Quadrilateral Interval Type-2 Fuzzy Regression Analysis for Data Outlier Detection
This paper presents a fuzzy regression analysis method based on a general quadrilateral interval type-2 fuzzy numbers, regarding the data outlier detection. The Euclidean distance for the general quadrilateral interval type-2 fuzzy numbers is provided. In the sense of Euclidean distance, some parame...
Gespeichert in:
| Veröffentlicht in: | Mathematical problems in engineering Jg. 2019; H. 2019; S. 1 - 9 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cairo, Egypt
Hindawi Publishing Corporation
2019
Hindawi John Wiley & Sons, Inc |
| Schlagworte: | |
| ISSN: | 1024-123X, 1563-5147 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper presents a fuzzy regression analysis method based on a general quadrilateral interval type-2 fuzzy numbers, regarding the data outlier detection. The Euclidean distance for the general quadrilateral interval type-2 fuzzy numbers is provided. In the sense of Euclidean distance, some parameter estimation laws of the type-2 fuzzy linear regression model are designed. Then, the data outlier detection-oriented parameter estimation method is proposed using the data deletion-based type-2 fuzzy regression model. Moreover, based on the fuzzy regression model, by using the root mean squared error method, an impact evaluation rule is designed for detecting data outlier. An example is finally provided to validate the presented methods. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1024-123X 1563-5147 |
| DOI: | 10.1155/2019/4914593 |