A Parallel Splitting Augmented Lagrangian Method for Two-Block Separable Convex Programming with Application in Image Processing

The augmented Lagrangian method (ALM) is one of the most successful first-order methods for convex programming with linear equality constraints. To solve the two-block separable convex minimization problem, we always use the parallel splitting ALM method. In this paper, we will show that no matter h...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical problems in engineering Ročník 2020; číslo 2020; s. 1 - 10
Hlavní autori: Liu, Jing, Wang, Tonghui, Duan, Yongrui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Predmet:
ISSN:1024-123X, 1563-5147
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The augmented Lagrangian method (ALM) is one of the most successful first-order methods for convex programming with linear equality constraints. To solve the two-block separable convex minimization problem, we always use the parallel splitting ALM method. In this paper, we will show that no matter how small the step size and the penalty parameter are, the convergence of the parallel splitting ALM is not guaranteed. We propose a new convergent parallel splitting ALM (PSALM), which is the regularizing ALM’s minimization subproblem by some simple proximal terms. In application this new PSALM is used to solve video background extraction problems and our numerical results indicate that this new PSALM is efficient.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1024-123X
1563-5147
DOI:10.1155/2020/6872810