Application of Least Squares Lattice Algorithms to Adaptive Equalization
In many applications of adaptive data equalization, rapid initial convergence of the adaptive equalizer is of paramount importance. Apparently, the fastest known equalizer adaptation algorithm is based on a recursive least squares estimation algorithm. In this paper we show how the least squares lat...
Uloženo v:
| Vydáno v: | IEEE transactions on communications Ročník 29; číslo 2; s. 136 - 142 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.02.1981
|
| Témata: | |
| ISSN: | 0090-6778 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In many applications of adaptive data equalization, rapid initial convergence of the adaptive equalizer is of paramount importance. Apparently, the fastest known equalizer adaptation algorithm is based on a recursive least squares estimation algorithm. In this paper we show how the least squares lattice algorithms, recently introduced by Morf and Lee, can be adapted to the equalizer adjustment algorithm. The resulting algorithm, although computationally more complex than certain other equalizer algorithms (including the fast Kalman algorithm), has a number of desirable features which should prove useful in many applications. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0090-6778 |
| DOI: | 10.1109/TCOM.1981.1094968 |