A precise crop row detection algorithm in complex farmland for unmanned agricultural machines

Crop row detection is an important part of precision agriculture. Therefore, an unmanned agricultural machine crop row detection method based on YOLO-R is proposed. This method can solve the problem that traditional image processing methods are easily affected by weeds, light and other factors when...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biosystems engineering Ročník 232; s. 1 - 12
Hlavní autoři: Ruan, Zhiwen, Chang, Penghao, Cui, Shangqing, Luo, Jiaqi, Gao, Rui, Su, Zhongbin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.08.2023
Témata:
ISSN:1537-5110
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Crop row detection is an important part of precision agriculture. Therefore, an unmanned agricultural machine crop row detection method based on YOLO-R is proposed. This method can solve the problem that traditional image processing methods are easily affected by weeds, light and other factors when extracting crop feature points. First, the YOLO-R object detection algorithm was used to obtain the crop position information, and then, the number of crop rows in the image and the crop in each crop row were obtained by the DBSCAN clustering algorithm. Finally, the function expression for each crop row was obtained by using the least squares method. The experimental results show that the AP values of YOLO-R are 91.69%, 95.34% and 89.13% on the seven-day, 14-day, and 21-day rice datasets, respectively. When the proposed algorithm's number of parameters was only 12.31% of that of YOLOv4 and the FPS was 17.54 higher than that of YOLOv4, the AP value was only 2.2% lower. The accuracy values of crop row detection algorithm are 93.91%, 95.87% and 89.87% on the seven-day, 14-day, and 21-day rice datasets, respectively, which indicates that the algorithm in this paper can effectively identify crop lines. •Proposing a crop row detection method based on YOLO-R object detection algorithm.•Ghostnet and Focal Loss are used in YOLO-R to perform better and faster.•Use channel attention module to coordinate the importance between each channel.•Incremental ablation study on all network designs.
AbstractList Crop row detection is an important part of precision agriculture. Therefore, an unmanned agricultural machine crop row detection method based on YOLO-R is proposed. This method can solve the problem that traditional image processing methods are easily affected by weeds, light and other factors when extracting crop feature points. First, the YOLO-R object detection algorithm was used to obtain the crop position information, and then, the number of crop rows in the image and the crop in each crop row were obtained by the DBSCAN clustering algorithm. Finally, the function expression for each crop row was obtained by using the least squares method. The experimental results show that the AP values of YOLO-R are 91.69%, 95.34% and 89.13% on the seven-day, 14-day, and 21-day rice datasets, respectively. When the proposed algorithm's number of parameters was only 12.31% of that of YOLOv4 and the FPS was 17.54 higher than that of YOLOv4, the AP value was only 2.2% lower. The accuracy values of crop row detection algorithm are 93.91%, 95.87% and 89.87% on the seven-day, 14-day, and 21-day rice datasets, respectively, which indicates that the algorithm in this paper can effectively identify crop lines. •Proposing a crop row detection method based on YOLO-R object detection algorithm.•Ghostnet and Focal Loss are used in YOLO-R to perform better and faster.•Use channel attention module to coordinate the importance between each channel.•Incremental ablation study on all network designs.
Crop row detection is an important part of precision agriculture. Therefore, an unmanned agricultural machine crop row detection method based on YOLO-R is proposed. This method can solve the problem that traditional image processing methods are easily affected by weeds, light and other factors when extracting crop feature points. First, the YOLO-R object detection algorithm was used to obtain the crop position information, and then, the number of crop rows in the image and the crop in each crop row were obtained by the DBSCAN clustering algorithm. Finally, the function expression for each crop row was obtained by using the least squares method. The experimental results show that the AP values of YOLO-R are 91.69%, 95.34% and 89.13% on the seven-day, 14-day, and 21-day rice datasets, respectively. When the proposed algorithm's number of parameters was only 12.31% of that of YOLOv4 and the FPS was 17.54 higher than that of YOLOv4, the AP value was only 2.2% lower. The accuracy values of crop row detection algorithm are 93.91%, 95.87% and 89.87% on the seven-day, 14-day, and 21-day rice datasets, respectively, which indicates that the algorithm in this paper can effectively identify crop lines.
Author Cui, Shangqing
Luo, Jiaqi
Gao, Rui
Ruan, Zhiwen
Chang, Penghao
Su, Zhongbin
Author_xml – sequence: 1
  givenname: Zhiwen
  surname: Ruan
  fullname: Ruan, Zhiwen
– sequence: 2
  givenname: Penghao
  surname: Chang
  fullname: Chang, Penghao
– sequence: 3
  givenname: Shangqing
  surname: Cui
  fullname: Cui, Shangqing
– sequence: 4
  givenname: Jiaqi
  surname: Luo
  fullname: Luo, Jiaqi
– sequence: 5
  givenname: Rui
  surname: Gao
  fullname: Gao, Rui
  email: 415730327@qq.com
– sequence: 6
  givenname: Zhongbin
  surname: Su
  fullname: Su, Zhongbin
  email: suzb001@163.com
BookMark eNqNkT1PwzAQhj0UCVr4D5ZYWBrOcT7FVFXlQ6rEAiOyXOdcXCV2sB2g_55UZYGp0y3v--juuSmZWGeRkGsGCQNW3O6SjXFhHyJ2Ae02SSHlCRQJMJiQC5bzcp4zBudkGsIOgOVlVlyQtwXtPSoTkCrveurdF20woorGWSrbrfMmvnfUWKpc17f4TbX0XSttQ7XzdLCdtBYbKrfeqKGNg5ct7aR6NxbDJTnTsg149Ttn5PV-9bJ8nK-fH56Wi_Vc8QLivFESdQ6cQZ7WUKHOeMUa5LJmqsrTBnS2AdRlCrxUWQobBbxKea11mclclnxGbo7c3ruPAUMUnQkK23FNdEMQaVWVdc2rshqjd8foeG4IHrXovemk3wsG4iBS7MQfkeIgUkAhRpFje_GvrUyUB1fRS9OeyFgdGTga-TToRVAGrcLGjJ-IonHmJM4PshWgsg
CitedBy_id crossref_primary_10_1117_1_JEI_33_2_023049
crossref_primary_10_3390_agriculture14010124
crossref_primary_10_3390_agronomy14081749
crossref_primary_10_3390_agronomy13112721
crossref_primary_10_3390_agriculture15121297
crossref_primary_10_3390_agriculture14070969
crossref_primary_10_3390_agriculture15090942
crossref_primary_10_1016_j_agwat_2023_108645
crossref_primary_10_3390_agriculture15070796
crossref_primary_10_1109_ACCESS_2024_3422422
crossref_primary_10_1016_j_jii_2025_100938
crossref_primary_10_1016_j_compag_2024_109871
crossref_primary_10_1016_j_atech_2025_101179
crossref_primary_10_1016_j_biosystemseng_2024_06_013
crossref_primary_10_1016_j_compag_2024_109776
crossref_primary_10_3390_app15147789
crossref_primary_10_1016_j_compag_2024_108923
crossref_primary_10_1016_j_biosystemseng_2024_02_014
crossref_primary_10_1016_j_biosystemseng_2024_07_016
crossref_primary_10_3390_agriculture14010057
crossref_primary_10_3390_machines12040218
crossref_primary_10_3389_fpls_2024_1338228
crossref_primary_10_1109_ACCESS_2024_3458442
crossref_primary_10_1016_j_compag_2024_109090
crossref_primary_10_3390_app14167285
crossref_primary_10_3390_agriculture15010002
crossref_primary_10_1007_s11119_025_10227_3
crossref_primary_10_1016_j_compag_2024_109086
crossref_primary_10_3390_drones8090490
crossref_primary_10_7717_peerj_cs_2477
crossref_primary_10_1016_j_chemolab_2024_105064
crossref_primary_10_1007_s11119_025_10243_3
crossref_primary_10_1007_s10462_024_10956_3
crossref_primary_10_1002_rob_22360
crossref_primary_10_3389_fpls_2024_1499896
crossref_primary_10_3390_fishes10020081
Cites_doi 10.1016/j.compag.2021.106054
10.1016/j.compag.2021.106135
10.1016/j.compag.2018.09.014
10.1016/j.ymssp.2020.106791
10.3390/s20185249
10.1016/j.compag.2022.107057
10.1016/j.compag.2022.107032
10.1016/j.compag.2016.02.002
10.1109/ACCESS.2019.2960873
10.1016/j.compag.2022.107412
10.1016/j.compag.2020.105766
10.1016/j.compag.2011.10.006
10.1016/j.biosystemseng.2021.08.030
10.1016/j.compag.2022.107429
10.1016/j.compag.2019.105203
10.1016/j.compag.2017.09.008
10.1016/j.biosystemseng.2017.01.013
ContentType Journal Article
Copyright 2023 IAgrE
Copyright_xml – notice: 2023 IAgrE
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.biosystemseng.2023.06.010
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EndPage 12
ExternalDocumentID 10_1016_j_biosystemseng_2023_06_010
S1537511023001320
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AATLK
AAXKI
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSA
SST
SSZ
T5K
UHS
UNMZH
~G-
~KM
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c360t-dcaef5031052908ef4381de3a91c852d0f4b0ef72037c420bc038239ff74a5a73
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001037034800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1537-5110
IngestDate Mon Sep 29 02:28:30 EDT 2025
Tue Nov 18 22:29:57 EST 2025
Sat Nov 29 07:04:07 EST 2025
Tue Dec 03 03:45:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords YOLO-R object detection algorithm
Crop row detection
Least square method
DBSCAN clustering algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c360t-dcaef5031052908ef4381de3a91c852d0f4b0ef72037c420bc038239ff74a5a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2887993878
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2887993878
crossref_primary_10_1016_j_biosystemseng_2023_06_010
crossref_citationtrail_10_1016_j_biosystemseng_2023_06_010
elsevier_sciencedirect_doi_10_1016_j_biosystemseng_2023_06_010
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Biosystems engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guo, He, Deng, Fan, Xu, Cao, Feng, Li, Wu, Lv, others (bib9) 2022; 199
Li, Li, Yang, Guo, Yang, Yue, Wang (bib17) 2021; 182
Liu, Yang, Zeng, Liu (bib20) 2020; 142
Aichen, Min, Qingshan, others (bib1) 2021; 37
Ren, He, Girshick, Sun (bib27) 2015; 28
Ge, Liu, Wang, Li, Sun (bib8) 2021
Han, Wang, Tian, Guo, Xu, Xu (bib10) 2020
Bochkovskiy, Wang, Liao (bib3) 2020
Hu, Liu, Zhao, Liu, Yang, Sun, Chen, Li, Zhou (bib14) 2021; 185
Redmon, Divvala, Girshick, Farhadi (bib26) 2016
Ponnambalam, Bakken, Moore, Glenn Omholt Gjevestad, Johan From (bib25) 2020; 20
Zehua, Xu, Xiuhao, Lintao, Hongwei, Zhicheng (bib32) 2018; 49
He, Gkioxari, Dollár, Girshick (bib11) 2017
Zhang, Li, Zhang, Zhou, Tian, Xiong, Gu (bib34) 2018; 154
Pérez-Ruiz, Slaughter, Gliever, Upadhyaya (bib24) 2012; 80
Zhang, Chen, Li (bib33) 2017; 143
Chen, Wang, Yang, Zhang, Cheng, Sun (bib5) 2021
Sun, Zhang, Jiang, Kong, Xu, Zhan, Tomizuka, Li, Yuan, Wang, others (bib28) 2021
Carion, Massa, Synnaeve, Usunier, Kirillov, Zagoruyko (bib4) 2020
Zhu, Su, Lu, Li, Wang, Dai (bib35) 2020
Ma, Tao, Du, Yu, Wu (bib22) 2021; 211
He, Zhang, Ren, Sun (bib12) 2015; 37
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib19) 2016; 14
Man, Yuhan, Shichao, Ruyue, Hongzhen, Zhenqian (bib21) 2020; 51
Xie, Liao, Ma, Jin (bib31) 2018; 1
Jie, Jinguang, Zhigang, Xiwen, Yang, Lian (bib16) 2019; 50
Pang, Shi, Gao, Jiang, Veeranampalayam-Sivakumar, Thompson, Luck, Liu (bib23) 2020; 178
Lin, Goyal, Girshick, He, Dollár (bib18) 2017
García-Santillán, Montalvo, Guerrero, Pajares (bib7) 2017; 156
Wang, Yan, Meng, Yao, Han, Zhang (bib30) 2022; 198
Chen, Wang, Zhang, Luo, Wei, Long, Wang (bib6) 2022; 202
Wang, Kang, Chu, Liu (bib29) 2022; 202
Bah, Hafiane, Canals (bib2) 2019; 8
Jiang, Wang, Wang, Liu (bib15) 2016; 123
Huang, Wu, Sun, Ma, Jiang, Qi (bib13) 2020; 169
Liu (10.1016/j.biosystemseng.2023.06.010_bib20) 2020; 142
Pérez-Ruiz (10.1016/j.biosystemseng.2023.06.010_bib24) 2012; 80
Ge (10.1016/j.biosystemseng.2023.06.010_bib8) 2021
Zehua (10.1016/j.biosystemseng.2023.06.010_bib32) 2018; 49
Chen (10.1016/j.biosystemseng.2023.06.010_bib6) 2022; 202
Man (10.1016/j.biosystemseng.2023.06.010_bib21) 2020; 51
Zhang (10.1016/j.biosystemseng.2023.06.010_bib34) 2018; 154
Jie (10.1016/j.biosystemseng.2023.06.010_bib16) 2019; 50
Zhu (10.1016/j.biosystemseng.2023.06.010_bib35) 2020
Jiang (10.1016/j.biosystemseng.2023.06.010_bib15) 2016; 123
Redmon (10.1016/j.biosystemseng.2023.06.010_bib26) 2016
Zhang (10.1016/j.biosystemseng.2023.06.010_bib33) 2017; 143
Aichen (10.1016/j.biosystemseng.2023.06.010_bib1) 2021; 37
Sun (10.1016/j.biosystemseng.2023.06.010_bib28) 2021
Carion (10.1016/j.biosystemseng.2023.06.010_bib4) 2020
Ren (10.1016/j.biosystemseng.2023.06.010_bib27) 2015; 28
Guo (10.1016/j.biosystemseng.2023.06.010_bib9) 2022; 199
Bochkovskiy (10.1016/j.biosystemseng.2023.06.010_bib3) 2020
Liu (10.1016/j.biosystemseng.2023.06.010_bib19) 2016; 14
Ponnambalam (10.1016/j.biosystemseng.2023.06.010_bib25) 2020; 20
Lin (10.1016/j.biosystemseng.2023.06.010_bib18) 2017
Han (10.1016/j.biosystemseng.2023.06.010_bib10) 2020
He (10.1016/j.biosystemseng.2023.06.010_bib12) 2015; 37
Pang (10.1016/j.biosystemseng.2023.06.010_bib23) 2020; 178
Huang (10.1016/j.biosystemseng.2023.06.010_bib13) 2020; 169
Bah (10.1016/j.biosystemseng.2023.06.010_bib2) 2019; 8
Wang (10.1016/j.biosystemseng.2023.06.010_bib30) 2022; 198
García-Santillán (10.1016/j.biosystemseng.2023.06.010_bib7) 2017; 156
Li (10.1016/j.biosystemseng.2023.06.010_bib17) 2021; 182
Hu (10.1016/j.biosystemseng.2023.06.010_bib14) 2021; 185
Chen (10.1016/j.biosystemseng.2023.06.010_bib5) 2021
Xie (10.1016/j.biosystemseng.2023.06.010_bib31) 2018; 1
He (10.1016/j.biosystemseng.2023.06.010_bib11) 2017
Ma (10.1016/j.biosystemseng.2023.06.010_bib22) 2021; 211
Wang (10.1016/j.biosystemseng.2023.06.010_bib29) 2022; 202
References_xml – volume: 156
  start-page: 61
  year: 2017
  end-page: 79
  ident: bib7
  article-title: Automatic detection of curved and straight crop rows from images in maize fields
  publication-title: Biosystems Engineering
– volume: 50
  year: 2019
  ident: bib16
  article-title: Design and experiment of automatic operation system for rice transplanter
  publication-title: Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery
– volume: 202
  year: 2022
  ident: bib29
  article-title: Deep learning-based automatic dairy cow ocular surface temperature detection from thermal images
  publication-title: Computers and Electronics in Agriculture
– volume: 185
  year: 2021
  ident: bib14
  article-title: Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network
  publication-title: Computers and Electronics in Agriculture
– year: 2020
  ident: bib35
  article-title: Deformable detr: Deformable transformers for end-to-end object detection
  publication-title: ArXiv Preprint ArXiv:2010.04159
– volume: 142
  year: 2020
  ident: bib20
  article-title: Bending diagnosis of rice seedling lines and guidance line extraction of automatic weeding equipment in paddy field
  publication-title: Mechanical Systems and Signal Processing
– start-page: 14454
  year: 2021
  end-page: 14463
  ident: bib28
  article-title: Sparse r-cnn: End-to-end object detection with learnable proposals
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: bib12
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 2980
  year: 2017
  end-page: 2988
  ident: bib18
  article-title: Focal loss for dense object detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 49
  year: 2018
  ident: bib32
  article-title: Research progress of rice transplanting mechanization
  publication-title: Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery
– volume: 202
  year: 2022
  ident: bib6
  article-title: Weed detection in sesame fields using a YOLO model with an enhanced attention mechanism and feature fusion
  publication-title: Computers and Electronics in Agriculture
– start-page: 213
  year: 2020
  end-page: 229
  ident: bib4
  article-title: End-to-end object detection with transformers
  publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16
– volume: 143
  start-page: 66
  year: 2017
  end-page: 78
  ident: bib33
  article-title: A visual navigation algorithm for paddy field weeding robot based on image understanding
  publication-title: Computers and Electronics in Agriculture
– volume: 8
  start-page: 5189
  year: 2019
  end-page: 5200
  ident: bib2
  article-title: CRowNet: Deep network for crop row detection in UAV images
  publication-title: IEEE Access
– start-page: 2961
  year: 2017
  end-page: 2969
  ident: bib11
  article-title: Mask r-cnn
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 779
  year: 2016
  end-page: 788
  ident: bib26
  article-title: You only look once: Unified, real-time object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 211
  start-page: 63
  year: 2021
  end-page: 76
  ident: bib22
  article-title: Automatic detection of crop root rows in paddy fields based on straight-line clustering algorithm and supervised learning method
  publication-title: Biosystems Engineering
– volume: 1
  start-page: 199
  year: 2018
  end-page: 208
  ident: bib31
  article-title: Gated feature pyramid network for object detection
  publication-title: Pattern Recognition and Computer Vision: First Chinese Conference, PRCV 2018, Guangzhou, China, November 23-26, 2018, Proceedings, Part IV
– volume: 37
  start-page: 202
  year: 2021
  end-page: 210
  ident: bib1
  article-title: Seedling crop row extraction method based on regional growth and mean shift clustering
  publication-title: Transactions of the Chinese Society of Agricultural Engineering
– volume: 14
  start-page: 21
  year: 2016
  end-page: 37
  ident: bib19
  article-title: Ssd: Single shot multibox detector
  publication-title: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I
– volume: 80
  start-page: 41
  year: 2012
  end-page: 49
  ident: bib24
  article-title: Automatic GPS-based intra-row weed knife control system for transplanted row crops
  publication-title: Computers and Electronics in Agriculture
– volume: 20
  start-page: 5249
  year: 2020
  ident: bib25
  article-title: Autonomous crop row guidance using adaptive multi-roi in strawberry fields
  publication-title: Sensors
– volume: 28
  year: 2015
  ident: bib27
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1580
  year: 2020
  end-page: 1589
  ident: bib10
  article-title: Ghostnet: More features from cheap operations
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 169
  year: 2020
  ident: bib13
  article-title: Deep localization model for intra-row crop detection in paddy field
  publication-title: Computers and Electronics in Agriculture
– volume: 51
  year: 2020
  ident: bib21
  article-title: Research progress of agricultural machinery navigation technology
  publication-title: Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery
– volume: 154
  start-page: 165
  year: 2018
  end-page: 175
  ident: bib34
  article-title: Automated robust crop-row detection in maize fields based on position clustering algorithm and shortest path method
  publication-title: Computers and Electronics in Agriculture
– year: 2021
  ident: bib8
  article-title: Yolox: Exceeding yolo series in 2021
  publication-title: arXiv
– volume: 198
  year: 2022
  ident: bib30
  article-title: DSE-YOLO: Detail semantics enhancement YOLO for multi-stage strawberry detection
  publication-title: Computers and Electronics in Agriculture
– start-page: 13039
  year: 2021
  end-page: 13048
  ident: bib5
  article-title: You only look one-level feature
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 123
  start-page: 211
  year: 2016
  end-page: 223
  ident: bib15
  article-title: Wheat rows detection at the early growth stage based on Hough transform and vanishing point
  publication-title: Computers and Electronics in Agriculture
– year: 2020
  ident: bib3
  article-title: Yolov4: Optimal speed and accuracy of object detection
  publication-title: arXiv
– volume: 199
  year: 2022
  ident: bib9
  article-title: Pigeon cleaning behavior detection algorithm based on light-weight network
  publication-title: Computers and Electronics in Agriculture
– volume: 178
  year: 2020
  ident: bib23
  article-title: Improved crop row detection with deep neural network for early-season maize stand count in UAV imagery
  publication-title: Computers and Electronics in Agriculture
– volume: 182
  year: 2021
  ident: bib17
  article-title: A high-precision detection method of hydroponic lettuce seedlings status based on improved Faster RCNN
  publication-title: Computers and Electronics in Agriculture
– start-page: 14454
  year: 2021
  ident: 10.1016/j.biosystemseng.2023.06.010_bib28
  article-title: Sparse r-cnn: End-to-end object detection with learnable proposals
– volume: 182
  year: 2021
  ident: 10.1016/j.biosystemseng.2023.06.010_bib17
  article-title: A high-precision detection method of hydroponic lettuce seedlings status based on improved Faster RCNN
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2021.106054
– year: 2020
  ident: 10.1016/j.biosystemseng.2023.06.010_bib3
  article-title: Yolov4: Optimal speed and accuracy of object detection
  publication-title: arXiv
– volume: 37
  start-page: 202
  issue: 19
  year: 2021
  ident: 10.1016/j.biosystemseng.2023.06.010_bib1
  article-title: Seedling crop row extraction method based on regional growth and mean shift clustering
  publication-title: Transactions of the Chinese Society of Agricultural Engineering
– volume: 185
  year: 2021
  ident: 10.1016/j.biosystemseng.2023.06.010_bib14
  article-title: Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2021.106135
– volume: 154
  start-page: 165
  year: 2018
  ident: 10.1016/j.biosystemseng.2023.06.010_bib34
  article-title: Automated robust crop-row detection in maize fields based on position clustering algorithm and shortest path method
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.09.014
– volume: 142
  year: 2020
  ident: 10.1016/j.biosystemseng.2023.06.010_bib20
  article-title: Bending diagnosis of rice seedling lines and guidance line extraction of automatic weeding equipment in paddy field
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2020.106791
– volume: 20
  start-page: 5249
  issue: 18
  year: 2020
  ident: 10.1016/j.biosystemseng.2023.06.010_bib25
  article-title: Autonomous crop row guidance using adaptive multi-roi in strawberry fields
  publication-title: Sensors
  doi: 10.3390/s20185249
– volume: 198
  year: 2022
  ident: 10.1016/j.biosystemseng.2023.06.010_bib30
  article-title: DSE-YOLO: Detail semantics enhancement YOLO for multi-stage strawberry detection
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2022.107057
– volume: 199
  year: 2022
  ident: 10.1016/j.biosystemseng.2023.06.010_bib9
  article-title: Pigeon cleaning behavior detection algorithm based on light-weight network
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2022.107032
– volume: 123
  start-page: 211
  year: 2016
  ident: 10.1016/j.biosystemseng.2023.06.010_bib15
  article-title: Wheat rows detection at the early growth stage based on Hough transform and vanishing point
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2016.02.002
– volume: 8
  start-page: 5189
  year: 2019
  ident: 10.1016/j.biosystemseng.2023.06.010_bib2
  article-title: CRowNet: Deep network for crop row detection in UAV images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960873
– volume: 202
  year: 2022
  ident: 10.1016/j.biosystemseng.2023.06.010_bib6
  article-title: Weed detection in sesame fields using a YOLO model with an enhanced attention mechanism and feature fusion
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2022.107412
– year: 2020
  ident: 10.1016/j.biosystemseng.2023.06.010_bib35
  article-title: Deformable detr: Deformable transformers for end-to-end object detection
  publication-title: ArXiv Preprint ArXiv:2010.04159
– start-page: 2980
  year: 2017
  ident: 10.1016/j.biosystemseng.2023.06.010_bib18
  article-title: Focal loss for dense object detection
– volume: 49
  issue: 5
  year: 2018
  ident: 10.1016/j.biosystemseng.2023.06.010_bib32
  article-title: Research progress of rice transplanting mechanization
  publication-title: Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery
– start-page: 2961
  year: 2017
  ident: 10.1016/j.biosystemseng.2023.06.010_bib11
  article-title: Mask r-cnn
– volume: 178
  year: 2020
  ident: 10.1016/j.biosystemseng.2023.06.010_bib23
  article-title: Improved crop row detection with deep neural network for early-season maize stand count in UAV imagery
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105766
– volume: 51
  issue: 4
  year: 2020
  ident: 10.1016/j.biosystemseng.2023.06.010_bib21
  article-title: Research progress of agricultural machinery navigation technology
  publication-title: Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery
– volume: 14
  start-page: 21
  year: 2016
  ident: 10.1016/j.biosystemseng.2023.06.010_bib19
  article-title: Ssd: Single shot multibox detector
– start-page: 13039
  year: 2021
  ident: 10.1016/j.biosystemseng.2023.06.010_bib5
  article-title: You only look one-level feature
– volume: 37
  start-page: 1904
  year: 2015
  ident: 10.1016/j.biosystemseng.2023.06.010_bib12
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
– start-page: 1580
  year: 2020
  ident: 10.1016/j.biosystemseng.2023.06.010_bib10
  article-title: Ghostnet: More features from cheap operations
– volume: 28
  year: 2015
  ident: 10.1016/j.biosystemseng.2023.06.010_bib27
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 80
  start-page: 41
  year: 2012
  ident: 10.1016/j.biosystemseng.2023.06.010_bib24
  article-title: Automatic GPS-based intra-row weed knife control system for transplanted row crops
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2011.10.006
– year: 2021
  ident: 10.1016/j.biosystemseng.2023.06.010_bib8
  article-title: Yolox: Exceeding yolo series in 2021
  publication-title: arXiv
– volume: 50
  issue: 3
  year: 2019
  ident: 10.1016/j.biosystemseng.2023.06.010_bib16
  article-title: Design and experiment of automatic operation system for rice transplanter
  publication-title: Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery
– volume: 1
  start-page: 199
  year: 2018
  ident: 10.1016/j.biosystemseng.2023.06.010_bib31
  article-title: Gated feature pyramid network for object detection
– start-page: 213
  year: 2020
  ident: 10.1016/j.biosystemseng.2023.06.010_bib4
  article-title: End-to-end object detection with transformers
– volume: 211
  start-page: 63
  year: 2021
  ident: 10.1016/j.biosystemseng.2023.06.010_bib22
  article-title: Automatic detection of crop root rows in paddy fields based on straight-line clustering algorithm and supervised learning method
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2021.08.030
– volume: 202
  year: 2022
  ident: 10.1016/j.biosystemseng.2023.06.010_bib29
  article-title: Deep learning-based automatic dairy cow ocular surface temperature detection from thermal images
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2022.107429
– start-page: 779
  year: 2016
  ident: 10.1016/j.biosystemseng.2023.06.010_bib26
  article-title: You only look once: Unified, real-time object detection
– volume: 169
  year: 2020
  ident: 10.1016/j.biosystemseng.2023.06.010_bib13
  article-title: Deep localization model for intra-row crop detection in paddy field
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.105203
– volume: 143
  start-page: 66
  year: 2017
  ident: 10.1016/j.biosystemseng.2023.06.010_bib33
  article-title: A visual navigation algorithm for paddy field weeding robot based on image understanding
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2017.09.008
– volume: 156
  start-page: 61
  year: 2017
  ident: 10.1016/j.biosystemseng.2023.06.010_bib7
  article-title: Automatic detection of curved and straight crop rows from images in maize fields
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2017.01.013
SSID ssj0015746
Score 2.5431252
Snippet Crop row detection is an important part of precision agriculture. Therefore, an unmanned agricultural machine crop row detection method based on YOLO-R is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms agricultural land
agricultural machinery and equipment
algorithms
Crop row detection
data collection
DBSCAN clustering algorithm
Least square method
precision agriculture
rice
YOLO-R object detection algorithm
Title A precise crop row detection algorithm in complex farmland for unmanned agricultural machines
URI https://dx.doi.org/10.1016/j.biosystemseng.2023.06.010
https://www.proquest.com/docview/2887993878
Volume 232
WOSCitedRecordID wos001037034800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1537-5110
  databaseCode: AIEXJ
  dateStart: 20020101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0015746
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3ra9RAEF-OVkQ_iE-sL1b0W0jJ5XGb-EEIpaIipWCFQ5CwSTa9lLukzSX1_gv_ZWeyj6SVwin4JVz22LnNzS-zj_nNDCFvI78IRcbh_Q6whBnnwk7TlNkMDLLrp3Cvik2wo6NwPo-OJ5NfOhbmcsmqKtxsovP_qmpoA2Vj6OxfqNsIhQb4DEqHK6gdrlspPsa4f6yVYWF1Lgu22VYuWqFKgi9P66ZsFytL8c-XYmMVvFkhwbGnHHbViqPttfhpM-TlWPWcS8U31D7gspZ5oNeWGLIaGg9OJ49Wvy_Kn0O42YE-nz6GLgtem_auZxV8xa8vRlK-dNIzVPKLcnxA4XqGHjfYVGbDus4ZG11XnWpKszkdzb-SVf2HZZeHDGf7qXk2GOc-_l6ff1VJv5JP-9o8Z9iHmth2llwRlqCwBGl-GLK367IgAjO5G386nH82jqmAyYA1_Uy3yZuBMnjj2G5a9Fyb_vs1zcl9ck9tRmgsQfSATET1kNyNjeIF3I0SVj4iP2KqwEURXBTARQ24qAEXLSuqwEU1uCiAi2pw0TG4qAbXY_Ltw-HJwUdbFeiwM2_mtHaecVEEmFw2cCMnFAXmi8uFx6NpFgZu7hR-6ogCPf0s810nzRx0O6ObwOcBZ94TslPVlXiKqQO80MlnWO0g96cCNgZ5KoSThwUWqg9ne-Sd_geTTGWvxyIqy2QLbe4R33Q-l0lctuv2XqsqUetRuc5MAJTbCXitFZyA1UZXHK9E3a0TF-Z22BmELHz2b2N7Tu4M79oLstM2nXhJbmWXbbluXinU_gaTKMgU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+precise+crop+row+detection+algorithm+in+complex+farmland+for+unmanned+agricultural+machines&rft.jtitle=Biosystems+engineering&rft.au=Ruan%2C+Zhiwen&rft.au=Chang%2C+Penghao&rft.au=Cui%2C+Shangqing&rft.au=Luo%2C+Jiaqi&rft.date=2023-08-01&rft.issn=1537-5110&rft.volume=232&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1016%2Fj.biosystemseng.2023.06.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biosystemseng_2023_06_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-5110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-5110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-5110&client=summon