Quadrilateral Interval Type-2 Fuzzy Regression Analysis for Data Outlier Detection

This paper presents a fuzzy regression analysis method based on a general quadrilateral interval type-2 fuzzy numbers, regarding the data outlier detection. The Euclidean distance for the general quadrilateral interval type-2 fuzzy numbers is provided. In the sense of Euclidean distance, some parame...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical problems in engineering Ročník 2019; číslo 2019; s. 1 - 9
Hlavní autoři: Gao, Pingping, Gao, Yabin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cairo, Egypt Hindawi Publishing Corporation 2019
Hindawi
John Wiley & Sons, Inc
Témata:
ISSN:1024-123X, 1563-5147
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a fuzzy regression analysis method based on a general quadrilateral interval type-2 fuzzy numbers, regarding the data outlier detection. The Euclidean distance for the general quadrilateral interval type-2 fuzzy numbers is provided. In the sense of Euclidean distance, some parameter estimation laws of the type-2 fuzzy linear regression model are designed. Then, the data outlier detection-oriented parameter estimation method is proposed using the data deletion-based type-2 fuzzy regression model. Moreover, based on the fuzzy regression model, by using the root mean squared error method, an impact evaluation rule is designed for detecting data outlier. An example is finally provided to validate the presented methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1024-123X
1563-5147
DOI:10.1155/2019/4914593