Modeling alkaline water electrolysis for power-to-x applications: A scheduling approach
The flexible operation of alkaline water electrolyzers enables power-to-x plants to react efficiently to different energy scenarios. In this work, a novel scheduling model for alkaline water electrolysis is formulated as a mixed-integer linear program. The model is constructed by implementing operat...
Uložené v:
| Vydané v: | International journal of hydrogen energy Ročník 46; číslo 14; s. 9303 - 9313 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
24.02.2021
|
| Predmet: | |
| ISSN: | 0360-3199, 1879-3487 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The flexible operation of alkaline water electrolyzers enables power-to-x plants to react efficiently to different energy scenarios. In this work, a novel scheduling model for alkaline water electrolysis is formulated as a mixed-integer linear program. The model is constructed by implementing operational states (production, standby, idle) and transitions (cold/full startup, shutdown) as integer variables, while the power loading and hydrogen flowrate are set as continuous variables. The operational characteristics (load range, startup time, ramp rates) are included as model constraints. The proposed model allows finding optimal number of electrolyzers and production schedules when dealing with large data sets of intermittent energy and electricity price. The optimal solution of the case study shows a balance between hydrogen production, energy absorption, and operation and investment costs. The optimal number of electrolyzers to be installed corresponds to 54% of the ones required to absorb the highest energy peak, being capable of loading 89.7% of the available energy during the year of operation, with an overall plant utilization of 93.7% and 764 startup/shutdown cycles evenly distributed among the units.
•A novel scheduling model for alkaline water electrolysis (AEL) has been developed.•The model introduces AEL states, transitions, and operational characteristics.•The model allows to find optimal number of electrolyzers and production schedules.•The model is suitable to handle large data sets of fluctuating energy and prices.•The MILP solution provides a balance between production, energy absorption and costs. |
|---|---|
| AbstractList | The flexible operation of alkaline water electrolyzers enables power-to-x plants to react efficiently to different energy scenarios. In this work, a novel scheduling model for alkaline water electrolysis is formulated as a mixed-integer linear program. The model is constructed by implementing operational states (production, standby, idle) and transitions (cold/full startup, shutdown) as integer variables, while the power loading and hydrogen flowrate are set as continuous variables. The operational characteristics (load range, startup time, ramp rates) are included as model constraints. The proposed model allows finding optimal number of electrolyzers and production schedules when dealing with large data sets of intermittent energy and electricity price. The optimal solution of the case study shows a balance between hydrogen production, energy absorption, and operation and investment costs. The optimal number of electrolyzers to be installed corresponds to 54% of the ones required to absorb the highest energy peak, being capable of loading 89.7% of the available energy during the year of operation, with an overall plant utilization of 93.7% and 764 startup/shutdown cycles evenly distributed among the units.
•A novel scheduling model for alkaline water electrolysis (AEL) has been developed.•The model introduces AEL states, transitions, and operational characteristics.•The model allows to find optimal number of electrolyzers and production schedules.•The model is suitable to handle large data sets of fluctuating energy and prices.•The MILP solution provides a balance between production, energy absorption and costs. |
| Author | Zondervan, Edwin Mostafa, Mahmoud Varela, Christopher |
| Author_xml | – sequence: 1 givenname: Christopher orcidid: 0000-0002-7163-1155 surname: Varela fullname: Varela, Christopher email: varela@uni-bremen.de organization: University of Bremen, Faculty of Production Engineering, Leobener Str. 6, Bremen, 28359, Germany – sequence: 2 givenname: Mahmoud surname: Mostafa fullname: Mostafa, Mahmoud organization: University of Bremen, Faculty of Production Engineering, Leobener Str. 6, Bremen, 28359, Germany – sequence: 3 givenname: Edwin surname: Zondervan fullname: Zondervan, Edwin organization: University of Twente, Faculty of Science and Technology, Enschede, 7522NB, The Netherlands |
| BookMark | eNqFkMtOwzAQRS1UJNrCLyD_QIofeTiIBVXFSypiA2JpTe0JdQhxZAdK_56UwoYNqxmNdK7unAkZtb5FQk45m3HG87N65ur11mKLM8HEcBQzzvkBGXNVlIlMVTEiYyZzlkhelkdkEmPNGC9YWo7J87232Lj2hULzCsOCdAM9BooNmj74ZhtdpJUPtPMbDEnvk08KXdc4A73zbTyncxrNGu37PqXrggezPiaHFTQRT37mlDxdXz0ubpPlw83dYr5MzFCoT1BJKaColClWnBeFzbMCShRMWUTgGQjAaoVQiTxTGUszk1oQlRIyRaOMlFNysc81wccYsNLG9d_N-gCu0ZzpnSRd619JeidJc6EHSQOe_8G74N4gbP8HL_cgDs99OAw6GoetQevCIE5b7_6L-ALROIow |
| CitedBy_id | crossref_primary_10_1016_j_rser_2022_112380 crossref_primary_10_1016_j_energy_2025_136438 crossref_primary_10_1016_j_jclepro_2024_142468 crossref_primary_10_1016_j_apenergy_2025_126183 crossref_primary_10_1016_j_renene_2025_122381 crossref_primary_10_1016_j_enconman_2025_119583 crossref_primary_10_1109_TSTE_2024_3418043 crossref_primary_10_1016_j_energy_2024_131827 crossref_primary_10_1016_j_renene_2025_122386 crossref_primary_10_1016_j_ijhydene_2021_09_166 crossref_primary_10_1016_j_compchemeng_2023_108450 crossref_primary_10_1016_j_ijhydene_2021_12_076 crossref_primary_10_1016_j_renene_2025_123628 crossref_primary_10_1016_j_applthermaleng_2025_126534 crossref_primary_10_1016_j_est_2021_103609 crossref_primary_10_1016_j_ces_2024_119708 crossref_primary_10_1016_j_rser_2025_116119 crossref_primary_10_3390_pr12050873 crossref_primary_10_1016_j_ijhydene_2023_03_310 crossref_primary_10_1016_j_seta_2023_103261 crossref_primary_10_1016_j_ejor_2022_12_025 crossref_primary_10_1016_j_jechem_2022_01_025 crossref_primary_10_1016_j_apsusc_2025_162785 crossref_primary_10_1016_j_ijhydene_2022_09_181 crossref_primary_10_1016_j_egyr_2025_01_023 crossref_primary_10_1016_j_ijhydene_2022_11_035 crossref_primary_10_1016_j_ijhydene_2024_06_351 crossref_primary_10_1016_j_jpowsour_2022_231532 crossref_primary_10_1016_j_eneco_2024_108026 crossref_primary_10_1016_j_ijhydene_2024_06_354 crossref_primary_10_1016_j_ijhydene_2024_07_149 crossref_primary_10_1016_j_ijhydene_2025_04_460 crossref_primary_10_1016_j_renene_2023_119362 crossref_primary_10_1016_j_jece_2021_106349 crossref_primary_10_1016_j_heliyon_2024_e32312 crossref_primary_10_1016_j_enpol_2023_113439 crossref_primary_10_1016_j_ijhydene_2025_150090 crossref_primary_10_1016_j_ijhydene_2023_05_054 crossref_primary_10_1016_j_epsr_2025_111558 crossref_primary_10_3390_su14105929 crossref_primary_10_1016_j_apenergy_2022_120413 crossref_primary_10_1016_j_apenergy_2025_126047 crossref_primary_10_1016_j_renene_2024_120266 crossref_primary_10_1016_j_enconman_2023_117622 crossref_primary_10_1080_00207543_2025_2453646 crossref_primary_10_1016_j_apenergy_2022_120099 crossref_primary_10_1016_j_ijhydene_2023_11_204 crossref_primary_10_1016_j_rser_2025_116005 crossref_primary_10_1016_j_ijhydene_2024_09_273 crossref_primary_10_1016_j_jclepro_2021_127642 crossref_primary_10_1016_j_enconman_2024_118714 crossref_primary_10_1088_1742_6596_3065_1_012019 crossref_primary_10_1016_j_apenergy_2025_126325 crossref_primary_10_3390_su16072856 crossref_primary_10_1016_j_energy_2021_122842 crossref_primary_10_3390_su17136117 crossref_primary_10_1016_j_enconman_2024_118720 crossref_primary_10_1016_j_energy_2024_131477 crossref_primary_10_1016_j_ijhydene_2024_12_518 crossref_primary_10_1016_j_enconman_2023_117458 crossref_primary_10_1109_TSTE_2024_3450503 crossref_primary_10_1016_j_enconman_2022_115408 crossref_primary_10_1016_j_energy_2024_131759 crossref_primary_10_1016_j_renene_2024_121122 crossref_primary_10_1016_j_energy_2025_138607 crossref_primary_10_1016_j_apenergy_2024_124534 crossref_primary_10_1016_j_energy_2022_123820 crossref_primary_10_1016_j_renene_2024_121116 crossref_primary_10_1109_TSTE_2024_3519953 crossref_primary_10_1016_j_ijhydene_2025_01_130 crossref_primary_10_3390_pr11071977 crossref_primary_10_1016_j_energy_2025_136674 crossref_primary_10_1016_j_apenergy_2024_124936 crossref_primary_10_1016_j_est_2023_107653 crossref_primary_10_1016_j_ecmx_2025_101014 crossref_primary_10_1016_j_ijhydene_2024_08_485 crossref_primary_10_1016_j_energy_2022_124636 crossref_primary_10_1049_rpg2_13097 crossref_primary_10_1016_j_jclepro_2024_141699 crossref_primary_10_1007_s00502_024_01231_y crossref_primary_10_1016_j_energy_2025_135304 crossref_primary_10_1002_wene_459 crossref_primary_10_1016_j_cherd_2022_05_007 crossref_primary_10_1109_TIE_2023_3288146 crossref_primary_10_1016_j_enconman_2024_118695 crossref_primary_10_1016_j_energy_2024_131508 crossref_primary_10_1016_j_enconman_2023_117404 crossref_primary_10_1016_j_energy_2025_135309 crossref_primary_10_1016_j_apenergy_2024_124369 crossref_primary_10_3390_en17143370 crossref_primary_10_1016_j_ijhydene_2023_01_062 crossref_primary_10_1049_esi2_12096 crossref_primary_10_1016_j_jpowsour_2023_233920 crossref_primary_10_1016_j_apenergy_2025_125979 crossref_primary_10_1016_j_egyr_2022_08_169 crossref_primary_10_1016_j_ijhydene_2024_09_245 crossref_primary_10_1016_j_ijhydene_2023_09_127 crossref_primary_10_3390_electronics14061195 crossref_primary_10_1016_j_fuel_2025_135283 crossref_primary_10_1016_j_ijhydene_2024_05_106 crossref_primary_10_1016_j_ijhydene_2024_03_237 crossref_primary_10_3390_pr12071518 crossref_primary_10_1049_gtd2_12863 crossref_primary_10_1016_j_enconman_2025_120402 crossref_primary_10_1016_j_renene_2024_121261 crossref_primary_10_1088_1742_6596_2626_1_012013 crossref_primary_10_1016_j_fuel_2024_132624 crossref_primary_10_1016_j_ijhydene_2024_05_360 crossref_primary_10_1016_j_energy_2024_132707 crossref_primary_10_1016_j_ijepes_2025_111020 crossref_primary_10_1016_j_egyr_2022_05_115 crossref_primary_10_1016_j_rser_2025_115620 crossref_primary_10_3390_app11209574 crossref_primary_10_1016_j_fuel_2024_131929 crossref_primary_10_1016_j_apenergy_2024_123389 crossref_primary_10_1016_j_ijhydene_2021_09_078 crossref_primary_10_1016_j_enconman_2021_114881 crossref_primary_10_1016_j_renene_2024_120688 crossref_primary_10_1049_esi2_70018 crossref_primary_10_1515_psr_2020_0057 crossref_primary_10_1515_psr_2020_0056 crossref_primary_10_3390_en18010019 crossref_primary_10_1016_j_decarb_2024_100062 crossref_primary_10_3390_en17040935 crossref_primary_10_3390_en18082008 crossref_primary_10_1557_s43578_021_00417_w crossref_primary_10_1016_j_ijhydene_2025_01_359 crossref_primary_10_1049_gtd2_70007 crossref_primary_10_3390_catal11050547 crossref_primary_10_1016_j_jpowsour_2025_238003 crossref_primary_10_1016_j_seta_2025_104361 crossref_primary_10_1016_j_apenergy_2025_126124 crossref_primary_10_1016_j_ijhydene_2024_09_197 crossref_primary_10_1016_j_jpowsour_2024_235010 crossref_primary_10_1016_j_apenergy_2025_126089 crossref_primary_10_1016_j_enconman_2024_118638 crossref_primary_10_1016_j_rser_2023_113930 crossref_primary_10_1109_TSTE_2024_3475415 crossref_primary_10_1016_j_ijhydene_2022_12_130 crossref_primary_10_1016_j_est_2024_114432 crossref_primary_10_1016_j_apenergy_2023_121277 crossref_primary_10_1016_j_ijhydene_2021_07_135 crossref_primary_10_1016_j_apenergy_2024_122965 crossref_primary_10_1016_j_ijhydene_2024_04_333 crossref_primary_10_1016_j_rineng_2025_104354 crossref_primary_10_1016_j_renene_2023_119198 crossref_primary_10_1016_j_energy_2025_135013 crossref_primary_10_1016_j_jechem_2023_03_023 crossref_primary_10_1016_j_jpowsour_2022_231886 crossref_primary_10_32604_ee_2024_051524 crossref_primary_10_1016_j_renene_2025_123483 crossref_primary_10_1016_j_egycc_2024_100131 crossref_primary_10_1016_j_cej_2025_168218 crossref_primary_10_1016_j_rser_2024_114779 crossref_primary_10_1016_j_apenergy_2024_124299 crossref_primary_10_1016_j_ijhydene_2024_12_200 crossref_primary_10_1109_TPWRS_2023_3279130 crossref_primary_10_1109_TPEL_2025_3534877 crossref_primary_10_1016_j_ijhydene_2021_09_018 |
| Cites_doi | 10.1016/j.ijhydene.2013.01.151 10.1016/j.ijhydene.2009.10.077 10.1177/0957650912466642 10.1016/j.ijhydene.2011.01.180 10.1002/cite.201900102 10.1016/j.ijhydene.2005.09.005 10.1016/j.ijhydene.2016.12.111 10.1002/cite.201800114 10.1016/j.ijhydene.2010.10.047 10.1016/j.ijhydene.2012.12.010 10.1016/j.rser.2019.06.030 10.1016/j.pecs.2009.11.002 10.1016/j.apenergy.2016.02.096 10.1016/j.ijhydene.2020.08.044 10.1016/j.energy.2016.08.068 10.1049/iet-rpg.2012.0190 10.1016/j.ijhydene.2019.05.092 10.3390/pr8020248 10.1016/j.ijhydene.2007.02.034 10.1016/j.ijhydene.2012.07.015 10.1016/S0360-3199(02)00033-2 10.1016/j.renene.2015.07.066 10.1002/cite.201900110 10.1002/cite.201700129 10.1016/j.jpowsour.2014.06.138 10.1016/j.compchemeng.2019.06.018 10.1021/ef060491u 10.1016/j.ijhydene.2013.09.085 10.1016/j.ijhydene.2017.05.031 |
| ContentType | Journal Article |
| Copyright | 2020 Hydrogen Energy Publications LLC |
| Copyright_xml | – notice: 2020 Hydrogen Energy Publications LLC |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijhydene.2020.12.111 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3487 |
| EndPage | 9313 |
| ExternalDocumentID | 10_1016_j_ijhydene_2020_12_111 S036031992034725X |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF R2- SAC SCB SEW T9H WUQ ~HD |
| ID | FETCH-LOGICAL-c360t-e8332a7f8c7b1177d657a9e208deea15a2aefbeaf26585045c4da2f8234ec8c33 |
| ISICitedReferencesCount | 185 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000631960200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-3199 |
| IngestDate | Sat Nov 29 07:19:13 EST 2025 Tue Nov 18 21:25:51 EST 2025 Fri Feb 23 02:47:30 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | Renewable energy sources Alkaline water electrolysis Hydrogen Power-to-x Mathematical programming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c360t-e8332a7f8c7b1177d657a9e208deea15a2aefbeaf26585045c4da2f8234ec8c33 |
| ORCID | 0000-0002-7163-1155 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S036031992034725X |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ijhydene_2020_12_111 crossref_primary_10_1016_j_ijhydene_2020_12_111 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2020_12_111 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-24 |
| PublicationDateYYYYMMDD | 2021-02-24 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of hydrogen energy |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Gahleitner (bib8) 2013; 38 Gandía, Oroz, Ursúa, Sanchis, Diéguez (bib35) 2007; 21 Ochoa Bique, Maia, La Mantia, Manca, Zondervan (bib32) 2019; 129 (bib45) 2018 Seibel, Kuhlmann (bib10) 2018; 90 Millet, Grigoriev (bib21) 2013 (bib16) 2020 Schmidt, Weindorf (bib17) 2016 (bib1) 2020 Nel, “The World ’ s Most Efficient and Reliable Electrolysers,” 2019. [Online]. Available Troncoso, Newborough (bib31) 2011; 36 Ulleberg, Nakken, Eté (bib43) 2010; 35 (bib40) 2019 Troncoso, Newborough (bib12) 2007; 32 (bib46) 2020 Carmo, Stolten (bib19) 2019 Thema, Bauer, Sterner (bib9) 2019; 112 Bolívar Jaramillo, Weidlich (bib11) 2016; 169 Milewski, Guandalini, Campanari (bib25) 2014; 269 Zeng, Zhang (bib20) Jun. 2010; 36 Lüke, Zschocke (bib38) 2020; 92 Haug, Koj, Turek (bib26) 2017; 42 Kiaee, Cruden, Infield, Chladek (bib30) 2014; 8 Dukić, Firak (bib34) 2011; 36 Bertuccioli, Chan, Hart, Lehner, Madden, Standen (bib42) 2014; 1 Ursúa, San Martín, Barrios, Sanchis (bib36) 2013; 38 Götz (bib5) 2016; 85 Kiaee, Cruden, Infield, Chladek (bib14) 2013; 227 Schmidt, Batteiger, Roth, Weindorf, Raksha (bib6) 2018; 90 Brauns, Turek (bib39) 2020; 8 Schnuelle, Wassermann, Fuhrlaender, Zondervan (bib33) Sep. 2020 Matute, Yusta, Correas (bib13) 2019; 44 Godula-jopek (bib18) 2015 Matute, Yusta, Beyza, Correas (bib37) 2020 Eichman, Harrison, Peters, Eichman, Harrison, Peters (bib41) 2014 (bib7) 2020 Hammoudi, Henao, Agbossou, Dubé, Doumbia (bib24) 2012; 37 [Accessed: 31-Oct-2019]. Moseley, Garche (bib3) 2015 Ulleberg (bib28) 2003; 28 Miland, Glöckner, Taylor, Jarle Aaberg, Hagen (bib29) 2006; 31 Rohrig (bib2) 2013 Zondervan, Grossmann, de Haan (bib44) 2010; vol. 28 Carmo, Fritz, Mergel, Stolten (bib23) 2013; 38 Haug, Kreitz, Koj, Turek (bib27) 2017; 42 Burre, Bongartz, Brée, Roh, Mitsos, Power-to-X (bib4) Jan. 2020; 92 Staffell, Pfenninger (bib15) 2016; 114 Dukić (10.1016/j.ijhydene.2020.12.111_bib34) 2011; 36 Carmo (10.1016/j.ijhydene.2020.12.111_bib23) 2013; 38 Zeng (10.1016/j.ijhydene.2020.12.111_bib20) 2010; 36 Zondervan (10.1016/j.ijhydene.2020.12.111_bib44) 2010; vol. 28 Gahleitner (10.1016/j.ijhydene.2020.12.111_bib8) 2013; 38 Ochoa Bique (10.1016/j.ijhydene.2020.12.111_bib32) 2019; 129 Brauns (10.1016/j.ijhydene.2020.12.111_bib39) 2020; 8 Staffell (10.1016/j.ijhydene.2020.12.111_bib15) 2016; 114 Moseley (10.1016/j.ijhydene.2020.12.111_bib3) 2015 Götz (10.1016/j.ijhydene.2020.12.111_bib5) 2016; 85 (10.1016/j.ijhydene.2020.12.111_bib1) 2020 Ulleberg (10.1016/j.ijhydene.2020.12.111_bib43) 2010; 35 (10.1016/j.ijhydene.2020.12.111_bib45) 2018 Troncoso (10.1016/j.ijhydene.2020.12.111_bib12) 2007; 32 (10.1016/j.ijhydene.2020.12.111_bib16) 2020 (10.1016/j.ijhydene.2020.12.111_bib40) 2019 Haug (10.1016/j.ijhydene.2020.12.111_bib27) 2017; 42 Rohrig (10.1016/j.ijhydene.2020.12.111_bib2) 2013 Millet (10.1016/j.ijhydene.2020.12.111_bib21) 2013 Carmo (10.1016/j.ijhydene.2020.12.111_bib19) 2019 Bertuccioli (10.1016/j.ijhydene.2020.12.111_bib42) 2014; 1 Troncoso (10.1016/j.ijhydene.2020.12.111_bib31) 2011; 36 Lüke (10.1016/j.ijhydene.2020.12.111_bib38) 2020; 92 Gandía (10.1016/j.ijhydene.2020.12.111_bib35) 2007; 21 Schmidt (10.1016/j.ijhydene.2020.12.111_bib17) 2016 Schnuelle (10.1016/j.ijhydene.2020.12.111_bib33) 2020 10.1016/j.ijhydene.2020.12.111_bib22 Hammoudi (10.1016/j.ijhydene.2020.12.111_bib24) 2012; 37 Milewski (10.1016/j.ijhydene.2020.12.111_bib25) 2014; 269 Miland (10.1016/j.ijhydene.2020.12.111_bib29) 2006; 31 (10.1016/j.ijhydene.2020.12.111_bib46) 2020 Thema (10.1016/j.ijhydene.2020.12.111_bib9) 2019; 112 Matute (10.1016/j.ijhydene.2020.12.111_bib13) 2019; 44 Kiaee (10.1016/j.ijhydene.2020.12.111_bib30) 2014; 8 Burre (10.1016/j.ijhydene.2020.12.111_bib4) 2020; 92 Seibel (10.1016/j.ijhydene.2020.12.111_bib10) 2018; 90 Matute (10.1016/j.ijhydene.2020.12.111_bib37) 2020 Schmidt (10.1016/j.ijhydene.2020.12.111_bib6) 2018; 90 Haug (10.1016/j.ijhydene.2020.12.111_bib26) 2017; 42 Ursúa (10.1016/j.ijhydene.2020.12.111_bib36) 2013; 38 Eichman (10.1016/j.ijhydene.2020.12.111_bib41) 2014 Bolívar Jaramillo (10.1016/j.ijhydene.2020.12.111_bib11) 2016; 169 Kiaee (10.1016/j.ijhydene.2020.12.111_bib14) 2013; 227 Ulleberg (10.1016/j.ijhydene.2020.12.111_bib28) 2003; 28 (10.1016/j.ijhydene.2020.12.111_bib7) 2020 Godula-jopek (10.1016/j.ijhydene.2020.12.111_bib18) 2015 |
| References_xml | – volume: 44 start-page: 17431 year: 2019 end-page: 17442 ident: bib13 article-title: Techno-economic modelling of water electrolysers in the range of several MW to provide grid services while generating hydrogen for different applications: a case study in Spain applied to mobility with FCEVs publication-title: Int J Hydrogen Energy – start-page: 19 year: 2013 end-page: 41 ident: bib21 article-title: Water electrolysis technologies – volume: 90 start-page: 1430 year: 2018 end-page: 1436 ident: bib10 article-title: Dynamic water electrolysis in cross-sectoral processes publication-title: Chem Ing Tech – volume: 8 year: 2020 ident: bib39 article-title: Alkaline water electrolysis powered by renewable energy: a review publication-title: Processes – volume: 21 start-page: 1699 year: 2007 end-page: 1706 ident: bib35 article-title: Renewable hydrogen production: performance of an alkaline water electrolyzer working under emulated wind conditions publication-title: Energy Fuels – year: 2020 ident: bib16 article-title: Market data visuals – volume: 227 start-page: 115 year: 2013 end-page: 123 ident: bib14 article-title: Improvement of power system frequency stability using alkaline electrolysis plants publication-title: Proc Inst Mech Eng Part A J Power Energy – volume: 114 start-page: 1224 year: 2016 end-page: 1239 ident: bib15 article-title: Using bias-corrected reanalysis to simulate current and future wind power output publication-title: Energy – volume: 38 start-page: 14952 year: 2013 end-page: 14967 ident: bib36 article-title: Stand-alone operation of an alkaline water electrolyser fed by wind and photovoltaic systems publication-title: Int J Hydrogen Energy – volume: 92 start-page: 70 year: 2020 end-page: 73 ident: bib38 article-title: Alkaline water electrolysis: efficient bridge to CO2-emission-free economy publication-title: Chem Ing Tech – start-page: 1 year: 2014 end-page: 24 ident: bib41 article-title: “Novel electrolyzer applications: providing more than just hydrogen novel electrolyzer Applications: providing more than just hydrogen – volume: 28 start-page: 21 year: 2003 end-page: 33 ident: bib28 article-title: Modeling of advanced alkaline electrolyzers: a system simulation approach publication-title: Int J Hydrogen Energy – volume: 36 start-page: 307 year: Jun. 2010 end-page: 326 ident: bib20 article-title: Recent progress in alkaline water electrolysis for hydrogen production and applications publication-title: Prog Energy Combust Sci – volume: 35 start-page: 1841 year: 2010 end-page: 1852 ident: bib43 article-title: The wind/hydrogen demonstration system at Utsira in Norway: evaluation of system performance using operational data and updated hydrogen energy system modeling tools publication-title: Int J Hydrogen Energy – year: 2015 ident: bib18 article-title: Hydrogen science and electrochemical science and technology – fundamentals electrochemical technologies for energy storage and fuel cell science and high energy density lithium – reference: Nel, “The World ’ s Most Efficient and Reliable Electrolysers,” 2019. [Online]. Available: – volume: 112 start-page: 775 year: 2019 end-page: 787 ident: bib9 article-title: Power-to-Gas: electrolysis and methanation status review publication-title: Renew Sustain Energy Rev – year: 2020 ident: bib37 article-title: Multi-state techno-economic model for optimal dispatch of grid connected hydrogen electrolysis systems operating under dynamic conditions publication-title: Int J Hydrogen Energy – start-page: 8 year: 2019 ident: bib40 article-title: Hydrogen from large-scale electrolysis – volume: 38 start-page: 4901 year: 2013 end-page: 4934 ident: bib23 article-title: A comprehensive review on PEM water electrolysis publication-title: Int J Hydrogen Energy – volume: 42 start-page: 15689 year: 2017 end-page: 15707 ident: bib27 article-title: Process modelling of an alkaline water electrolyzer publication-title: Int J Hydrogen Energy – volume: 92 start-page: 74 year: Jan. 2020 end-page: 84 ident: bib4 article-title: Between electricity storage, e-production, and demand side management publication-title: Chem Ing Tech – year: 2019 ident: bib19 article-title: Energy storage using hydrogen produced from excess renewable electricity – volume: 269 start-page: 203 year: 2014 end-page: 211 ident: bib25 article-title: Modeling an alkaline electrolysis cell through reduced-order and loss-estimate approaches publication-title: J Power Sources – volume: vol. 28 year: 2010 ident: bib44 publication-title: Energy optimization in the process industries: unit commitment at systems level – reference: . [Accessed: 31-Oct-2019]. – year: 2015 ident: bib3 article-title: Electrochemical energy storage for renewable sources and grid balancing – volume: 37 start-page: 13895 year: 2012 end-page: 13913 ident: bib24 article-title: New multi-physics approach for modelling and design of alkaline electrolyzers publication-title: Int J Hydrogen Energy – volume: 85 start-page: 1371 year: 2016 end-page: 1390 ident: bib5 article-title: Renewable Power-to-Gas: a technological and economic review publication-title: Renew Energy – start-page: 1 year: 2016 end-page: 36 ident: bib17 article-title: Power-to-Liquids: potentials and perspectives for the future supply of renewable aviation fuel – volume: 90 start-page: 127 year: 2018 end-page: 140 ident: bib6 article-title: Power-to-Liquids as renewable fuel option for aviation: a review publication-title: Chem Ing Tech – volume: 32 start-page: 2253 year: 2007 end-page: 2268 ident: bib12 article-title: Implementation and control of electrolysers to achieve high penetrations of renewable power publication-title: Int J Hydrogen Energy – year: 2018 ident: bib45 article-title: Studie IndWEDe – year: 2013 ident: bib2 article-title: Windenergie report deutschland 2012 – volume: 38 start-page: 2039 year: 2013 end-page: 2061 ident: bib8 article-title: Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications publication-title: Int J Hydrogen Energy – volume: 129 year: 2019 ident: bib32 article-title: Balancing costs, safety and CO2 emissions in the design of hydrogen supply chains publication-title: Comput Chem Eng – volume: 1 start-page: 1 year: 2014 end-page: 160 ident: bib42 article-title: Study on development of water electrolysis in the EU, Fuel cells and hydrogen joint undertaking publication-title: Fuel Cells Hydrog Jt Undert – year: 2020 ident: bib46 article-title: Gurobi optimizer reference manual – volume: 169 start-page: 857 year: 2016 end-page: 865 ident: bib11 article-title: Optimal microgrid scheduling with peak load reduction involving an electrolyzer and flexible loads publication-title: Appl Energy – year: 2020 ident: bib7 article-title: 20200710_PtX_White paper_en – volume: 42 start-page: 9406 year: 2017 end-page: 9418 ident: bib26 article-title: Influence of process conditions on gas purity in alkaline water electrolysis publication-title: Int J Hydrogen Energy – year: 2020 ident: bib1 article-title: Net public electricity generation in Germany in 2020 – year: Sep. 2020 ident: bib33 article-title: Dynamic hydrogen production from PV & wind direct electricity supply – modeling and techno-economic assessment publication-title: Int J Hydrogen Energy – volume: 36 start-page: 7799 year: 2011 end-page: 7806 ident: bib34 article-title: Hydrogen production using alkaline electrolyzer and photovoltaic (PV) module publication-title: Int J Hydrogen Energy – volume: 31 start-page: 1215 year: 2006 end-page: 1235 ident: bib29 article-title: Load control of a wind-hydrogen stand-alone power system publication-title: Int J Hydrogen Energy – volume: 8 start-page: 529 year: 2014 end-page: 536 ident: bib30 article-title: Utilisation of alkaline electrolysers to improve power system frequency stability with a high penetration of wind power publication-title: IET Renew Power Gener – volume: 36 start-page: 120 year: 2011 end-page: 134 ident: bib31 article-title: “Electrolysers for mitigating wind curtailment and producing ‘green’ merchant hydrogen publication-title: Int J Hydrogen Energy – year: 2015 ident: 10.1016/j.ijhydene.2020.12.111_bib3 – volume: 38 start-page: 4901 issue: 12 year: 2013 ident: 10.1016/j.ijhydene.2020.12.111_bib23 article-title: A comprehensive review on PEM water electrolysis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.01.151 – volume: 35 start-page: 1841 issue: 5 year: 2010 ident: 10.1016/j.ijhydene.2020.12.111_bib43 article-title: The wind/hydrogen demonstration system at Utsira in Norway: evaluation of system performance using operational data and updated hydrogen energy system modeling tools publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2009.10.077 – volume: 227 start-page: 115 issue: 1 year: 2013 ident: 10.1016/j.ijhydene.2020.12.111_bib14 article-title: Improvement of power system frequency stability using alkaline electrolysis plants publication-title: Proc Inst Mech Eng Part A J Power Energy doi: 10.1177/0957650912466642 – volume: 36 start-page: 7799 issue: 13 year: 2011 ident: 10.1016/j.ijhydene.2020.12.111_bib34 article-title: Hydrogen production using alkaline electrolyzer and photovoltaic (PV) module publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.01.180 – start-page: 8 year: 2019 ident: 10.1016/j.ijhydene.2020.12.111_bib40 – volume: 1 start-page: 1 issue: February year: 2014 ident: 10.1016/j.ijhydene.2020.12.111_bib42 article-title: Study on development of water electrolysis in the EU, Fuel cells and hydrogen joint undertaking publication-title: Fuel Cells Hydrog Jt Undert – volume: 92 start-page: 74 issue: 1–2 year: 2020 ident: 10.1016/j.ijhydene.2020.12.111_bib4 article-title: Between electricity storage, e-production, and demand side management publication-title: Chem Ing Tech doi: 10.1002/cite.201900102 – volume: 31 start-page: 1215 issue: 9 year: 2006 ident: 10.1016/j.ijhydene.2020.12.111_bib29 article-title: Load control of a wind-hydrogen stand-alone power system publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2005.09.005 – volume: 42 start-page: 9406 issue: 15 year: 2017 ident: 10.1016/j.ijhydene.2020.12.111_bib26 article-title: Influence of process conditions on gas purity in alkaline water electrolysis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.12.111 – volume: vol. 28 year: 2010 ident: 10.1016/j.ijhydene.2020.12.111_bib44 – start-page: 19 year: 2013 ident: 10.1016/j.ijhydene.2020.12.111_bib21 – year: 2013 ident: 10.1016/j.ijhydene.2020.12.111_bib2 – volume: 90 start-page: 1430 issue: 10 year: 2018 ident: 10.1016/j.ijhydene.2020.12.111_bib10 article-title: Dynamic water electrolysis in cross-sectoral processes publication-title: Chem Ing Tech doi: 10.1002/cite.201800114 – volume: 36 start-page: 120 issue: 1 year: 2011 ident: 10.1016/j.ijhydene.2020.12.111_bib31 article-title: “Electrolysers for mitigating wind curtailment and producing ‘green’ merchant hydrogen publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.10.047 – year: 2015 ident: 10.1016/j.ijhydene.2020.12.111_bib18 – volume: 38 start-page: 2039 issue: 5 year: 2013 ident: 10.1016/j.ijhydene.2020.12.111_bib8 article-title: Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.12.010 – start-page: 1 year: 2016 ident: 10.1016/j.ijhydene.2020.12.111_bib17 – volume: 112 start-page: 775 issue: January year: 2019 ident: 10.1016/j.ijhydene.2020.12.111_bib9 article-title: Power-to-Gas: electrolysis and methanation status review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.06.030 – volume: 36 start-page: 307 issue: 3 year: 2010 ident: 10.1016/j.ijhydene.2020.12.111_bib20 article-title: Recent progress in alkaline water electrolysis for hydrogen production and applications publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2009.11.002 – year: 2020 ident: 10.1016/j.ijhydene.2020.12.111_bib16 – volume: 169 start-page: 857 year: 2016 ident: 10.1016/j.ijhydene.2020.12.111_bib11 article-title: Optimal microgrid scheduling with peak load reduction involving an electrolyzer and flexible loads publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.02.096 – year: 2020 ident: 10.1016/j.ijhydene.2020.12.111_bib33 article-title: Dynamic hydrogen production from PV & wind direct electricity supply – modeling and techno-economic assessment publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.08.044 – year: 2020 ident: 10.1016/j.ijhydene.2020.12.111_bib7 – year: 2018 ident: 10.1016/j.ijhydene.2020.12.111_bib45 – volume: 114 start-page: 1224 year: 2016 ident: 10.1016/j.ijhydene.2020.12.111_bib15 article-title: Using bias-corrected reanalysis to simulate current and future wind power output publication-title: Energy doi: 10.1016/j.energy.2016.08.068 – ident: 10.1016/j.ijhydene.2020.12.111_bib22 – volume: 8 start-page: 529 issue: 5 year: 2014 ident: 10.1016/j.ijhydene.2020.12.111_bib30 article-title: Utilisation of alkaline electrolysers to improve power system frequency stability with a high penetration of wind power publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2012.0190 – volume: 44 start-page: 17431 issue: 33 year: 2019 ident: 10.1016/j.ijhydene.2020.12.111_bib13 article-title: Techno-economic modelling of water electrolysers in the range of several MW to provide grid services while generating hydrogen for different applications: a case study in Spain applied to mobility with FCEVs publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.092 – issue: xxxx year: 2020 ident: 10.1016/j.ijhydene.2020.12.111_bib37 article-title: Multi-state techno-economic model for optimal dispatch of grid connected hydrogen electrolysis systems operating under dynamic conditions publication-title: Int J Hydrogen Energy – year: 2020 ident: 10.1016/j.ijhydene.2020.12.111_bib46 – volume: 8 issue: 2 year: 2020 ident: 10.1016/j.ijhydene.2020.12.111_bib39 article-title: Alkaline water electrolysis powered by renewable energy: a review publication-title: Processes doi: 10.3390/pr8020248 – volume: 32 start-page: 2253 issue: 13 year: 2007 ident: 10.1016/j.ijhydene.2020.12.111_bib12 article-title: Implementation and control of electrolysers to achieve high penetrations of renewable power publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2007.02.034 – volume: 37 start-page: 13895 issue: 19 year: 2012 ident: 10.1016/j.ijhydene.2020.12.111_bib24 article-title: New multi-physics approach for modelling and design of alkaline electrolyzers publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.07.015 – year: 2019 ident: 10.1016/j.ijhydene.2020.12.111_bib19 – volume: 28 start-page: 21 issue: 1 year: 2003 ident: 10.1016/j.ijhydene.2020.12.111_bib28 article-title: Modeling of advanced alkaline electrolyzers: a system simulation approach publication-title: Int J Hydrogen Energy doi: 10.1016/S0360-3199(02)00033-2 – volume: 85 start-page: 1371 year: 2016 ident: 10.1016/j.ijhydene.2020.12.111_bib5 article-title: Renewable Power-to-Gas: a technological and economic review publication-title: Renew Energy doi: 10.1016/j.renene.2015.07.066 – volume: 92 start-page: 70 issue: 1–2 year: 2020 ident: 10.1016/j.ijhydene.2020.12.111_bib38 article-title: Alkaline water electrolysis: efficient bridge to CO2-emission-free economy publication-title: Chem Ing Tech doi: 10.1002/cite.201900110 – start-page: 1 year: 2014 ident: 10.1016/j.ijhydene.2020.12.111_bib41 – year: 2020 ident: 10.1016/j.ijhydene.2020.12.111_bib1 – volume: 90 start-page: 127 issue: 1 year: 2018 ident: 10.1016/j.ijhydene.2020.12.111_bib6 article-title: Power-to-Liquids as renewable fuel option for aviation: a review publication-title: Chem Ing Tech doi: 10.1002/cite.201700129 – volume: 269 start-page: 203 year: 2014 ident: 10.1016/j.ijhydene.2020.12.111_bib25 article-title: Modeling an alkaline electrolysis cell through reduced-order and loss-estimate approaches publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.06.138 – volume: 129 year: 2019 ident: 10.1016/j.ijhydene.2020.12.111_bib32 article-title: Balancing costs, safety and CO2 emissions in the design of hydrogen supply chains publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2019.06.018 – volume: 21 start-page: 1699 issue: 3 year: 2007 ident: 10.1016/j.ijhydene.2020.12.111_bib35 article-title: Renewable hydrogen production: performance of an alkaline water electrolyzer working under emulated wind conditions publication-title: Energy Fuels doi: 10.1021/ef060491u – volume: 38 start-page: 14952 issue: 35 year: 2013 ident: 10.1016/j.ijhydene.2020.12.111_bib36 article-title: Stand-alone operation of an alkaline water electrolyser fed by wind and photovoltaic systems publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.09.085 – volume: 42 start-page: 15689 issue: 24 year: 2017 ident: 10.1016/j.ijhydene.2020.12.111_bib27 article-title: Process modelling of an alkaline water electrolyzer publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.05.031 |
| SSID | ssj0017049 |
| Score | 2.7000115 |
| Snippet | The flexible operation of alkaline water electrolyzers enables power-to-x plants to react efficiently to different energy scenarios. In this work, a novel... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 9303 |
| SubjectTerms | Alkaline water electrolysis Hydrogen Mathematical programming Power-to-x Renewable energy sources |
| Title | Modeling alkaline water electrolysis for power-to-x applications: A scheduling approach |
| URI | https://dx.doi.org/10.1016/j.ijhydene.2020.12.111 |
| Volume | 46 |
| WOSCitedRecordID | wos000631960200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-3487 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017049 issn: 0360-3199 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWlgMcEJ-i5UM-cENeEtvBMbcVWgQIVUiUsrfIcRza7ZKsttt2-Tf8VMaxnbhQqSDEJYoiOet43o7HY783CD1LlOaac0FUJTThZZKTEqJskqZK8oTJWnWn3Q8-iL29fDaTH0ejH4ELc7YQTZNvNnL5X00Nz8DYljr7F-buXwoP4B6MDlcwO1z_yPC2ulnHMVeLY9UFkefKKiH6gjdOgsQeLlzaAmlk3ZLN83gb23HVYdELk5B7j5cdj-PYi4nESH7i8Hu1ar_a0gEdqTDY80BZ0swvaga9sVsIUWvlqEOH39rTqk9nt5Z74_eqptW5lwn3WQqadqzvIUvZ02eGs0qOsmUnAVchaWycB86FJIz7Wdi7aJ-l9FDkkcOVLGHR5C2ZY7b-NjG4HMV8fDSHcYARGEMnrbTGOPj6i6Lbn2zXbM9owrig2ewa2qYik-A3tyfvprP3_U6V8Eus8CkRC_3yX7s8AIqCmv3b6JZfjeCJQ9EdNDLNXXQz0qi8h74EPOGAJ9zhCcd4woAnPOAJx3h6hSd4QBMOaLqPPr-Z7r9-S3w1DqLh29bE5IxRJepci9Lu9FcvM6GkoUleGaPSTFFl6tKomkJQm8FKQfNK0TqnjBuda8YeoK2mbcxDhCFoTZMyrSnVEtxDVtq946zilWZ1qrN6B2VhiArtpeptxZRFEc4kzoswtIUd2iKldim7g1707ZZOrOXKFjJYoPAhpwslCwDOFW13_6HtI3Rj-Jc8Rlvr1al5gq7rs_XRyeqpx9hP76WuQA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+alkaline+water+electrolysis+for+power-to-x+applications%3A+A+scheduling+approach&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Varela%2C+Christopher&rft.au=Mostafa%2C+Mahmoud&rft.au=Zondervan%2C+Edwin&rft.date=2021-02-24&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=46&rft.issue=14&rft.spage=9303&rft.epage=9313&rft_id=info:doi/10.1016%2Fj.ijhydene.2020.12.111&rft.externalDocID=S036031992034725X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |