Optimization of nonlinear geological structure mapping using hybrid neuro-genetic techniques

A fairly reasonable result was obtained for nonlinear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the nonlinear problems to obtain a better output...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical and computer modelling Ročník 54; číslo 11; s. 2913 - 2922
Hlavní autoři: Ganesan, T., Vasant, P., Elamvazuthi, I.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.12.2011
Elsevier
Témata:
ISSN:0895-7177, 1872-9479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A fairly reasonable result was obtained for nonlinear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the nonlinear problems to obtain a better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0895-7177
1872-9479
DOI:10.1016/j.mcm.2011.07.012