Modeling alkaline water electrolysis for power-to-x applications: A scheduling approach

The flexible operation of alkaline water electrolyzers enables power-to-x plants to react efficiently to different energy scenarios. In this work, a novel scheduling model for alkaline water electrolysis is formulated as a mixed-integer linear program. The model is constructed by implementing operat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of hydrogen energy Ročník 46; číslo 14; s. 9303 - 9313
Hlavní autori: Varela, Christopher, Mostafa, Mahmoud, Zondervan, Edwin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 24.02.2021
Predmet:
ISSN:0360-3199, 1879-3487
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The flexible operation of alkaline water electrolyzers enables power-to-x plants to react efficiently to different energy scenarios. In this work, a novel scheduling model for alkaline water electrolysis is formulated as a mixed-integer linear program. The model is constructed by implementing operational states (production, standby, idle) and transitions (cold/full startup, shutdown) as integer variables, while the power loading and hydrogen flowrate are set as continuous variables. The operational characteristics (load range, startup time, ramp rates) are included as model constraints. The proposed model allows finding optimal number of electrolyzers and production schedules when dealing with large data sets of intermittent energy and electricity price. The optimal solution of the case study shows a balance between hydrogen production, energy absorption, and operation and investment costs. The optimal number of electrolyzers to be installed corresponds to 54% of the ones required to absorb the highest energy peak, being capable of loading 89.7% of the available energy during the year of operation, with an overall plant utilization of 93.7% and 764 startup/shutdown cycles evenly distributed among the units. •A novel scheduling model for alkaline water electrolysis (AEL) has been developed.•The model introduces AEL states, transitions, and operational characteristics.•The model allows to find optimal number of electrolyzers and production schedules.•The model is suitable to handle large data sets of fluctuating energy and prices.•The MILP solution provides a balance between production, energy absorption and costs.
AbstractList The flexible operation of alkaline water electrolyzers enables power-to-x plants to react efficiently to different energy scenarios. In this work, a novel scheduling model for alkaline water electrolysis is formulated as a mixed-integer linear program. The model is constructed by implementing operational states (production, standby, idle) and transitions (cold/full startup, shutdown) as integer variables, while the power loading and hydrogen flowrate are set as continuous variables. The operational characteristics (load range, startup time, ramp rates) are included as model constraints. The proposed model allows finding optimal number of electrolyzers and production schedules when dealing with large data sets of intermittent energy and electricity price. The optimal solution of the case study shows a balance between hydrogen production, energy absorption, and operation and investment costs. The optimal number of electrolyzers to be installed corresponds to 54% of the ones required to absorb the highest energy peak, being capable of loading 89.7% of the available energy during the year of operation, with an overall plant utilization of 93.7% and 764 startup/shutdown cycles evenly distributed among the units. •A novel scheduling model for alkaline water electrolysis (AEL) has been developed.•The model introduces AEL states, transitions, and operational characteristics.•The model allows to find optimal number of electrolyzers and production schedules.•The model is suitable to handle large data sets of fluctuating energy and prices.•The MILP solution provides a balance between production, energy absorption and costs.
Author Zondervan, Edwin
Mostafa, Mahmoud
Varela, Christopher
Author_xml – sequence: 1
  givenname: Christopher
  orcidid: 0000-0002-7163-1155
  surname: Varela
  fullname: Varela, Christopher
  email: varela@uni-bremen.de
  organization: University of Bremen, Faculty of Production Engineering, Leobener Str. 6, Bremen, 28359, Germany
– sequence: 2
  givenname: Mahmoud
  surname: Mostafa
  fullname: Mostafa, Mahmoud
  organization: University of Bremen, Faculty of Production Engineering, Leobener Str. 6, Bremen, 28359, Germany
– sequence: 3
  givenname: Edwin
  surname: Zondervan
  fullname: Zondervan, Edwin
  organization: University of Twente, Faculty of Science and Technology, Enschede, 7522NB, The Netherlands
BookMark eNqFkMtOwzAQRS1UJNrCLyD_QIofeTiIBVXFSypiA2JpTe0JdQhxZAdK_56UwoYNqxmNdK7unAkZtb5FQk45m3HG87N65ur11mKLM8HEcBQzzvkBGXNVlIlMVTEiYyZzlkhelkdkEmPNGC9YWo7J87232Lj2hULzCsOCdAM9BooNmj74ZhtdpJUPtPMbDEnvk08KXdc4A73zbTyncxrNGu37PqXrggezPiaHFTQRT37mlDxdXz0ubpPlw83dYr5MzFCoT1BJKaColClWnBeFzbMCShRMWUTgGQjAaoVQiTxTGUszk1oQlRIyRaOMlFNysc81wccYsNLG9d_N-gCu0ZzpnSRd619JeidJc6EHSQOe_8G74N4gbP8HL_cgDs99OAw6GoetQevCIE5b7_6L-ALROIow
CitedBy_id crossref_primary_10_1016_j_rser_2022_112380
crossref_primary_10_1016_j_energy_2025_136438
crossref_primary_10_1016_j_jclepro_2024_142468
crossref_primary_10_1016_j_apenergy_2025_126183
crossref_primary_10_1016_j_renene_2025_122381
crossref_primary_10_1016_j_enconman_2025_119583
crossref_primary_10_1109_TSTE_2024_3418043
crossref_primary_10_1016_j_energy_2024_131827
crossref_primary_10_1016_j_renene_2025_122386
crossref_primary_10_1016_j_ijhydene_2021_09_166
crossref_primary_10_1016_j_compchemeng_2023_108450
crossref_primary_10_1016_j_ijhydene_2021_12_076
crossref_primary_10_1016_j_renene_2025_123628
crossref_primary_10_1016_j_applthermaleng_2025_126534
crossref_primary_10_1016_j_est_2021_103609
crossref_primary_10_1016_j_ces_2024_119708
crossref_primary_10_1016_j_rser_2025_116119
crossref_primary_10_3390_pr12050873
crossref_primary_10_1016_j_ijhydene_2023_03_310
crossref_primary_10_1016_j_seta_2023_103261
crossref_primary_10_1016_j_ejor_2022_12_025
crossref_primary_10_1016_j_jechem_2022_01_025
crossref_primary_10_1016_j_apsusc_2025_162785
crossref_primary_10_1016_j_ijhydene_2022_09_181
crossref_primary_10_1016_j_egyr_2025_01_023
crossref_primary_10_1016_j_ijhydene_2022_11_035
crossref_primary_10_1016_j_ijhydene_2024_06_351
crossref_primary_10_1016_j_jpowsour_2022_231532
crossref_primary_10_1016_j_eneco_2024_108026
crossref_primary_10_1016_j_ijhydene_2024_06_354
crossref_primary_10_1016_j_ijhydene_2024_07_149
crossref_primary_10_1016_j_ijhydene_2025_04_460
crossref_primary_10_1016_j_renene_2023_119362
crossref_primary_10_1016_j_jece_2021_106349
crossref_primary_10_1016_j_heliyon_2024_e32312
crossref_primary_10_1016_j_enpol_2023_113439
crossref_primary_10_1016_j_ijhydene_2025_150090
crossref_primary_10_1016_j_ijhydene_2023_05_054
crossref_primary_10_1016_j_epsr_2025_111558
crossref_primary_10_3390_su14105929
crossref_primary_10_1016_j_apenergy_2022_120413
crossref_primary_10_1016_j_apenergy_2025_126047
crossref_primary_10_1016_j_renene_2024_120266
crossref_primary_10_1016_j_enconman_2023_117622
crossref_primary_10_1080_00207543_2025_2453646
crossref_primary_10_1016_j_apenergy_2022_120099
crossref_primary_10_1016_j_ijhydene_2023_11_204
crossref_primary_10_1016_j_rser_2025_116005
crossref_primary_10_1016_j_ijhydene_2024_09_273
crossref_primary_10_1016_j_jclepro_2021_127642
crossref_primary_10_1016_j_enconman_2024_118714
crossref_primary_10_1088_1742_6596_3065_1_012019
crossref_primary_10_1016_j_apenergy_2025_126325
crossref_primary_10_3390_su16072856
crossref_primary_10_1016_j_energy_2021_122842
crossref_primary_10_3390_su17136117
crossref_primary_10_1016_j_enconman_2024_118720
crossref_primary_10_1016_j_energy_2024_131477
crossref_primary_10_1016_j_ijhydene_2024_12_518
crossref_primary_10_1016_j_enconman_2023_117458
crossref_primary_10_1109_TSTE_2024_3450503
crossref_primary_10_1016_j_enconman_2022_115408
crossref_primary_10_1016_j_energy_2024_131759
crossref_primary_10_1016_j_renene_2024_121122
crossref_primary_10_1016_j_energy_2025_138607
crossref_primary_10_1016_j_apenergy_2024_124534
crossref_primary_10_1016_j_energy_2022_123820
crossref_primary_10_1016_j_renene_2024_121116
crossref_primary_10_1109_TSTE_2024_3519953
crossref_primary_10_1016_j_ijhydene_2025_01_130
crossref_primary_10_3390_pr11071977
crossref_primary_10_1016_j_energy_2025_136674
crossref_primary_10_1016_j_apenergy_2024_124936
crossref_primary_10_1016_j_est_2023_107653
crossref_primary_10_1016_j_ecmx_2025_101014
crossref_primary_10_1016_j_ijhydene_2024_08_485
crossref_primary_10_1016_j_energy_2022_124636
crossref_primary_10_1049_rpg2_13097
crossref_primary_10_1016_j_jclepro_2024_141699
crossref_primary_10_1007_s00502_024_01231_y
crossref_primary_10_1016_j_energy_2025_135304
crossref_primary_10_1002_wene_459
crossref_primary_10_1016_j_cherd_2022_05_007
crossref_primary_10_1109_TIE_2023_3288146
crossref_primary_10_1016_j_enconman_2024_118695
crossref_primary_10_1016_j_energy_2024_131508
crossref_primary_10_1016_j_enconman_2023_117404
crossref_primary_10_1016_j_energy_2025_135309
crossref_primary_10_1016_j_apenergy_2024_124369
crossref_primary_10_3390_en17143370
crossref_primary_10_1016_j_ijhydene_2023_01_062
crossref_primary_10_1049_esi2_12096
crossref_primary_10_1016_j_jpowsour_2023_233920
crossref_primary_10_1016_j_apenergy_2025_125979
crossref_primary_10_1016_j_egyr_2022_08_169
crossref_primary_10_1016_j_ijhydene_2024_09_245
crossref_primary_10_1016_j_ijhydene_2023_09_127
crossref_primary_10_3390_electronics14061195
crossref_primary_10_1016_j_fuel_2025_135283
crossref_primary_10_1016_j_ijhydene_2024_05_106
crossref_primary_10_1016_j_ijhydene_2024_03_237
crossref_primary_10_3390_pr12071518
crossref_primary_10_1049_gtd2_12863
crossref_primary_10_1016_j_enconman_2025_120402
crossref_primary_10_1016_j_renene_2024_121261
crossref_primary_10_1088_1742_6596_2626_1_012013
crossref_primary_10_1016_j_fuel_2024_132624
crossref_primary_10_1016_j_ijhydene_2024_05_360
crossref_primary_10_1016_j_energy_2024_132707
crossref_primary_10_1016_j_ijepes_2025_111020
crossref_primary_10_1016_j_egyr_2022_05_115
crossref_primary_10_1016_j_rser_2025_115620
crossref_primary_10_3390_app11209574
crossref_primary_10_1016_j_fuel_2024_131929
crossref_primary_10_1016_j_apenergy_2024_123389
crossref_primary_10_1016_j_ijhydene_2021_09_078
crossref_primary_10_1016_j_enconman_2021_114881
crossref_primary_10_1016_j_renene_2024_120688
crossref_primary_10_1049_esi2_70018
crossref_primary_10_1515_psr_2020_0057
crossref_primary_10_1515_psr_2020_0056
crossref_primary_10_3390_en18010019
crossref_primary_10_1016_j_decarb_2024_100062
crossref_primary_10_3390_en17040935
crossref_primary_10_3390_en18082008
crossref_primary_10_1557_s43578_021_00417_w
crossref_primary_10_1016_j_ijhydene_2025_01_359
crossref_primary_10_1049_gtd2_70007
crossref_primary_10_3390_catal11050547
crossref_primary_10_1016_j_jpowsour_2025_238003
crossref_primary_10_1016_j_seta_2025_104361
crossref_primary_10_1016_j_apenergy_2025_126124
crossref_primary_10_1016_j_ijhydene_2024_09_197
crossref_primary_10_1016_j_jpowsour_2024_235010
crossref_primary_10_1016_j_apenergy_2025_126089
crossref_primary_10_1016_j_enconman_2024_118638
crossref_primary_10_1016_j_rser_2023_113930
crossref_primary_10_1109_TSTE_2024_3475415
crossref_primary_10_1016_j_ijhydene_2022_12_130
crossref_primary_10_1016_j_est_2024_114432
crossref_primary_10_1016_j_apenergy_2023_121277
crossref_primary_10_1016_j_ijhydene_2021_07_135
crossref_primary_10_1016_j_apenergy_2024_122965
crossref_primary_10_1016_j_ijhydene_2024_04_333
crossref_primary_10_1016_j_rineng_2025_104354
crossref_primary_10_1016_j_renene_2023_119198
crossref_primary_10_1016_j_energy_2025_135013
crossref_primary_10_1016_j_jechem_2023_03_023
crossref_primary_10_1016_j_jpowsour_2022_231886
crossref_primary_10_32604_ee_2024_051524
crossref_primary_10_1016_j_renene_2025_123483
crossref_primary_10_1016_j_egycc_2024_100131
crossref_primary_10_1016_j_cej_2025_168218
crossref_primary_10_1016_j_rser_2024_114779
crossref_primary_10_1016_j_apenergy_2024_124299
crossref_primary_10_1016_j_ijhydene_2024_12_200
crossref_primary_10_1109_TPWRS_2023_3279130
crossref_primary_10_1109_TPEL_2025_3534877
crossref_primary_10_1016_j_ijhydene_2021_09_018
Cites_doi 10.1016/j.ijhydene.2013.01.151
10.1016/j.ijhydene.2009.10.077
10.1177/0957650912466642
10.1016/j.ijhydene.2011.01.180
10.1002/cite.201900102
10.1016/j.ijhydene.2005.09.005
10.1016/j.ijhydene.2016.12.111
10.1002/cite.201800114
10.1016/j.ijhydene.2010.10.047
10.1016/j.ijhydene.2012.12.010
10.1016/j.rser.2019.06.030
10.1016/j.pecs.2009.11.002
10.1016/j.apenergy.2016.02.096
10.1016/j.ijhydene.2020.08.044
10.1016/j.energy.2016.08.068
10.1049/iet-rpg.2012.0190
10.1016/j.ijhydene.2019.05.092
10.3390/pr8020248
10.1016/j.ijhydene.2007.02.034
10.1016/j.ijhydene.2012.07.015
10.1016/S0360-3199(02)00033-2
10.1016/j.renene.2015.07.066
10.1002/cite.201900110
10.1002/cite.201700129
10.1016/j.jpowsour.2014.06.138
10.1016/j.compchemeng.2019.06.018
10.1021/ef060491u
10.1016/j.ijhydene.2013.09.085
10.1016/j.ijhydene.2017.05.031
ContentType Journal Article
Copyright 2020 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2020 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2020.12.111
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 9313
ExternalDocumentID 10_1016_j_ijhydene_2020_12_111
S036031992034725X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
SAC
SCB
SEW
T9H
WUQ
~HD
ID FETCH-LOGICAL-c360t-e8332a7f8c7b1177d657a9e208deea15a2aefbeaf26585045c4da2f8234ec8c33
ISICitedReferencesCount 185
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000631960200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-3199
IngestDate Sat Nov 29 07:19:13 EST 2025
Tue Nov 18 21:25:51 EST 2025
Fri Feb 23 02:47:30 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Renewable energy sources
Alkaline water electrolysis
Hydrogen
Power-to-x
Mathematical programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c360t-e8332a7f8c7b1177d657a9e208deea15a2aefbeaf26585045c4da2f8234ec8c33
ORCID 0000-0002-7163-1155
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S036031992034725X
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_ijhydene_2020_12_111
crossref_primary_10_1016_j_ijhydene_2020_12_111
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2020_12_111
PublicationCentury 2000
PublicationDate 2021-02-24
PublicationDateYYYYMMDD 2021-02-24
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-24
  day: 24
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gahleitner (bib8) 2013; 38
Gandía, Oroz, Ursúa, Sanchis, Diéguez (bib35) 2007; 21
Ochoa Bique, Maia, La Mantia, Manca, Zondervan (bib32) 2019; 129
(bib45) 2018
Seibel, Kuhlmann (bib10) 2018; 90
Millet, Grigoriev (bib21) 2013
(bib16) 2020
Schmidt, Weindorf (bib17) 2016
(bib1) 2020
Nel, “The World ’ s Most Efficient and Reliable Electrolysers,” 2019. [Online]. Available
Troncoso, Newborough (bib31) 2011; 36
Ulleberg, Nakken, Eté (bib43) 2010; 35
(bib40) 2019
Troncoso, Newborough (bib12) 2007; 32
(bib46) 2020
Carmo, Stolten (bib19) 2019
Thema, Bauer, Sterner (bib9) 2019; 112
Bolívar Jaramillo, Weidlich (bib11) 2016; 169
Milewski, Guandalini, Campanari (bib25) 2014; 269
Zeng, Zhang (bib20) Jun. 2010; 36
Lüke, Zschocke (bib38) 2020; 92
Haug, Koj, Turek (bib26) 2017; 42
Kiaee, Cruden, Infield, Chladek (bib30) 2014; 8
Dukić, Firak (bib34) 2011; 36
Bertuccioli, Chan, Hart, Lehner, Madden, Standen (bib42) 2014; 1
Ursúa, San Martín, Barrios, Sanchis (bib36) 2013; 38
Götz (bib5) 2016; 85
Kiaee, Cruden, Infield, Chladek (bib14) 2013; 227
Schmidt, Batteiger, Roth, Weindorf, Raksha (bib6) 2018; 90
Brauns, Turek (bib39) 2020; 8
Schnuelle, Wassermann, Fuhrlaender, Zondervan (bib33) Sep. 2020
Matute, Yusta, Correas (bib13) 2019; 44
Godula-jopek (bib18) 2015
Matute, Yusta, Beyza, Correas (bib37) 2020
Eichman, Harrison, Peters, Eichman, Harrison, Peters (bib41) 2014
(bib7) 2020
Hammoudi, Henao, Agbossou, Dubé, Doumbia (bib24) 2012; 37
[Accessed: 31-Oct-2019].
Moseley, Garche (bib3) 2015
Ulleberg (bib28) 2003; 28
Miland, Glöckner, Taylor, Jarle Aaberg, Hagen (bib29) 2006; 31
Rohrig (bib2) 2013
Zondervan, Grossmann, de Haan (bib44) 2010; vol. 28
Carmo, Fritz, Mergel, Stolten (bib23) 2013; 38
Haug, Kreitz, Koj, Turek (bib27) 2017; 42
Burre, Bongartz, Brée, Roh, Mitsos, Power-to-X (bib4) Jan. 2020; 92
Staffell, Pfenninger (bib15) 2016; 114
Dukić (10.1016/j.ijhydene.2020.12.111_bib34) 2011; 36
Carmo (10.1016/j.ijhydene.2020.12.111_bib23) 2013; 38
Zeng (10.1016/j.ijhydene.2020.12.111_bib20) 2010; 36
Zondervan (10.1016/j.ijhydene.2020.12.111_bib44) 2010; vol. 28
Gahleitner (10.1016/j.ijhydene.2020.12.111_bib8) 2013; 38
Ochoa Bique (10.1016/j.ijhydene.2020.12.111_bib32) 2019; 129
Brauns (10.1016/j.ijhydene.2020.12.111_bib39) 2020; 8
Staffell (10.1016/j.ijhydene.2020.12.111_bib15) 2016; 114
Moseley (10.1016/j.ijhydene.2020.12.111_bib3) 2015
Götz (10.1016/j.ijhydene.2020.12.111_bib5) 2016; 85
(10.1016/j.ijhydene.2020.12.111_bib1) 2020
Ulleberg (10.1016/j.ijhydene.2020.12.111_bib43) 2010; 35
(10.1016/j.ijhydene.2020.12.111_bib45) 2018
Troncoso (10.1016/j.ijhydene.2020.12.111_bib12) 2007; 32
(10.1016/j.ijhydene.2020.12.111_bib16) 2020
(10.1016/j.ijhydene.2020.12.111_bib40) 2019
Haug (10.1016/j.ijhydene.2020.12.111_bib27) 2017; 42
Rohrig (10.1016/j.ijhydene.2020.12.111_bib2) 2013
Millet (10.1016/j.ijhydene.2020.12.111_bib21) 2013
Carmo (10.1016/j.ijhydene.2020.12.111_bib19) 2019
Bertuccioli (10.1016/j.ijhydene.2020.12.111_bib42) 2014; 1
Troncoso (10.1016/j.ijhydene.2020.12.111_bib31) 2011; 36
Lüke (10.1016/j.ijhydene.2020.12.111_bib38) 2020; 92
Gandía (10.1016/j.ijhydene.2020.12.111_bib35) 2007; 21
Schmidt (10.1016/j.ijhydene.2020.12.111_bib17) 2016
Schnuelle (10.1016/j.ijhydene.2020.12.111_bib33) 2020
10.1016/j.ijhydene.2020.12.111_bib22
Hammoudi (10.1016/j.ijhydene.2020.12.111_bib24) 2012; 37
Milewski (10.1016/j.ijhydene.2020.12.111_bib25) 2014; 269
Miland (10.1016/j.ijhydene.2020.12.111_bib29) 2006; 31
(10.1016/j.ijhydene.2020.12.111_bib46) 2020
Thema (10.1016/j.ijhydene.2020.12.111_bib9) 2019; 112
Matute (10.1016/j.ijhydene.2020.12.111_bib13) 2019; 44
Kiaee (10.1016/j.ijhydene.2020.12.111_bib30) 2014; 8
Burre (10.1016/j.ijhydene.2020.12.111_bib4) 2020; 92
Seibel (10.1016/j.ijhydene.2020.12.111_bib10) 2018; 90
Matute (10.1016/j.ijhydene.2020.12.111_bib37) 2020
Schmidt (10.1016/j.ijhydene.2020.12.111_bib6) 2018; 90
Haug (10.1016/j.ijhydene.2020.12.111_bib26) 2017; 42
Ursúa (10.1016/j.ijhydene.2020.12.111_bib36) 2013; 38
Eichman (10.1016/j.ijhydene.2020.12.111_bib41) 2014
Bolívar Jaramillo (10.1016/j.ijhydene.2020.12.111_bib11) 2016; 169
Kiaee (10.1016/j.ijhydene.2020.12.111_bib14) 2013; 227
Ulleberg (10.1016/j.ijhydene.2020.12.111_bib28) 2003; 28
(10.1016/j.ijhydene.2020.12.111_bib7) 2020
Godula-jopek (10.1016/j.ijhydene.2020.12.111_bib18) 2015
References_xml – volume: 44
  start-page: 17431
  year: 2019
  end-page: 17442
  ident: bib13
  article-title: Techno-economic modelling of water electrolysers in the range of several MW to provide grid services while generating hydrogen for different applications: a case study in Spain applied to mobility with FCEVs
  publication-title: Int J Hydrogen Energy
– start-page: 19
  year: 2013
  end-page: 41
  ident: bib21
  article-title: Water electrolysis technologies
– volume: 90
  start-page: 1430
  year: 2018
  end-page: 1436
  ident: bib10
  article-title: Dynamic water electrolysis in cross-sectoral processes
  publication-title: Chem Ing Tech
– volume: 8
  year: 2020
  ident: bib39
  article-title: Alkaline water electrolysis powered by renewable energy: a review
  publication-title: Processes
– volume: 21
  start-page: 1699
  year: 2007
  end-page: 1706
  ident: bib35
  article-title: Renewable hydrogen production: performance of an alkaline water electrolyzer working under emulated wind conditions
  publication-title: Energy Fuels
– year: 2020
  ident: bib16
  article-title: Market data visuals
– volume: 227
  start-page: 115
  year: 2013
  end-page: 123
  ident: bib14
  article-title: Improvement of power system frequency stability using alkaline electrolysis plants
  publication-title: Proc Inst Mech Eng Part A J Power Energy
– volume: 114
  start-page: 1224
  year: 2016
  end-page: 1239
  ident: bib15
  article-title: Using bias-corrected reanalysis to simulate current and future wind power output
  publication-title: Energy
– volume: 38
  start-page: 14952
  year: 2013
  end-page: 14967
  ident: bib36
  article-title: Stand-alone operation of an alkaline water electrolyser fed by wind and photovoltaic systems
  publication-title: Int J Hydrogen Energy
– volume: 92
  start-page: 70
  year: 2020
  end-page: 73
  ident: bib38
  article-title: Alkaline water electrolysis: efficient bridge to CO2-emission-free economy
  publication-title: Chem Ing Tech
– start-page: 1
  year: 2014
  end-page: 24
  ident: bib41
  article-title: “Novel electrolyzer applications: providing more than just hydrogen novel electrolyzer Applications: providing more than just hydrogen
– volume: 28
  start-page: 21
  year: 2003
  end-page: 33
  ident: bib28
  article-title: Modeling of advanced alkaline electrolyzers: a system simulation approach
  publication-title: Int J Hydrogen Energy
– volume: 36
  start-page: 307
  year: Jun. 2010
  end-page: 326
  ident: bib20
  article-title: Recent progress in alkaline water electrolysis for hydrogen production and applications
  publication-title: Prog Energy Combust Sci
– volume: 35
  start-page: 1841
  year: 2010
  end-page: 1852
  ident: bib43
  article-title: The wind/hydrogen demonstration system at Utsira in Norway: evaluation of system performance using operational data and updated hydrogen energy system modeling tools
  publication-title: Int J Hydrogen Energy
– year: 2015
  ident: bib18
  article-title: Hydrogen science and electrochemical science and technology – fundamentals electrochemical technologies for energy storage and fuel cell science and high energy density lithium
– reference: Nel, “The World ’ s Most Efficient and Reliable Electrolysers,” 2019. [Online]. Available:
– volume: 112
  start-page: 775
  year: 2019
  end-page: 787
  ident: bib9
  article-title: Power-to-Gas: electrolysis and methanation status review
  publication-title: Renew Sustain Energy Rev
– year: 2020
  ident: bib37
  article-title: Multi-state techno-economic model for optimal dispatch of grid connected hydrogen electrolysis systems operating under dynamic conditions
  publication-title: Int J Hydrogen Energy
– start-page: 8
  year: 2019
  ident: bib40
  article-title: Hydrogen from large-scale electrolysis
– volume: 38
  start-page: 4901
  year: 2013
  end-page: 4934
  ident: bib23
  article-title: A comprehensive review on PEM water electrolysis
  publication-title: Int J Hydrogen Energy
– volume: 42
  start-page: 15689
  year: 2017
  end-page: 15707
  ident: bib27
  article-title: Process modelling of an alkaline water electrolyzer
  publication-title: Int J Hydrogen Energy
– volume: 92
  start-page: 74
  year: Jan. 2020
  end-page: 84
  ident: bib4
  article-title: Between electricity storage, e-production, and demand side management
  publication-title: Chem Ing Tech
– year: 2019
  ident: bib19
  article-title: Energy storage using hydrogen produced from excess renewable electricity
– volume: 269
  start-page: 203
  year: 2014
  end-page: 211
  ident: bib25
  article-title: Modeling an alkaline electrolysis cell through reduced-order and loss-estimate approaches
  publication-title: J Power Sources
– volume: vol. 28
  year: 2010
  ident: bib44
  publication-title: Energy optimization in the process industries: unit commitment at systems level
– reference: . [Accessed: 31-Oct-2019].
– year: 2015
  ident: bib3
  article-title: Electrochemical energy storage for renewable sources and grid balancing
– volume: 37
  start-page: 13895
  year: 2012
  end-page: 13913
  ident: bib24
  article-title: New multi-physics approach for modelling and design of alkaline electrolyzers
  publication-title: Int J Hydrogen Energy
– volume: 85
  start-page: 1371
  year: 2016
  end-page: 1390
  ident: bib5
  article-title: Renewable Power-to-Gas: a technological and economic review
  publication-title: Renew Energy
– start-page: 1
  year: 2016
  end-page: 36
  ident: bib17
  article-title: Power-to-Liquids: potentials and perspectives for the future supply of renewable aviation fuel
– volume: 90
  start-page: 127
  year: 2018
  end-page: 140
  ident: bib6
  article-title: Power-to-Liquids as renewable fuel option for aviation: a review
  publication-title: Chem Ing Tech
– volume: 32
  start-page: 2253
  year: 2007
  end-page: 2268
  ident: bib12
  article-title: Implementation and control of electrolysers to achieve high penetrations of renewable power
  publication-title: Int J Hydrogen Energy
– year: 2018
  ident: bib45
  article-title: Studie IndWEDe
– year: 2013
  ident: bib2
  article-title: Windenergie report deutschland 2012
– volume: 38
  start-page: 2039
  year: 2013
  end-page: 2061
  ident: bib8
  article-title: Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications
  publication-title: Int J Hydrogen Energy
– volume: 129
  year: 2019
  ident: bib32
  article-title: Balancing costs, safety and CO2 emissions in the design of hydrogen supply chains
  publication-title: Comput Chem Eng
– volume: 1
  start-page: 1
  year: 2014
  end-page: 160
  ident: bib42
  article-title: Study on development of water electrolysis in the EU, Fuel cells and hydrogen joint undertaking
  publication-title: Fuel Cells Hydrog Jt Undert
– year: 2020
  ident: bib46
  article-title: Gurobi optimizer reference manual
– volume: 169
  start-page: 857
  year: 2016
  end-page: 865
  ident: bib11
  article-title: Optimal microgrid scheduling with peak load reduction involving an electrolyzer and flexible loads
  publication-title: Appl Energy
– year: 2020
  ident: bib7
  article-title: 20200710_PtX_White paper_en
– volume: 42
  start-page: 9406
  year: 2017
  end-page: 9418
  ident: bib26
  article-title: Influence of process conditions on gas purity in alkaline water electrolysis
  publication-title: Int J Hydrogen Energy
– year: 2020
  ident: bib1
  article-title: Net public electricity generation in Germany in 2020
– year: Sep. 2020
  ident: bib33
  article-title: Dynamic hydrogen production from PV & wind direct electricity supply – modeling and techno-economic assessment
  publication-title: Int J Hydrogen Energy
– volume: 36
  start-page: 7799
  year: 2011
  end-page: 7806
  ident: bib34
  article-title: Hydrogen production using alkaline electrolyzer and photovoltaic (PV) module
  publication-title: Int J Hydrogen Energy
– volume: 31
  start-page: 1215
  year: 2006
  end-page: 1235
  ident: bib29
  article-title: Load control of a wind-hydrogen stand-alone power system
  publication-title: Int J Hydrogen Energy
– volume: 8
  start-page: 529
  year: 2014
  end-page: 536
  ident: bib30
  article-title: Utilisation of alkaline electrolysers to improve power system frequency stability with a high penetration of wind power
  publication-title: IET Renew Power Gener
– volume: 36
  start-page: 120
  year: 2011
  end-page: 134
  ident: bib31
  article-title: “Electrolysers for mitigating wind curtailment and producing ‘green’ merchant hydrogen
  publication-title: Int J Hydrogen Energy
– year: 2015
  ident: 10.1016/j.ijhydene.2020.12.111_bib3
– volume: 38
  start-page: 4901
  issue: 12
  year: 2013
  ident: 10.1016/j.ijhydene.2020.12.111_bib23
  article-title: A comprehensive review on PEM water electrolysis
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.01.151
– volume: 35
  start-page: 1841
  issue: 5
  year: 2010
  ident: 10.1016/j.ijhydene.2020.12.111_bib43
  article-title: The wind/hydrogen demonstration system at Utsira in Norway: evaluation of system performance using operational data and updated hydrogen energy system modeling tools
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.10.077
– volume: 227
  start-page: 115
  issue: 1
  year: 2013
  ident: 10.1016/j.ijhydene.2020.12.111_bib14
  article-title: Improvement of power system frequency stability using alkaline electrolysis plants
  publication-title: Proc Inst Mech Eng Part A J Power Energy
  doi: 10.1177/0957650912466642
– volume: 36
  start-page: 7799
  issue: 13
  year: 2011
  ident: 10.1016/j.ijhydene.2020.12.111_bib34
  article-title: Hydrogen production using alkaline electrolyzer and photovoltaic (PV) module
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.01.180
– start-page: 8
  year: 2019
  ident: 10.1016/j.ijhydene.2020.12.111_bib40
– volume: 1
  start-page: 1
  issue: February
  year: 2014
  ident: 10.1016/j.ijhydene.2020.12.111_bib42
  article-title: Study on development of water electrolysis in the EU, Fuel cells and hydrogen joint undertaking
  publication-title: Fuel Cells Hydrog Jt Undert
– volume: 92
  start-page: 74
  issue: 1–2
  year: 2020
  ident: 10.1016/j.ijhydene.2020.12.111_bib4
  article-title: Between electricity storage, e-production, and demand side management
  publication-title: Chem Ing Tech
  doi: 10.1002/cite.201900102
– volume: 31
  start-page: 1215
  issue: 9
  year: 2006
  ident: 10.1016/j.ijhydene.2020.12.111_bib29
  article-title: Load control of a wind-hydrogen stand-alone power system
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2005.09.005
– volume: 42
  start-page: 9406
  issue: 15
  year: 2017
  ident: 10.1016/j.ijhydene.2020.12.111_bib26
  article-title: Influence of process conditions on gas purity in alkaline water electrolysis
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.12.111
– volume: vol. 28
  year: 2010
  ident: 10.1016/j.ijhydene.2020.12.111_bib44
– start-page: 19
  year: 2013
  ident: 10.1016/j.ijhydene.2020.12.111_bib21
– year: 2013
  ident: 10.1016/j.ijhydene.2020.12.111_bib2
– volume: 90
  start-page: 1430
  issue: 10
  year: 2018
  ident: 10.1016/j.ijhydene.2020.12.111_bib10
  article-title: Dynamic water electrolysis in cross-sectoral processes
  publication-title: Chem Ing Tech
  doi: 10.1002/cite.201800114
– volume: 36
  start-page: 120
  issue: 1
  year: 2011
  ident: 10.1016/j.ijhydene.2020.12.111_bib31
  article-title: “Electrolysers for mitigating wind curtailment and producing ‘green’ merchant hydrogen
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.10.047
– year: 2015
  ident: 10.1016/j.ijhydene.2020.12.111_bib18
– volume: 38
  start-page: 2039
  issue: 5
  year: 2013
  ident: 10.1016/j.ijhydene.2020.12.111_bib8
  article-title: Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.12.010
– start-page: 1
  year: 2016
  ident: 10.1016/j.ijhydene.2020.12.111_bib17
– volume: 112
  start-page: 775
  issue: January
  year: 2019
  ident: 10.1016/j.ijhydene.2020.12.111_bib9
  article-title: Power-to-Gas: electrolysis and methanation status review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.06.030
– volume: 36
  start-page: 307
  issue: 3
  year: 2010
  ident: 10.1016/j.ijhydene.2020.12.111_bib20
  article-title: Recent progress in alkaline water electrolysis for hydrogen production and applications
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2009.11.002
– year: 2020
  ident: 10.1016/j.ijhydene.2020.12.111_bib16
– volume: 169
  start-page: 857
  year: 2016
  ident: 10.1016/j.ijhydene.2020.12.111_bib11
  article-title: Optimal microgrid scheduling with peak load reduction involving an electrolyzer and flexible loads
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.02.096
– year: 2020
  ident: 10.1016/j.ijhydene.2020.12.111_bib33
  article-title: Dynamic hydrogen production from PV & wind direct electricity supply – modeling and techno-economic assessment
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.08.044
– year: 2020
  ident: 10.1016/j.ijhydene.2020.12.111_bib7
– year: 2018
  ident: 10.1016/j.ijhydene.2020.12.111_bib45
– volume: 114
  start-page: 1224
  year: 2016
  ident: 10.1016/j.ijhydene.2020.12.111_bib15
  article-title: Using bias-corrected reanalysis to simulate current and future wind power output
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.068
– ident: 10.1016/j.ijhydene.2020.12.111_bib22
– volume: 8
  start-page: 529
  issue: 5
  year: 2014
  ident: 10.1016/j.ijhydene.2020.12.111_bib30
  article-title: Utilisation of alkaline electrolysers to improve power system frequency stability with a high penetration of wind power
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2012.0190
– volume: 44
  start-page: 17431
  issue: 33
  year: 2019
  ident: 10.1016/j.ijhydene.2020.12.111_bib13
  article-title: Techno-economic modelling of water electrolysers in the range of several MW to provide grid services while generating hydrogen for different applications: a case study in Spain applied to mobility with FCEVs
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.05.092
– issue: xxxx
  year: 2020
  ident: 10.1016/j.ijhydene.2020.12.111_bib37
  article-title: Multi-state techno-economic model for optimal dispatch of grid connected hydrogen electrolysis systems operating under dynamic conditions
  publication-title: Int J Hydrogen Energy
– year: 2020
  ident: 10.1016/j.ijhydene.2020.12.111_bib46
– volume: 8
  issue: 2
  year: 2020
  ident: 10.1016/j.ijhydene.2020.12.111_bib39
  article-title: Alkaline water electrolysis powered by renewable energy: a review
  publication-title: Processes
  doi: 10.3390/pr8020248
– volume: 32
  start-page: 2253
  issue: 13
  year: 2007
  ident: 10.1016/j.ijhydene.2020.12.111_bib12
  article-title: Implementation and control of electrolysers to achieve high penetrations of renewable power
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.02.034
– volume: 37
  start-page: 13895
  issue: 19
  year: 2012
  ident: 10.1016/j.ijhydene.2020.12.111_bib24
  article-title: New multi-physics approach for modelling and design of alkaline electrolyzers
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.07.015
– year: 2019
  ident: 10.1016/j.ijhydene.2020.12.111_bib19
– volume: 28
  start-page: 21
  issue: 1
  year: 2003
  ident: 10.1016/j.ijhydene.2020.12.111_bib28
  article-title: Modeling of advanced alkaline electrolyzers: a system simulation approach
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/S0360-3199(02)00033-2
– volume: 85
  start-page: 1371
  year: 2016
  ident: 10.1016/j.ijhydene.2020.12.111_bib5
  article-title: Renewable Power-to-Gas: a technological and economic review
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.07.066
– volume: 92
  start-page: 70
  issue: 1–2
  year: 2020
  ident: 10.1016/j.ijhydene.2020.12.111_bib38
  article-title: Alkaline water electrolysis: efficient bridge to CO2-emission-free economy
  publication-title: Chem Ing Tech
  doi: 10.1002/cite.201900110
– start-page: 1
  year: 2014
  ident: 10.1016/j.ijhydene.2020.12.111_bib41
– year: 2020
  ident: 10.1016/j.ijhydene.2020.12.111_bib1
– volume: 90
  start-page: 127
  issue: 1
  year: 2018
  ident: 10.1016/j.ijhydene.2020.12.111_bib6
  article-title: Power-to-Liquids as renewable fuel option for aviation: a review
  publication-title: Chem Ing Tech
  doi: 10.1002/cite.201700129
– volume: 269
  start-page: 203
  year: 2014
  ident: 10.1016/j.ijhydene.2020.12.111_bib25
  article-title: Modeling an alkaline electrolysis cell through reduced-order and loss-estimate approaches
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.06.138
– volume: 129
  year: 2019
  ident: 10.1016/j.ijhydene.2020.12.111_bib32
  article-title: Balancing costs, safety and CO2 emissions in the design of hydrogen supply chains
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2019.06.018
– volume: 21
  start-page: 1699
  issue: 3
  year: 2007
  ident: 10.1016/j.ijhydene.2020.12.111_bib35
  article-title: Renewable hydrogen production: performance of an alkaline water electrolyzer working under emulated wind conditions
  publication-title: Energy Fuels
  doi: 10.1021/ef060491u
– volume: 38
  start-page: 14952
  issue: 35
  year: 2013
  ident: 10.1016/j.ijhydene.2020.12.111_bib36
  article-title: Stand-alone operation of an alkaline water electrolyser fed by wind and photovoltaic systems
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.09.085
– volume: 42
  start-page: 15689
  issue: 24
  year: 2017
  ident: 10.1016/j.ijhydene.2020.12.111_bib27
  article-title: Process modelling of an alkaline water electrolyzer
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.05.031
SSID ssj0017049
Score 2.7000115
Snippet The flexible operation of alkaline water electrolyzers enables power-to-x plants to react efficiently to different energy scenarios. In this work, a novel...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 9303
SubjectTerms Alkaline water electrolysis
Hydrogen
Mathematical programming
Power-to-x
Renewable energy sources
Title Modeling alkaline water electrolysis for power-to-x applications: A scheduling approach
URI https://dx.doi.org/10.1016/j.ijhydene.2020.12.111
Volume 46
WOSCitedRecordID wos000631960200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-3487
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017049
  issn: 0360-3199
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWlgMcEJ-i5UM-cENeEtvBMbcVWgQIVUiUsrfIcRza7ZKsttt2-Tf8VMaxnbhQqSDEJYoiOet43o7HY783CD1LlOaac0FUJTThZZKTEqJskqZK8oTJWnWn3Q8-iL29fDaTH0ejH4ELc7YQTZNvNnL5X00Nz8DYljr7F-buXwoP4B6MDlcwO1z_yPC2ulnHMVeLY9UFkefKKiH6gjdOgsQeLlzaAmlk3ZLN83gb23HVYdELk5B7j5cdj-PYi4nESH7i8Hu1ar_a0gEdqTDY80BZ0swvaga9sVsIUWvlqEOH39rTqk9nt5Z74_eqptW5lwn3WQqadqzvIUvZ02eGs0qOsmUnAVchaWycB86FJIz7Wdi7aJ-l9FDkkcOVLGHR5C2ZY7b-NjG4HMV8fDSHcYARGEMnrbTGOPj6i6Lbn2zXbM9owrig2ewa2qYik-A3tyfvprP3_U6V8Eus8CkRC_3yX7s8AIqCmv3b6JZfjeCJQ9EdNDLNXXQz0qi8h74EPOGAJ9zhCcd4woAnPOAJx3h6hSd4QBMOaLqPPr-Z7r9-S3w1DqLh29bE5IxRJepci9Lu9FcvM6GkoUleGaPSTFFl6tKomkJQm8FKQfNK0TqnjBuda8YeoK2mbcxDhCFoTZMyrSnVEtxDVtq946zilWZ1qrN6B2VhiArtpeptxZRFEc4kzoswtIUd2iKldim7g1707ZZOrOXKFjJYoPAhpwslCwDOFW13_6HtI3Rj-Jc8Rlvr1al5gq7rs_XRyeqpx9hP76WuQA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+alkaline+water+electrolysis+for+power-to-x+applications%3A+A+scheduling+approach&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Varela%2C+Christopher&rft.au=Mostafa%2C+Mahmoud&rft.au=Zondervan%2C+Edwin&rft.date=2021-02-24&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=46&rft.issue=14&rft.spage=9303&rft.epage=9313&rft_id=info:doi/10.1016%2Fj.ijhydene.2020.12.111&rft.externalDocID=S036031992034725X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon