Improving the Performance of Deep Quantum Optimization Algorithms with Continuous Gate Sets

Variational quantum algorithms are believed to be promising for solving computationally hard problems on noisy intermediate-scale quantum (NISQ) systems. Gaining computational power from these algorithms critically relies on the mitigation of errors during their execution, which for coherence-limite...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PRX quantum Ročník 1; číslo 2; s. 020304
Hlavní autori: Lacroix, Nathan, Hellings, Christoph, Andersen, Christian Kraglund, Di Paolo, Agustin, Remm, Ants, Lazar, Stefania, Krinner, Sebastian, Norris, Graham J., Gabureac, Mihai, Heinsoo, Johannes, Blais, Alexandre, Eichler, Christopher, Wallraff, Andreas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: American Physical Society 01.10.2020
ISSN:2691-3399, 2691-3399
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Variational quantum algorithms are believed to be promising for solving computationally hard problems on noisy intermediate-scale quantum (NISQ) systems. Gaining computational power from these algorithms critically relies on the mitigation of errors during their execution, which for coherence-limited operations is achievable by reducing the gate count. Here, we demonstrate an improvement of up to a factor of 3 in algorithmic performance for the quantum approximate optimization algorithm (QAOA) as measured by the success probability, by implementing a continuous hardware-efficient gate set using superconducting quantum circuits. This gate set allows us to perform the phase separation step in QAOA with a single physical gate for each pair of qubits instead of decomposing it into two CZ gates and single-qubit gates. With this reduced number of physical gates, which scales with the number of layers employed in the algorithm, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances mapped onto three and seven qubits, using up to a total of 399 operations and up to nine layers. Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
AbstractList Variational quantum algorithms are believed to be promising for solving computationally hard problems on noisy intermediate-scale quantum (NISQ) systems. Gaining computational power from these algorithms critically relies on the mitigation of errors during their execution, which for coherence-limited operations is achievable by reducing the gate count. Here, we demonstrate an improvement of up to a factor of 3 in algorithmic performance for the quantum approximate optimization algorithm (QAOA) as measured by the success probability, by implementing a continuous hardware-efficient gate set using superconducting quantum circuits. This gate set allows us to perform the phase separation step in QAOA with a single physical gate for each pair of qubits instead of decomposing it into two CZ gates and single-qubit gates. With this reduced number of physical gates, which scales with the number of layers employed in the algorithm, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances mapped onto three and seven qubits, using up to a total of 399 operations and up to nine layers. Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
ArticleNumber 020304
Author Eichler, Christopher
Andersen, Christian Kraglund
Di Paolo, Agustin
Krinner, Sebastian
Lacroix, Nathan
Gabureac, Mihai
Hellings, Christoph
Heinsoo, Johannes
Blais, Alexandre
Remm, Ants
Norris, Graham J.
Lazar, Stefania
Wallraff, Andreas
Author_xml – sequence: 1
  givenname: Nathan
  orcidid: 0000-0003-2002-9495
  surname: Lacroix
  fullname: Lacroix, Nathan
– sequence: 2
  givenname: Christoph
  orcidid: 0000-0002-9929-9684
  surname: Hellings
  fullname: Hellings, Christoph
– sequence: 3
  givenname: Christian Kraglund
  orcidid: 0000-0003-2253-6239
  surname: Andersen
  fullname: Andersen, Christian Kraglund
– sequence: 4
  givenname: Agustin
  surname: Di Paolo
  fullname: Di Paolo, Agustin
– sequence: 5
  givenname: Ants
  orcidid: 0000-0002-3220-7044
  surname: Remm
  fullname: Remm, Ants
– sequence: 6
  givenname: Stefania
  surname: Lazar
  fullname: Lazar, Stefania
– sequence: 7
  givenname: Sebastian
  orcidid: 0000-0002-4388-071X
  surname: Krinner
  fullname: Krinner, Sebastian
– sequence: 8
  givenname: Graham J.
  surname: Norris
  fullname: Norris, Graham J.
– sequence: 9
  givenname: Mihai
  surname: Gabureac
  fullname: Gabureac, Mihai
– sequence: 10
  givenname: Johannes
  orcidid: 0000-0003-0721-4880
  surname: Heinsoo
  fullname: Heinsoo, Johannes
– sequence: 11
  givenname: Alexandre
  surname: Blais
  fullname: Blais, Alexandre
– sequence: 12
  givenname: Christopher
  surname: Eichler
  fullname: Eichler, Christopher
– sequence: 13
  givenname: Andreas
  surname: Wallraff
  fullname: Wallraff, Andreas
BookMark eNp9kMtKAzEYhYNUsNY-gZu8wNTcpjNZlnorFFpvILgImUzSpsxMhiRV9Okd26LiwtX5-TnnW3ynoNe4RgNwjtEIY0QvlvfPd1vZxG09wiNEEEXsCPTJmOOEUs57v-4TMAxhgxAiKaaY8T54mdWtd6-2WcG41nCpvXG-lo3S0Bl4qXULD3C4aKOt7YeM1jVwUq2ct3FdB_jWBZy6Jtpm67YB3sio4YOO4QwcG1kFPTzkADxdXz1Ob5P54mY2ncwTRccoJjrNM6NwiUqiCqMQJoZRmeqiVJTnnJSYMy3zcUqM0tzkWWokU7Tr8LIoU0UHYLbnlk5uROttLf27cNKK3cP5lZA-WlVpUWSGo5wqyUzOZKYlJ4jzvCAMKZTSrGPRPUt5F4LX5puHkfjSLX50Cyz2ursV_7NSNu5ERS9t9e_2EyI2jJw
CitedBy_id crossref_primary_10_1103_PhysRevLett_126_220502
crossref_primary_10_1103_PhysRevApplied_21_044035
crossref_primary_10_1103_RevModPhys_94_015004
crossref_primary_10_1016_j_ijmecsci_2025_110646
crossref_primary_10_1016_j_jfranklin_2022_10_027
crossref_primary_10_1103_PhysRevResearch_4_043089
crossref_primary_10_1103_PhysRevResearch_3_043088
crossref_primary_10_1007_s11128_022_03539_0
crossref_primary_10_1103_PhysRevResearch_4_043127
crossref_primary_10_3390_s23104852
crossref_primary_10_3390_en17010177
crossref_primary_10_1103_PhysRevResearch_6_033112
crossref_primary_10_1016_j_cpc_2022_108411
crossref_primary_10_1103_PRXQuantum_3_020365
crossref_primary_10_1038_s41534_023_00711_x
crossref_primary_10_1103_PhysRevResearch_4_023040
crossref_primary_10_1103_PRXQuantum_2_020345
crossref_primary_10_1103_PRXQuantum_4_040335
crossref_primary_10_1088_2058_9565_acb1d0
crossref_primary_10_1103_PhysRevLett_129_050507
crossref_primary_10_1109_TQE_2020_3023338
crossref_primary_10_1109_TQE_2021_3063635
crossref_primary_10_1038_s41598_022_20853_w
crossref_primary_10_3390_e26121025
crossref_primary_10_1007_s42484_024_00167_y
crossref_primary_10_1038_s41534_020_00329_3
crossref_primary_10_1103_PhysRevLett_127_200502
crossref_primary_10_1103_PhysRevApplied_23_054074
crossref_primary_10_22331_q_2025_08_29_1841
crossref_primary_10_1016_j_jocs_2024_102454
crossref_primary_10_1016_j_physrep_2024_03_002
crossref_primary_10_1103_PhysRevApplied_20_024036
crossref_primary_10_1088_2058_9565_abe989
crossref_primary_10_1038_s41534_021_00478_z
crossref_primary_10_1088_2058_9565_ad9cba
crossref_primary_10_1103_m5z3_jgk8
crossref_primary_10_1103_PhysRevX_11_031070
crossref_primary_10_1103_PhysRevApplied_19_044001
crossref_primary_10_1103_PhysRevApplied_18_044042
crossref_primary_10_1063_5_0068255
crossref_primary_10_1103_PhysRevResearch_4_033140
crossref_primary_10_1088_1367_2630_ad4629
crossref_primary_10_1109_TQE_2021_3066275
crossref_primary_10_1002_andp_202200511
crossref_primary_10_1088_2058_9565_ad27e9
crossref_primary_10_1088_2058_9565_ad9be2
Cites_doi 10.1021/acs.chemrev.8b00803
10.1038/nature24654
10.1038/nature23879
10.1126/science.aaa8525
10.1038/s41586-019-1666-5
10.1103/PhysRevApplied.14.024042
10.1103/PhysRevLett.103.110501
10.1103/PhysRevApplied.11.044092
10.1038/ncomms8654
10.3389/fphy.2014.00005
10.1103/PhysRevA.95.062317
10.1038/nature24622
10.1038/nature08121
10.1038/s41567-020-0920-y
10.1103/PhysRevLett.121.060502
10.3390/a12020034
10.22331/q-2018-08-06-79
10.1038/s41566-018-0236-y
10.1103/PhysRevApplied.10.034040
10.1017/CBO9781139034807
10.1140/epjqt/s40507-019-0072-0
10.1103/PhysRevA.96.022330
10.1103/PhysRevLett.91.167005
10.1016/j.cpc.2012.11.019
10.1038/s41586-018-0195-y
10.1103/PhysRevX.10.021067
10.1038/nature13171
10.1103/PhysRevX.6.031007
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PRXQuantum.1.020304
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2691-3399
ExternalDocumentID oai_doaj_org_article_b7f9083ca4f84a7ea920998b240c0537
10_1103_PRXQuantum_1_020304
GroupedDBID 3MX
AAFWJ
AAYXX
AECSF
AFGMR
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
GROUPED_DOAJ
M~E
OK1
ROL
ID FETCH-LOGICAL-c360t-e587fc1d0d2cbfc012f43a5ebdc39892d194ea8652fce9f875fa4c343a9dbd5c3
IEDL.DBID DOA
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000674678100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2691-3399
IngestDate Fri Oct 03 12:44:52 EDT 2025
Sat Nov 29 05:13:39 EST 2025
Tue Nov 18 22:01:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-e587fc1d0d2cbfc012f43a5ebdc39892d194ea8652fce9f875fa4c343a9dbd5c3
Notes correction
ORCID 0000-0003-2002-9495
0000-0002-3220-7044
0000-0002-4388-071X
0000-0003-2253-6239
0000-0003-0721-4880
0000-0002-9929-9684
OpenAccessLink https://doaj.org/article/b7f9083ca4f84a7ea920998b240c0537
ParticipantIDs doaj_primary_oai_doaj_org_article_b7f9083ca4f84a7ea920998b240c0537
crossref_primary_10_1103_PRXQuantum_1_020304
crossref_citationtrail_10_1103_PRXQuantum_1_020304
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationTitle PRX quantum
PublicationYear 2020
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PRXQuantum.1.020304Cc22R1
PRXQuantum.1.020304Cc45R1
PRXQuantum.1.020304Cc44R1
PRXQuantum.1.020304Cc43R1
PRXQuantum.1.020304Cc26R1
PRXQuantum.1.020304Cc48R1
PRXQuantum.1.020304Cc24R1
PRXQuantum.1.020304Cc47R1
PRXQuantum.1.020304Cc46R1
A. Bhattacharyya (PRXQuantum.1.020304Cc40R1) 1943; 35
PRXQuantum.1.020304Cc9R1
Daniel A. Lidar (PRXQuantum.1.020304Cc3R1) 2013
PRXQuantum.1.020304Cc8R1
PRXQuantum.1.020304Cc33R1
PRXQuantum.1.020304Cc2R1
PRXQuantum.1.020304Cc34R1
PRXQuantum.1.020304Cc31R1
PRXQuantum.1.020304Cc54R1
PRXQuantum.1.020304Cc53R1
PRXQuantum.1.020304Cc7R1
PRXQuantum.1.020304Cc52R1
PRXQuantum.1.020304Cc6R1
PRXQuantum.1.020304Cc5R1
PRXQuantum.1.020304Cc4R1
PRXQuantum.1.020304Cc18R1
PRXQuantum.1.020304Cc14R1
PRXQuantum.1.020304Cc38R1
PRXQuantum.1.020304Cc35R1
PRXQuantum.1.020304Cc15R1
A. C. Davison (PRXQuantum.1.020304Cc39R1) 1997
References_xml – ident: PRXQuantum.1.020304Cc2R1
  doi: 10.1021/acs.chemrev.8b00803
– ident: PRXQuantum.1.020304Cc6R1
  doi: 10.1038/nature24654
– ident: PRXQuantum.1.020304Cc9R1
  doi: 10.1038/nature23879
– ident: PRXQuantum.1.020304Cc46R1
  doi: 10.1126/science.aaa8525
– ident: PRXQuantum.1.020304Cc5R1
  doi: 10.1038/s41586-019-1666-5
– ident: PRXQuantum.1.020304Cc38R1
  doi: 10.1103/PhysRevApplied.14.024042
– ident: PRXQuantum.1.020304Cc52R1
  doi: 10.1103/PhysRevLett.103.110501
– ident: PRXQuantum.1.020304Cc26R1
  doi: 10.1103/PhysRevApplied.11.044092
– ident: PRXQuantum.1.020304Cc24R1
  doi: 10.1038/ncomms8654
– ident: PRXQuantum.1.020304Cc31R1
  doi: 10.3389/fphy.2014.00005
– volume: 35
  start-page: 99
  year: 1943
  ident: PRXQuantum.1.020304Cc40R1
  publication-title: Bull. Calcutta Math. Soc.
– ident: PRXQuantum.1.020304Cc18R1
  doi: 10.1103/PhysRevA.95.062317
– volume-title: Cambridge Series in Statistical and Probabilistic Mathematics
  year: 1997
  ident: PRXQuantum.1.020304Cc39R1
– ident: PRXQuantum.1.020304Cc7R1
  doi: 10.1038/nature24622
– ident: PRXQuantum.1.020304Cc34R1
  doi: 10.1038/nature08121
– ident: PRXQuantum.1.020304Cc44R1
  doi: 10.1038/s41567-020-0920-y
– ident: PRXQuantum.1.020304Cc47R1
  doi: 10.1103/PhysRevLett.121.060502
– ident: PRXQuantum.1.020304Cc15R1
  doi: 10.3390/a12020034
– ident: PRXQuantum.1.020304Cc4R1
  doi: 10.22331/q-2018-08-06-79
– ident: PRXQuantum.1.020304Cc22R1
  doi: 10.1038/s41566-018-0236-y
– ident: PRXQuantum.1.020304Cc45R1
  doi: 10.1103/PhysRevApplied.10.034040
– volume-title: Quantum Error Correction
  year: 2013
  ident: PRXQuantum.1.020304Cc3R1
  doi: 10.1017/CBO9781139034807
– ident: PRXQuantum.1.020304Cc43R1
  doi: 10.1140/epjqt/s40507-019-0072-0
– ident: PRXQuantum.1.020304Cc53R1
  doi: 10.1103/PhysRevA.96.022330
– ident: PRXQuantum.1.020304Cc33R1
  doi: 10.1103/PhysRevLett.91.167005
– ident: PRXQuantum.1.020304Cc54R1
  doi: 10.1016/j.cpc.2012.11.019
– ident: PRXQuantum.1.020304Cc48R1
  doi: 10.1038/s41586-018-0195-y
– ident: PRXQuantum.1.020304Cc14R1
  doi: 10.1103/PhysRevX.10.021067
– ident: PRXQuantum.1.020304Cc35R1
  doi: 10.1038/nature13171
– ident: PRXQuantum.1.020304Cc8R1
  doi: 10.1103/PhysRevX.6.031007
SSID ssj0002513149
Score 2.4899995
Snippet Variational quantum algorithms are believed to be promising for solving computationally hard problems on noisy intermediate-scale quantum (NISQ) systems....
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 020304
Title Improving the Performance of Deep Quantum Optimization Algorithms with Continuous Gate Sets
URI https://doaj.org/article/b7f9083ca4f84a7ea920998b240c0537
Volume 1
WOSCitedRecordID wos000674678100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2691-3399
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513149
  issn: 2691-3399
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2691-3399
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513149
  issn: 2691-3399
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQBRIL4inKSx4YCU1i5-GxQCsGKOWpSgxRfLGhUptWTcLIb-echLYssLBkiJzEOp3uu8-5-46QUwz5idBKWYJpbvGAuVYMnmOBx_yQQShl2ZX2chP0euFgIPpLo75MTVglD1wZriUDLTBNgJjrkMeBioVp9gwlIhEYLRITfe1ALJEpE4MRtRnm_rXMkGOzVv9hcF_gZovxuVHpNH8Ef0DRkmJ_CS3dTbJR54S0Xe1li6yodJuslbWZkO2Q1znxp5it0f6i1J9ONL1Sakrrb9I7DADjurOStkdvE6T-7-OMmtNWaoSohmmBVJ-aMzP6qPJslzx3O0-X11Y9E8EC5tu5pbww0OAkduKC1IDwojmLPSUTYCIUbuIIruLQ91wNSmhkIzrmwHCNSGTiAdsjjXSSqn1CAwBQnGMG4WguwI4x-eBKS89niGoubxL32zwR1ILhZm7FKCqJg82ihU0jJ6ps2iRn84emlV7G78svjN3nS43YdXkDXSCqXSD6ywUO_uMlh2TdNVS6rNM7Io18Vqhjsgof-TCbnZTehdfbz84X6_jXIA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+Performance+of+Deep+Quantum+Optimization+Algorithms+with+Continuous+Gate+Sets&rft.jtitle=PRX+quantum&rft.au=Nathan+Lacroix&rft.au=Christoph+Hellings&rft.au=Christian+Kraglund+Andersen&rft.au=Agustin+Di+Paolo&rft.date=2020-10-01&rft.pub=American+Physical+Society&rft.eissn=2691-3399&rft.volume=1&rft.issue=2&rft.spage=020304&rft_id=info:doi/10.1103%2FPRXQuantum.1.020304&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b7f9083ca4f84a7ea920998b240c0537
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3399&client=summon