb@esi.dz
– sequence: 4
  givenname: Mohamed Reda
  surname: Keddar
  fullname: Keddar, Mohamed Reda
  email: cm_kaddar@esi.dz
BookMark eNqFkMtqwzAQAEVJoUnaXyj6AaeSbMsW9NAQ-oJAL-2lFyHLq2SNX5WVQP6-NmkvvRQWFhZmYGdBZm3XAiG3nK044_KuWkG7M31vcCUYV-MxFjK9IHOeZ3EkM6lmZM5UKiKuMnlFFsNQMcbiPJFz8rluKTiHFqENdH8qPJa0OdQBo66owAY8Am2ggYCWmnrXeQz7hrrO07AH6jx8HaC1J2qGAXdtM1l63xU1NNfk0pl6gJufvSQfT4_vm5do-_b8ullvIxtLFiIobClsmtmMOWFz5tw4UiSsSGWecBfHWVnYNMlTBs7mSkKmbCqUyjgXseDxktyfvdZ3w-DBaYvBBOza4A3WmjM9ddKV_u2kp0763GnE5R-899gYf_offDiDMD53RPB6mCpaKNGP4XTZ4X-Kb1vQilk
CitedBy_id crossref_primary_10_1016_j_engappai_2022_105533
crossref_primary_10_1016_j_petlm_2021_03_001
crossref_primary_10_1109_TAES_2024_3520088
crossref_primary_10_1016_j_ejco_2021_100024
crossref_primary_10_1016_j_asoc_2020_106655
crossref_primary_10_1002_cpe_7612
crossref_primary_10_1109_ACCESS_2024_3523464
crossref_primary_10_1016_j_cma_2021_114029
crossref_primary_10_1016_j_jmsy_2024_01_006
crossref_primary_10_1155_2021_5570737
Cites_doi 10.1007/s00521-012-1046-7
10.1109/72.641459
10.1007/s00170-015-8052-8
10.1109/CEC.2016.7743969
10.1109/TEVC.2005.850260
10.1016/j.cosrev.2009.07.001
10.1007/s10479-007-0178-0
10.1145/1276958.1276972
10.1109/ICC.2017.7997007
10.1108/02644401211206034
10.1109/SOCPAR.2015.7492816
10.1145/1389095.1389396
10.1016/j.orl.2006.01.009
10.1023/A:1009690321348
10.1109/PROC.1980.11899
10.1109/ACCESS.2018.2882595
10.1016/j.ejor.2007.02.047
10.1023/A:1016540724870
10.1007/s00500-010-0653-4
10.1016/j.procs.2018.07.262
10.1109/4235.996017
10.1109/TEVC.2016.2641477
10.1109/ISTT.2014.7238206
10.1109/ICC.2016.7510702
10.1016/j.future.2004.03.014
10.1145/359094.359101
10.1109/72.265956
10.1007/s10791-005-6619-y
10.1007/s00500-014-1337-2
10.1109/NABIC.2009.5393695
10.1109/CEC.2011.5949744
10.1504/IJMHEUR.2014.058861
10.1109/25.69987
10.1007/978-3-319-66939-7_8
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2019.103265
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2019_103265
S0952197619302362
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c360t-ebcd2c57c70f2c80ff0ff6240b56841f337dbc54850efc896e79c529971123213
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506715100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 07:05:02 EST 2025
Tue Nov 18 22:42:47 EST 2025
Fri Feb 23 02:48:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective genetic algorithm
Memetic algorithm
Local search
Clonal selection
Receptor editing
Frequency assignment problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c360t-ebcd2c57c70f2c80ff0ff6240b56841f337dbc54850efc896e79c529971123213
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2019_103265
crossref_primary_10_1016_j_engappai_2019_103265
elsevier_sciencedirect_doi_10_1016_j_engappai_2019_103265
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Aardal, Karen (b1) 2007; 153
Chen, M., Challita, U., Saad, W., Yin, C., Debbah, M., 2017. Machine learning for wireless networks with artificial intelligence : A tutorial on neural networks. arXiv preprint
Hale (b18) 1980; 68
Salcedo-Sanz, Bousoño Calzón (b40) 2005; 22
Luna, F., Estébanez, C., León, C., Chaves-González, J.M., Alba, E., Aler, R., Segura, C., Vega-Rodríguez, M.A., Nebro, A.J., Valls, J.M., 2008. Metaheuristics for solving a real-world frequency assignment problem in GSM networks. In Proceedings of the 10th ACM annual conference on Genetic and evolutionary computation.
Raidl (b37) 2006
Segredo, E., Segura, C., Leon, C., 2011. A Multiobjectivised Memetic Algorithm for the Frequency Assignment Problem. In Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC’2011), New Orleans (USA), pp. 1132-1139.
Brélaz (b9) 1979; 22
Fogel (b15) 1994; 5
Hao, Dorne, Galinier (b19) 1998; 4
Hart, W.E., 1994. Adaptive global optimization with local search. Citeseer.
Segura, Hernandez-Aguirre, Luna, Alba (b43) 2017; 21
Deb, Pratap, Agarwal, Meyarivan (b12) 2002; 6
Engin, Döyen (b14) 2004; 20
Availablefrom
Montemanni, R., Moon, J.N., Smith, D.H., An improved tabu search algorithm for the fixed-spectrum.
Hadji, Menni, Meraga, Bessedik (b17) 2014; 3
Krasnogor, Smith (b24) 2005; 9
Bessedik, Benbouzid-Si Tayeb, Cheurfi, Blizak (b7) 2016; 85
.
Eisenblätter (b13) 2001
da Silva Maximiano, Vega-Rodríguez, Gómez-Pulido, Sánchez-Pérez (b45) 2013; 22
Siddiqi, Sait (b44) 2018; 6
Koo, B.-H., Yilmaz, H.B., Chae, C.-B., Park, H.-S., Ham, J.-H., Park, S.-H., 2016. Heuristics for frequency assignment problem with realistic interference constraints. In 2016 ieee international conference on communications (icc) (pp. 1–6).
Salcedo-Sanz (b39) 2009; 3
Coskun, ., Ayanoglu, ., 2017. Energy-spectral efficiency tradeoff for heterogeneous networks with QoS constraints. In Proceeding of the 2017 IEEE International Conference on Communications (ICC).
Kunz (b25) 1991; 40
Jiahai, Cai (b21) 2015; 19
Maulik, Bandyopadhyay, Mukhopadhyay (b32) 2011
Mannino, Oriolo, Ricci, Chandran (b31) 2007; 35
Tan, Goh, Mamun, Ei (b48) 2008; 187
Raidl (b38) 2006
Luna, Alba, Nebro, Pedraza (b27) 2007
Akram, Bedoui, et al., 2014. Steps toward the design of hybrid metaheuristics for the multiobjective frequency assignment problem in broadcasting. In Proceeding of the IEEE 2nd International Symposium on Telecommunication Technologies (ISTT), pp. 208–213.
Laidoui, F., Bessedik, M., Si-Tayeb, F.B., Bengherbia, N., Khelil, M.Y., 2018. Nash-Pareto Genetic Algorithm for the Frequency Assignment Problem. In Proceeding of the 22nd International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES’2018). Belgrade- Serbia.
Luna, F., Blum, C., Alba, E., Nebro, A.J., 2007. ACO vs EAs for solving a real-world frequency assignment problem in GSM networks. In Proceedings of the 9th ACM annual conference on Genetic and evolutionary computation, London, England, pp. 94-101.
Suliman, S.I., Kendall, G., Musirin, I., 2015. An effective AIS-based model for frequency assignment in mobile communication. In Proceedings of the 7th IEEE International Conference in Soft Computing and Pattern Recognition (SoCPaR).
Maximiano, Vega-Rodríguez, Gómez-Pulido, Sánchez-Pérez (b34) 2012; 29
Akram, Bedoui, et al., 2013. A Hybrid Evolutionary Approach for the Multi-Objective Frequency Assignment Problem in Broadcasting. In: ISORAP - Marrakech - Morocco.
Bradstreet, L., 2011. The hypervolume indicator for multi-objective optimisation: calculation and use.
Segredo, E., Paechter, B., Hart, E., González-Vila, C.I., 2016. Hybrid parameter control approach applied to a diversity-based multi-objective memetic algorithm for frequency assignment problems. In Evolutionary computation (cec), 2016 ieee congress on (pp. 1517–1524).
Talbi (b47) 2002; 8
Weinberg, Bachelet, Talbi (b49) 2001
Maximiano, M.d.S., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M., 2009. Multiobjective frequency assignment problem using the MO-VNS and MO-SVNS algorithms. in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).
Montgomery (b36) 1991
Funabiki, Nishikawa (b16) 1997; 8
Alrajhi, K., Thompson, J., Padungwech, W., 2017. A heuristic approach for the dynamic frequency assignment problem. In Uk workshop on computational intelligence, (pp. 91–103).
Luna, Estébanez, León, Chaves-González, Nebro, Aler, Segura, Vega-Rodríguez, Alba, Valls, Miranda, Gómez-Pulido (b30) 2011; 15
Aickelin, Dasgupta, Gu (b2) 2014
Kalyanmoy (b22) 2001
Maulik (10.1016/j.engappai.2019.103265_b32) 2011
Hale (10.1016/j.engappai.2019.103265_b18) 1980; 68
10.1016/j.engappai.2019.103265_b10
Salcedo-Sanz (10.1016/j.engappai.2019.103265_b39) 2009; 3
10.1016/j.engappai.2019.103265_b11
Kalyanmoy (10.1016/j.engappai.2019.103265_b22) 2001
Segura (10.1016/j.engappai.2019.103265_b43) 2017; 21
Eisenblätter (10.1016/j.engappai.2019.103265_b13) 2001
Raidl (10.1016/j.engappai.2019.103265_b37) 2006
Aickelin (10.1016/j.engappai.2019.103265_b2) 2014
Deb (10.1016/j.engappai.2019.103265_b12) 2002; 6
Luna (10.1016/j.engappai.2019.103265_b30) 2011; 15
Talbi (10.1016/j.engappai.2019.103265_b47) 2002; 8
Hadji (10.1016/j.engappai.2019.103265_b17) 2014; 3
Aardal (10.1016/j.engappai.2019.103265_b1) 2007; 153
10.1016/j.engappai.2019.103265_b8
10.1016/j.engappai.2019.103265_b5
10.1016/j.engappai.2019.103265_b41
da Silva Maximiano (10.1016/j.engappai.2019.103265_b45) 2013; 22
10.1016/j.engappai.2019.103265_b6
10.1016/j.engappai.2019.103265_b42
10.1016/j.engappai.2019.103265_b46
Jiahai (10.1016/j.engappai.2019.103265_b21) 2015; 19
Bessedik (10.1016/j.engappai.2019.103265_b7) 2016; 85
Fogel (10.1016/j.engappai.2019.103265_b15) 1994; 5
10.1016/j.engappai.2019.103265_b3
10.1016/j.engappai.2019.103265_b4
Funabiki (10.1016/j.engappai.2019.103265_b16) 1997; 8
Weinberg (10.1016/j.engappai.2019.103265_b49) 2001
10.1016/j.engappai.2019.103265_b33
10.1016/j.engappai.2019.103265_b35
Brélaz (10.1016/j.engappai.2019.103265_b9) 1979; 22
Engin (10.1016/j.engappai.2019.103265_b14) 2004; 20
Raidl (10.1016/j.engappai.2019.103265_b38) 2006
Tan (10.1016/j.engappai.2019.103265_b48) 2008; 187
Maximiano (10.1016/j.engappai.2019.103265_b34) 2012; 29
Krasnogor (10.1016/j.engappai.2019.103265_b24) 2005; 9
Hao (10.1016/j.engappai.2019.103265_b19) 1998; 4
Kunz (10.1016/j.engappai.2019.103265_b25) 1991; 40
Mannino (10.1016/j.engappai.2019.103265_b31) 2007; 35
10.1016/j.engappai.2019.103265_b20
Salcedo-Sanz (10.1016/j.engappai.2019.103265_b40) 2005; 22
10.1016/j.engappai.2019.103265_b23
Siddiqi (10.1016/j.engappai.2019.103265_b44) 2018; 6
10.1016/j.engappai.2019.103265_b26
10.1016/j.engappai.2019.103265_b28
10.1016/j.engappai.2019.103265_b29
Luna (10.1016/j.engappai.2019.103265_b27) 2007
Montgomery (10.1016/j.engappai.2019.103265_b36) 1991
References_xml – reference: Hart, W.E., 1994. Adaptive global optimization with local search. Citeseer.
– volume: 3
  start-page: 1
  year: 2014
  end-page: 20
  ident: b17
  article-title: Parallel artificial immune system for the constrained graph list multicolouring problem
  publication-title: Int. J. Metaheuristics
– reference: Availablefrom:
– volume: 8
  start-page: 541
  year: 2002
  end-page: 564
  ident: b47
  article-title: A taxonomy of hybrid metaheuristics
  publication-title: J. Heuristics
– reference: Akram, Bedoui, et al., 2013. A Hybrid Evolutionary Approach for the Multi-Objective Frequency Assignment Problem in Broadcasting. In: ISORAP - Marrakech - Morocco.
– volume: 68
  start-page: 1497
  year: 1980
  end-page: 15144
  ident: b18
  article-title: Frequency assignment: Theory and applications
  publication-title: Proc. IEEE
– volume: 4
  start-page: 47
  year: 1998
  end-page: 62
  ident: b19
  article-title: Tabu search for frequency assignment in mobile radio networks
  publication-title: J. Heuristics
– reference: Koo, B.-H., Yilmaz, H.B., Chae, C.-B., Park, H.-S., Ham, J.-H., Park, S.-H., 2016. Heuristics for frequency assignment problem with realistic interference constraints. In 2016 ieee international conference on communications (icc) (pp. 1–6).
– volume: 22
  start-page: 207
  year: 2005
  end-page: 217
  ident: b40
  article-title: A hybrid neural-genetic algorithm for the frequency assignment problem in satellite communications
  publication-title: Appl. Intell.
– reference: Laidoui, F., Bessedik, M., Si-Tayeb, F.B., Bengherbia, N., Khelil, M.Y., 2018. Nash-Pareto Genetic Algorithm for the Frequency Assignment Problem. In Proceeding of the 22nd International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES’2018). Belgrade- Serbia.
– year: 2006
  ident: b37
  article-title: A unified view on hybrid metaheuristics
  publication-title: Nternational Workshop on Hybrid Metaheuristics
– volume: 29
  start-page: 144
  year: 2012
  end-page: 172
  ident: b34
  article-title: Multiobjective metaheuristics for frequency assignment problem in mobile networks with large-scale real-world instances
  publication-title: Eng. Comput.
– reference: Suliman, S.I., Kendall, G., Musirin, I., 2015. An effective AIS-based model for frequency assignment in mobile communication. In Proceedings of the 7th IEEE International Conference in Soft Computing and Pattern Recognition (SoCPaR).
– volume: 40
  start-page: 188
  year: 1991
  end-page: 193
  ident: b25
  article-title: Channel assignment for cellular radio using neural networks
  publication-title: IEEE Trans. Veh. Technol.
– volume: 19
  start-page: 1229
  year: 2015
  end-page: 1253
  ident: b21
  article-title: Multiobjective evolutionary algorithm for frequency assignment problem in satellite communications
  publication-title: Soft Comput.
– start-page: 25
  year: 2011
  end-page: 50
  ident: b32
  article-title: Genetic algorithms and multiobjective optimization
  publication-title: Multiobjective Genetic Algorithms for Clustering: Applications in Data Mining and Bioinformatics
– reference: Coskun, ., Ayanoglu, ., 2017. Energy-spectral efficiency tradeoff for heterogeneous networks with QoS constraints. In Proceeding of the 2017 IEEE International Conference on Communications (ICC).
– volume: 8
  start-page: 1359
  year: 1997
  end-page: 1370
  ident: b16
  article-title: A gradual neural-network approach for frequency assignment in satellite communication systems
  publication-title: IEEE Trans. Neural Netw.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b12
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– reference: Luna, F., Blum, C., Alba, E., Nebro, A.J., 2007. ACO vs EAs for solving a real-world frequency assignment problem in GSM networks. In Proceedings of the 9th ACM annual conference on Genetic and evolutionary computation, London, England, pp. 94-101.
– start-page: 124
  year: 2001
  ident: b22
  article-title: Multi Objective Optimization using Evolutionary Algorithms
– reference: Luna, F., Estébanez, C., León, C., Chaves-González, J.M., Alba, E., Aler, R., Segura, C., Vega-Rodríguez, M.A., Nebro, A.J., Valls, J.M., 2008. Metaheuristics for solving a real-world frequency assignment problem in GSM networks. In Proceedings of the 10th ACM annual conference on Genetic and evolutionary computation.
– volume: 22
  start-page: 1447
  year: 2013
  end-page: 1459
  ident: b45
  article-title: A new multiobjective artificial bee colony algorithm to solve a real-world frequency assignment problem
  publication-title: Neural Comput. Appl.
– year: 1991
  ident: b36
  article-title: Design and Analysis of Experiments
– volume: 22
  start-page: 251
  year: 1979
  end-page: 256
  ident: b9
  article-title: New methods to color the vertices of a graph
  publication-title: Commun. ACM
– reference: Segredo, E., Paechter, B., Hart, E., González-Vila, C.I., 2016. Hybrid parameter control approach applied to a diversity-based multi-objective memetic algorithm for frequency assignment problems. In Evolutionary computation (cec), 2016 ieee congress on (pp. 1517–1524).
– volume: 187
  start-page: 371
  year: 2008
  end-page: 392
  ident: b48
  article-title: An evolutionary artificial immune system for multi-objective optimization
  publication-title: European J. Oper. Res.
– volume: 20
  start-page: 1083
  year: 2004
  end-page: 1095
  ident: b14
  article-title: A new approach to solve hybrid flow shop scheduling problems by artificial immune system
  publication-title: Future Gener. Comput. Syst.
– volume: 85
  start-page: 2459
  year: 2016
  end-page: 2469
  ident: b7
  article-title: An immunity-based hybrid genetic algorithms for permutation flowshop scheduling problems
  publication-title: Int. J. Adv. Manuf. Technol.
– reference: Maximiano, M.d.S., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M., 2009. Multiobjective frequency assignment problem using the MO-VNS and MO-SVNS algorithms. in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).
– reference: Akram, Bedoui, et al., 2014. Steps toward the design of hybrid metaheuristics for the multiobjective frequency assignment problem in broadcasting. In Proceeding of the IEEE 2nd International Symposium on Telecommunication Technologies (ISTT), pp. 208–213.
– volume: 5
  start-page: 3
  year: 1994
  end-page: 14
  ident: b15
  article-title: An introduction to simulated evolutionary optimization
  publication-title: IEEE Trans. Neural Netw.
– volume: 3
  start-page: 175
  year: 2009
  end-page: 192
  ident: b39
  article-title: A survey of repair methods used as constraint handling techniques in evolutionary algorithms
  publication-title: Comput. Sci. Rev.
– start-page: 187
  year: 2014
  end-page: 211
  ident: b2
  article-title: Artificial immune systems
  publication-title: Search Methodologies
– volume: 153
  start-page: 79
  year: 2007
  end-page: 129
  ident: b1
  article-title: Models and solution techniques for frequency assignment problems
  publication-title: Ann. Oper. Res.
– reference: Montemanni, R., Moon, J.N., Smith, D.H., An improved tabu search algorithm for the fixed-spectrum.
– reference: Segredo, E., Segura, C., Leon, C., 2011. A Multiobjectivised Memetic Algorithm for the Frequency Assignment Problem. In Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC’2011), New Orleans (USA), pp. 1132-1139.
– year: 2001
  ident: b13
  article-title: Frequency Assignment in GSM Networks: Models, Heuristics, and Lower Bounds
– volume: 6
  start-page: 72635
  year: 2018
  end-page: 72648
  ident: b44
  article-title: An optimization heuristic based on non-dominated sorting and tabu search for the fixed spectrum frequency assignment problem
  publication-title: IEEE Access
– start-page: 1
  year: 2006
  end-page: 12
  ident: b38
  article-title: A unified view on hybrid metaheuristics
  publication-title: Hybrid Metaheuristics: Third International Workshop, HM 2006 Gran Canaria, Spain, (2006) Proceedings
– volume: 21
  start-page: 539
  year: 2017
  end-page: 553
  ident: b43
  article-title: Improving diversity in evolutionary algorithms: New best solutions for frequency assignment
  publication-title: IEEE Trans. Evol. Comput.
– reference: .
– reference: Bradstreet, L., 2011. The hypervolume indicator for multi-objective optimisation: calculation and use.
– volume: 15
  start-page: 975
  year: 2011
  end-page: 990
  ident: b30
  article-title: Optimization algorithms for large-scale real-world instances of the frequency assignment problem
  publication-title: Soft Comput.
– volume: 9
  start-page: 474
  year: 2005
  end-page: 488
  ident: b24
  article-title: A tutorial for competent memetic algorithms: model, taxonomy, and design issues
  publication-title: IEEE Trans. Evol. Comput.
– year: 2007
  ident: b27
  article-title: Evolutionary algorithms for real-world instances of the automatic frequency planning problem in GSM networks
  publication-title: European Conference on Evolutionary Computation in Combinatorial Optimization
– year: 2001
  ident: b49
  article-title: A co-evolutionist meta-heuristic for the assignment of the frequencies in cellular networks
  publication-title: Workshops on Applications of Evolutionary Computation
– reference: Alrajhi, K., Thompson, J., Padungwech, W., 2017. A heuristic approach for the dynamic frequency assignment problem. In Uk workshop on computational intelligence, (pp. 91–103).
– volume: 35
  start-page: 1
  year: 2007
  end-page: 9
  ident: b31
  article-title: The stable set problem and the thinness of a graph
  publication-title: Oper. Res. Lett.
– reference: Chen, M., Challita, U., Saad, W., Yin, C., Debbah, M., 2017. Machine learning for wireless networks with artificial intelligence : A tutorial on neural networks. arXiv preprint
– volume: 22
  start-page: 1447
  issue: 7
  year: 2013
  ident: 10.1016/j.engappai.2019.103265_b45
  article-title: A new multiobjective artificial bee colony algorithm to solve a real-world frequency assignment problem
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-1046-7
– volume: 8
  start-page: 1359
  issue: 6
  year: 1997
  ident: 10.1016/j.engappai.2019.103265_b16
  article-title: A gradual neural-network approach for frequency assignment in satellite communication systems
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.641459
– year: 2001
  ident: 10.1016/j.engappai.2019.103265_b49
  article-title: A co-evolutionist meta-heuristic for the assignment of the frequencies in cellular networks
– ident: 10.1016/j.engappai.2019.103265_b20
– volume: 85
  start-page: 2459
  issue: 9–12
  year: 2016
  ident: 10.1016/j.engappai.2019.103265_b7
  article-title: An immunity-based hybrid genetic algorithms for permutation flowshop scheduling problems
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-8052-8
– ident: 10.1016/j.engappai.2019.103265_b41
  doi: 10.1109/CEC.2016.7743969
– ident: 10.1016/j.engappai.2019.103265_b10
– volume: 9
  start-page: 474
  issue: 5
  year: 2005
  ident: 10.1016/j.engappai.2019.103265_b24
  article-title: A tutorial for competent memetic algorithms: model, taxonomy, and design issues
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.850260
– volume: 3
  start-page: 175
  issue: 3
  year: 2009
  ident: 10.1016/j.engappai.2019.103265_b39
  article-title: A survey of repair methods used as constraint handling techniques in evolutionary algorithms
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2009.07.001
– volume: 153
  start-page: 79
  issue: 1
  year: 2007
  ident: 10.1016/j.engappai.2019.103265_b1
  article-title: Models and solution techniques for frequency assignment problems
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-007-0178-0
– ident: 10.1016/j.engappai.2019.103265_b6
– year: 2007
  ident: 10.1016/j.engappai.2019.103265_b27
  article-title: Evolutionary algorithms for real-world instances of the automatic frequency planning problem in GSM networks
– ident: 10.1016/j.engappai.2019.103265_b28
  doi: 10.1145/1276958.1276972
– ident: 10.1016/j.engappai.2019.103265_b11
  doi: 10.1109/ICC.2017.7997007
– volume: 29
  start-page: 144
  issue: 2
  year: 2012
  ident: 10.1016/j.engappai.2019.103265_b34
  article-title: Multiobjective metaheuristics for frequency assignment problem in mobile networks with large-scale real-world instances
  publication-title: Eng. Comput.
  doi: 10.1108/02644401211206034
– year: 1991
  ident: 10.1016/j.engappai.2019.103265_b36
– start-page: 187
  year: 2014
  ident: 10.1016/j.engappai.2019.103265_b2
  article-title: Artificial immune systems
– ident: 10.1016/j.engappai.2019.103265_b46
  doi: 10.1109/SOCPAR.2015.7492816
– ident: 10.1016/j.engappai.2019.103265_b29
  doi: 10.1145/1389095.1389396
– volume: 35
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.engappai.2019.103265_b31
  article-title: The stable set problem and the thinness of a graph
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2006.01.009
– volume: 4
  start-page: 47
  issue: 1
  year: 1998
  ident: 10.1016/j.engappai.2019.103265_b19
  article-title: Tabu search for frequency assignment in mobile radio networks
  publication-title: J. Heuristics
  doi: 10.1023/A:1009690321348
– volume: 68
  start-page: 1497
  issue: 12
  year: 1980
  ident: 10.1016/j.engappai.2019.103265_b18
  article-title: Frequency assignment: Theory and applications
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1980.11899
– volume: 6
  start-page: 72635
  year: 2018
  ident: 10.1016/j.engappai.2019.103265_b44
  article-title: An optimization heuristic based on non-dominated sorting and tabu search for the fixed spectrum frequency assignment problem
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2882595
– start-page: 124
  year: 2001
  ident: 10.1016/j.engappai.2019.103265_b22
– volume: 187
  start-page: 371
  issue: 2
  year: 2008
  ident: 10.1016/j.engappai.2019.103265_b48
  article-title: An evolutionary artificial immune system for multi-objective optimization
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2007.02.047
– volume: 8
  start-page: 541
  issue: 5
  year: 2002
  ident: 10.1016/j.engappai.2019.103265_b47
  article-title: A taxonomy of hybrid metaheuristics
  publication-title: J. Heuristics
  doi: 10.1023/A:1016540724870
– volume: 15
  start-page: 975
  issue: 5
  year: 2011
  ident: 10.1016/j.engappai.2019.103265_b30
  article-title: Optimization algorithms for large-scale real-world instances of the frequency assignment problem
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0653-4
– ident: 10.1016/j.engappai.2019.103265_b26
  doi: 10.1016/j.procs.2018.07.262
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.engappai.2019.103265_b12
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– ident: 10.1016/j.engappai.2019.103265_b8
– volume: 21
  start-page: 539
  issue: 4
  year: 2017
  ident: 10.1016/j.engappai.2019.103265_b43
  article-title: Improving diversity in evolutionary algorithms: New best solutions for frequency assignment
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2641477
– start-page: 25
  year: 2011
  ident: 10.1016/j.engappai.2019.103265_b32
  article-title: Genetic algorithms and multiobjective optimization
– ident: 10.1016/j.engappai.2019.103265_b4
  doi: 10.1109/ISTT.2014.7238206
– start-page: 1
  year: 2006
  ident: 10.1016/j.engappai.2019.103265_b38
  article-title: A unified view on hybrid metaheuristics
– year: 2006
  ident: 10.1016/j.engappai.2019.103265_b37
  article-title: A unified view on hybrid metaheuristics
– ident: 10.1016/j.engappai.2019.103265_b3
– ident: 10.1016/j.engappai.2019.103265_b23
  doi: 10.1109/ICC.2016.7510702
– volume: 20
  start-page: 1083
  year: 2004
  ident: 10.1016/j.engappai.2019.103265_b14
  article-title: A new approach to solve hybrid flow shop scheduling problems by artificial immune system
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2004.03.014
– volume: 22
  start-page: 251
  issue: 4
  year: 1979
  ident: 10.1016/j.engappai.2019.103265_b9
  article-title: New methods to color the vertices of a graph
  publication-title: Commun. ACM
  doi: 10.1145/359094.359101
– volume: 5
  start-page: 3
  issue: 1
  year: 1994
  ident: 10.1016/j.engappai.2019.103265_b15
  article-title: An introduction to simulated evolutionary optimization
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.265956
– volume: 22
  start-page: 207
  issue: 3
  year: 2005
  ident: 10.1016/j.engappai.2019.103265_b40
  article-title: A hybrid neural-genetic algorithm for the frequency assignment problem in satellite communications
  publication-title: Appl. Intell.
  doi: 10.1007/s10791-005-6619-y
– volume: 19
  start-page: 1229
  issue: 5
  year: 2015
  ident: 10.1016/j.engappai.2019.103265_b21
  article-title: Multiobjective evolutionary algorithm for frequency assignment problem in satellite communications
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1337-2
– ident: 10.1016/j.engappai.2019.103265_b33
  doi: 10.1109/NABIC.2009.5393695
– ident: 10.1016/j.engappai.2019.103265_b42
  doi: 10.1109/CEC.2011.5949744
– ident: 10.1016/j.engappai.2019.103265_b35
– volume: 3
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.engappai.2019.103265_b17
  article-title: Parallel artificial immune system for the constrained graph list multicolouring problem
  publication-title: Int. J. Metaheuristics
  doi: 10.1504/IJMHEUR.2014.058861
– volume: 40
  start-page: 188
  issue: 1
  year: 1991
  ident: 10.1016/j.engappai.2019.103265_b25
  article-title: Channel assignment for cellular radio using neural networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/25.69987
– ident: 10.1016/j.engappai.2019.103265_b5
  doi: 10.1007/978-3-319-66939-7_8
– year: 2001
  ident: 10.1016/j.engappai.2019.103265_b13
SSID ssj0003846
Score 2.361823
Snippet This paper investigates hybridization of multi-objective memetic algorithm and artificial immune system (AIS) for the Frequency Assignment Problem (FAP) in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103265
SubjectTerms Clonal selection
Frequency assignment problem
Local search
Memetic algorithm
Multi-objective genetic algorithm
Receptor editing
Title An efficient hybrid multi-objective memetic algorithm for the frequency assignment problem
URI https://dx.doi.org/10.1016/j.engappai.2019.103265
Volume 87
WOSCitedRecordID wos000506715100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF5cp4de-i5NX-yhN6NUr9XuHk1J6IOGQl0wvQjtQ7YcWwqOHeL-sf69jrS7kpKGpjkUjDALu7I1n2ZmZ7-ZQeitCBQFQ6C9WCvixUpqj0sVwi4lYnkUx4II02yCHh-z6ZR_HQx-uVyY8yUtS3ZxwU__q6hhDIRdp87eQtztojAA30HocAWxw_WfBD8ua5JG0SQ6jua7OiPL0Aa9SiyMehut9Eo3lVqXs2pdbOarlm2Yrw23ejcCr7qYGa6A7TpzKYrf1TEc9Q_BG17BuiEgNe1AehU_u-P-agtQabSSUKCJQd-tst7xfl3OXBUnJpVoWZx0MQNdimr7s1Det2KS7XRzlnQEN-6My2etlOGMf6nmGZh6AJANOtjYRuj3YhsuSBl6ATcdYpy-tgbaKNy6HqBpNvGHLTBhicWBLmfwHLKi5vHxg27C5eLbV4xiS1V0LLhF6tZJ63VSs84dtBdSwtkQ7Y0_Hk4_tU5AxEyOmPsDveT063_R9X5Rz9eZPET37SYFjw24HqGBLh-jB3bDgq05OIMh1xPEjT1BP8YlbuGHDfzwFfhhCz_cwg8D_DDAD7fwwx38sIXfU_T96HDy_oNn-3d4Mkr8jacFvPWSUEn9PJTMz3P4JOBCCpKwOMijiCohYctMfJ1LxhNNuSTgH9GgdvSD6BkallWpnyMMmiYPgywgNCIxDxiTMoGtPTjHQvhZlu0j4p5eKm1x-7rHyjL9u_z20bt23qkp73LjDO6Ek1on1TifKeDuhrkvbn23l-he9168QsPNeqtfo7vyfFOcrd9Y0P0GOY-8pg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+hybrid+multi-objective+memetic+algorithm+for+the+frequency+assignment+problem&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Kiouche%2C+Abd+Errahmane&rft.au=Bessedik%2C+Malika&rft.au=Benbouzid-SiTayeb%2C+Fatima&rft.au=Keddar%2C+Mohamed+Reda&rft.date=2020-01-01&rft.issn=0952-1976&rft.volume=87&rft.spage=103265&rft_id=info:doi/10.1016%2Fj.engappai.2019.103265&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2019_103265
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon