Application of Least Squares Lattice Algorithms to Adaptive Equalization

In many applications of adaptive data equalization, rapid initial convergence of the adaptive equalizer is of paramount importance. Apparently, the fastest known equalizer adaptation algorithm is based on a recursive least squares estimation algorithm. In this paper we show how the least squares lat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on communications Ročník 29; číslo 2; s. 136 - 142
Hlavní autoři: Satorius, E., Pack, J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.02.1981
Témata:
ISSN:0090-6778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In many applications of adaptive data equalization, rapid initial convergence of the adaptive equalizer is of paramount importance. Apparently, the fastest known equalizer adaptation algorithm is based on a recursive least squares estimation algorithm. In this paper we show how the least squares lattice algorithms, recently introduced by Morf and Lee, can be adapted to the equalizer adjustment algorithm. The resulting algorithm, although computationally more complex than certain other equalizer algorithms (including the fast Kalman algorithm), has a number of desirable features which should prove useful in many applications.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0090-6778
DOI:10.1109/TCOM.1981.1094968