FRACTAL BASES FOR BANACH SPACES OF SMOOTH FUNCTIONS

This article explores the properties of fractal interpolation functions with variable scaling parameters, in the context of smooth fractal functions. The first part extends the Barnsley–Harrington theorem for differentiability of fractal functions and the fractal analogue of Hermite interpolation to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bulletin of the Australian Mathematical Society Ročník 92; číslo 3; s. 405 - 419
Hlavní autoři: NAVASCUÉS, M. A., VISWANATHAN, P., CHAND, A. K. B., SEBASTIÁN, M. V., KATIYAR, S. K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 01.12.2015
Témata:
ISSN:0004-9727, 1755-1633
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article explores the properties of fractal interpolation functions with variable scaling parameters, in the context of smooth fractal functions. The first part extends the Barnsley–Harrington theorem for differentiability of fractal functions and the fractal analogue of Hermite interpolation to the present setting. The general result is applied on a special class of iterated function systems in order to develop differentiability of the so-called $\boldsymbol{{\it\alpha}}$-fractal functions. This leads to a bounded linear map on the space ${\mathcal{C}}^{k}(I)$ which is exploited to prove the existence of a Schauder basis for ${\mathcal{C}}^{k}(I)$ consisting of smooth fractal functions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972715000738