Camera Constraint-Free View-Based 3-D Object Retrieval
Recently, extensive research efforts have been dedicated to view-based methods for 3-D object retrieval due to the highly discriminative property of multiviews for 3-D object representation. However, most of state-of-the-art approaches highly depend on their own camera array settings for capturing v...
Uložené v:
| Vydané v: | IEEE transactions on image processing Ročník 21; číslo 4; s. 2269 - 2281 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.04.2012
|
| Predmet: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Recently, extensive research efforts have been dedicated to view-based methods for 3-D object retrieval due to the highly discriminative property of multiviews for 3-D object representation. However, most of state-of-the-art approaches highly depend on their own camera array settings for capturing views of 3-D objects. In order to move toward a general framework for 3-D object retrieval without the limitation of camera array restriction, a camera constraint-free view-based (CCFV) 3-D object retrieval algorithm is proposed in this paper. In this framework, each object is represented by a free set of views, which means that these views can be captured from any direction without camera constraint. For each query object, we first cluster all query views to generate the view clusters, which are then used to build the query models. For a more accurate 3-D object comparison, a positive matching model and a negative matching model are individually trained using positive and negative matched samples, respectively. The CCFV model is generated on the basis of the query Gaussian models by combining the positive matching model and the negative matching model. The CCFV removes the constraint of static camera array settings for view capturing and can be applied to any view-based 3-D object database. We conduct experiments on the National Taiwan University 3-D model database and the ETH 3-D object database. Experimental results show that the proposed scheme can achieve better performance than state-of-the-art methods. |
|---|---|
| AbstractList | Recently, extensive research efforts have been dedicated to view-based methods for 3-D object retrieval due to the highly discriminative property of multiviews for 3-D object representation. However, most of state-of-the-art approaches highly depend on their own camera array settings for capturing views of 3-D objects. In order to move toward a general framework for 3-D object retrieval without the limitation of camera array restriction, a camera constraint-free view-based (CCFV) 3-D object retrieval algorithm is proposed in this paper. In this framework, each object is represented by a free set of views, which means that these views can be captured from any direction without camera constraint. For each query object, we first cluster all query views to generate the view clusters, which are then used to build the query models. For a more accurate 3-D object comparison, a positive matching model and a negative matching model are individually trained using positive and negative matched samples, respectively. The CCFV model is generated on the basis of the query Gaussian models by combining the positive matching model and the negative matching model. The CCFV removes the constraint of static camera array settings for view capturing and can be applied to any view-based 3-D object database. We conduct experiments on the National Taiwan University 3-D model database and the ETH 3-D object database. Experimental results show that the proposed scheme can achieve better performance than state-of-the-art methods. Recently, extensive research efforts have been dedicated to view-based methods for 3-D object retrieval due to the highly discriminative property of multiviews for 3-D object representation. However, most of state-of-the-art approaches highly depend on their own camera array settings for capturing views of 3-D objects. In order to move toward a general framework for 3-D object retrieval without the limitation of camera array restriction, a camera constraint-free view-based (CCFV) 3-D object retrieval algorithm is proposed in this paper. In this framework, each object is represented by a free set of views, which means that these views can be captured from any direction without camera constraint. For each query object, we first cluster all query views to generate the view clusters, which are then used to build the query models. For a more accurate 3-D object comparison, a positive matching model and a negative matching model are individually trained using positive and negative matched samples, respectively. The CCFV model is generated on the basis of the query Gaussian models by combining the positive matching model and the negative matching model. The CCFV removes the constraint of static camera array settings for view capturing and can be applied to any view-based 3-D object database. We conduct experiments on the National Taiwan University 3-D model database and the ETH 3-D object database. Experimental results show that the proposed scheme can achieve better performance than state-of-the-art methods.Recently, extensive research efforts have been dedicated to view-based methods for 3-D object retrieval due to the highly discriminative property of multiviews for 3-D object representation. However, most of state-of-the-art approaches highly depend on their own camera array settings for capturing views of 3-D objects. In order to move toward a general framework for 3-D object retrieval without the limitation of camera array restriction, a camera constraint-free view-based (CCFV) 3-D object retrieval algorithm is proposed in this paper. In this framework, each object is represented by a free set of views, which means that these views can be captured from any direction without camera constraint. For each query object, we first cluster all query views to generate the view clusters, which are then used to build the query models. For a more accurate 3-D object comparison, a positive matching model and a negative matching model are individually trained using positive and negative matched samples, respectively. The CCFV model is generated on the basis of the query Gaussian models by combining the positive matching model and the negative matching model. The CCFV removes the constraint of static camera array settings for view capturing and can be applied to any view-based 3-D object database. We conduct experiments on the National Taiwan University 3-D model database and the ETH 3-D object database. Experimental results show that the proposed scheme can achieve better performance than state-of-the-art methods. |
| Author | Hong, Richang Tat-Seng Chua Jinhui Tang Shuicheng Yan Naiyao Zhang Qionghai Dai Yue Gao |
| Author_xml | – sequence: 1 surname: Yue Gao fullname: Yue Gao email: gaoyue08@mails.tsinghua.edu.cn organization: Dept. of Autom., Tsinghua Univ., Beijing, China – sequence: 2 surname: Jinhui Tang fullname: Jinhui Tang email: jinhui-tang@mail.njust.edu.cn organization: Sch. of Comput. Sci. & Technol., Nanjing Univ. of Sci. & Technol., Nanjing, China – sequence: 3 givenname: Richang surname: Hong fullname: Hong, Richang email: hongrc.hfut@gmail.com organization: Sch. of Comput. & Inf. Sci., Hefei Univ. of Technol., Hefei, China – sequence: 4 surname: Shuicheng Yan fullname: Shuicheng Yan email: eleyans@nus.edu.sg organization: Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore – sequence: 5 surname: Qionghai Dai fullname: Qionghai Dai email: qhdai@tsinghua.edu.cn organization: Dept. of Autom., Tsinghua Univ., Beijing, China – sequence: 6 surname: Naiyao Zhang fullname: Naiyao Zhang email: zlh@tsinghua.edu.cn organization: Dept. of Autom., Tsinghua Univ., Beijing, China – sequence: 7 surname: Tat-Seng Chua fullname: Tat-Seng Chua email: chuats@comp.nus.edu.sg organization: Sch. of Comput., Nat. Univ. of Singapore, Singapore, Singapore |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21965212$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kEtLw0AUhQep2IfuBUGyc5V6ZyaZSZYarRYKFaluh8nkDqTkUWdSxX9vSlsXLlzdu_i-A-eMyaBpGyTkksKUUkhvV_OXKQNKp4xKgISekBFNIxoCRGzQ_xDLUNIoHZKx92sAGsVUnJEho6mIGWUjIjJdo9NB1ja-c7psunDmEIP3Er_Ce-2xCHj4ECzzNZoueMXOlfipq3NyanXl8eJwJ-Rt9rjKnsPF8mme3S1CwwV0oYE8F9ZaFsWFhMTInBWFZGlijeZGa16wwlieSM0EWKtjwRMrpBZG6AKSnE_IzT5349qPLfpO1aU3WFW6wXbrVRpBwiVPWU9eH8htXmOhNq6stftWx6o9IPaAca33Dq0yZae7sm12vStFQe02Vf2marepOmzai_BHPGb_o1ztlRIRf3EBHFIu-A-xZn-O |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1016_j_sigpro_2014_09_005 crossref_primary_10_1109_TIP_2014_2372618 crossref_primary_10_1007_s11042_012_1130_0 crossref_primary_10_1007_s11042_014_2055_6 crossref_primary_10_1007_s11042_017_5208_6 crossref_primary_10_1007_s11042_018_5641_1 crossref_primary_10_1016_j_future_2018_12_039 crossref_primary_10_1007_s11063_019_10155_0 crossref_primary_10_1016_j_neucom_2014_02_040 crossref_primary_10_1016_j_jvcir_2015_06_003 crossref_primary_10_1016_j_sigpro_2014_08_041 crossref_primary_10_1016_j_neucom_2012_04_040 crossref_primary_10_1109_TIE_2013_2262760 crossref_primary_10_1145_3377876 crossref_primary_10_1007_s11042_016_3340_3 crossref_primary_10_1016_j_neucom_2016_01_113 crossref_primary_10_1109_TCYB_2014_2351831 crossref_primary_10_1016_j_neucom_2014_05_090 crossref_primary_10_1007_s11042_013_1560_3 crossref_primary_10_1016_j_neucom_2014_05_091 crossref_primary_10_1016_j_neucom_2014_05_093 crossref_primary_10_1109_TCYB_2021_3051016 crossref_primary_10_1007_s11760_015_0756_6 crossref_primary_10_1007_s00530_015_0454_9 crossref_primary_10_1007_s00371_018_1597_4 crossref_primary_10_1007_s11263_024_02298_y crossref_primary_10_1016_j_dsp_2012_11_007 crossref_primary_10_1088_1742_6596_536_1_012023 crossref_primary_10_1016_j_sigpro_2014_06_025 crossref_primary_10_1007_s11042_020_08967_7 crossref_primary_10_1007_s11042_014_2029_8 crossref_primary_10_1016_j_neucom_2016_01_126 crossref_primary_10_1016_j_sigpro_2014_10_021 crossref_primary_10_1145_2542205_2542209 crossref_primary_10_1016_j_jvcir_2015_06_011 crossref_primary_10_1109_TIP_2012_2202676 crossref_primary_10_1016_j_neucom_2016_01_125 crossref_primary_10_1016_j_sigpro_2012_06_028 crossref_primary_10_1007_s11042_016_4250_0 crossref_primary_10_1109_TIE_2014_2327558 crossref_primary_10_1371_journal_pone_0071511 crossref_primary_10_1007_s00138_013_0535_8 crossref_primary_10_1016_j_neucom_2016_01_081 crossref_primary_10_1109_TMM_2020_3015554 crossref_primary_10_1371_journal_pone_0047041 crossref_primary_10_1016_j_neucom_2015_06_118 crossref_primary_10_1007_s11042_016_4238_9 crossref_primary_10_1016_j_sigpro_2012_04_002 crossref_primary_10_1109_TIP_2016_2614132 crossref_primary_10_3390_app122211523 crossref_primary_10_1016_j_neunet_2020_02_017 crossref_primary_10_1109_TCSVT_2018_2810191 crossref_primary_10_1016_j_neucom_2016_06_087 crossref_primary_10_1016_j_imavis_2012_05_001 crossref_primary_10_1109_ACCESS_2020_2968460 crossref_primary_10_1007_s11063_017_9717_0 crossref_primary_10_1080_13658816_2017_1334888 crossref_primary_10_1007_s11042_014_2321_7 crossref_primary_10_1007_s11042_017_5136_5 crossref_primary_10_1016_j_neucom_2012_02_027 crossref_primary_10_1007_s11042_020_08817_6 crossref_primary_10_1109_TIP_2024_3518759 crossref_primary_10_1109_TMM_2014_2351788 crossref_primary_10_1109_ACCESS_2019_2929109 crossref_primary_10_1016_j_imavis_2014_12_003 crossref_primary_10_1109_ACCESS_2020_3012692 crossref_primary_10_1109_TCSVT_2021_3099496 crossref_primary_10_1007_s11704_016_5453_2 crossref_primary_10_1016_j_ins_2012_01_003 crossref_primary_10_1109_TCYB_2020_3008248 crossref_primary_10_1007_s10489_021_02840_2 crossref_primary_10_1007_s11042_012_1284_9 crossref_primary_10_1016_j_ins_2014_11_014 crossref_primary_10_1016_j_jvcir_2012_06_005 crossref_primary_10_1016_j_sigpro_2014_08_034 crossref_primary_10_1016_j_ins_2014_09_015 crossref_primary_10_1007_s11042_016_3305_6 crossref_primary_10_1109_TIP_2016_2540802 crossref_primary_10_1016_j_patrec_2018_07_005 crossref_primary_10_1016_j_sigpro_2014_11_001 crossref_primary_10_1016_j_neucom_2014_03_090 crossref_primary_10_1016_j_neucom_2014_03_091 crossref_primary_10_1109_TCYB_2017_2664503 crossref_primary_10_1007_s11042_013_1416_x crossref_primary_10_1007_s11042_020_09248_z crossref_primary_10_1016_j_sigpro_2014_08_038 crossref_primary_10_1007_s00530_014_0405_x crossref_primary_10_1109_ACCESS_2021_3056613 crossref_primary_10_1016_j_neucom_2015_09_120 crossref_primary_10_1007_s00138_013_0559_0 crossref_primary_10_1007_s11042_015_2622_5 crossref_primary_10_1007_s11042_017_5076_0 crossref_primary_10_1016_j_neucom_2014_03_092 crossref_primary_10_1371_journal_pone_0055586 crossref_primary_10_1007_s11042_014_2337_z crossref_primary_10_1109_TNNLS_2015_2495148 crossref_primary_10_1016_j_ins_2015_08_007 crossref_primary_10_1186_s42492_023_00145_4 crossref_primary_10_1007_s00500_014_1237_5 crossref_primary_10_1016_j_ins_2015_03_023 crossref_primary_10_1016_j_neucom_2014_04_090 crossref_primary_10_1007_s11263_024_02283_5 crossref_primary_10_1007_s00530_013_0351_z crossref_primary_10_1109_TMM_2014_2314073 crossref_primary_10_1109_TCYB_2015_2403356 crossref_primary_10_1109_TIP_2014_2324291 crossref_primary_10_1007_s11042_017_5270_0 crossref_primary_10_1016_j_neucom_2015_09_118 crossref_primary_10_1016_j_neucom_2014_06_090 crossref_primary_10_1007_3DRes_04_2013_5 crossref_primary_10_1016_j_ins_2014_02_053 crossref_primary_10_1109_LSP_2012_2190060 crossref_primary_10_1109_TIP_2015_2395961 crossref_primary_10_1007_s11042_017_5271_z crossref_primary_10_1016_j_neucom_2017_01_030 crossref_primary_10_1016_j_neucom_2016_05_053 crossref_primary_10_1155_2018_6310482 crossref_primary_10_1002_cav_2065 crossref_primary_10_1016_j_neucom_2015_05_048 crossref_primary_10_1016_j_ins_2014_03_016 crossref_primary_10_1016_j_ins_2015_03_032 crossref_primary_10_1007_s11042_023_15102_9 crossref_primary_10_1016_j_neucom_2016_06_095 crossref_primary_10_1007_s11042_013_1622_6 crossref_primary_10_1016_j_neucom_2015_10_005 crossref_primary_10_1016_j_neucom_2017_06_034 crossref_primary_10_1109_TNNLS_2016_2582532 crossref_primary_10_1007_s11042_013_1550_5 crossref_primary_10_1109_TMM_2013_2286580 crossref_primary_10_1109_TNNLS_2018_2851612 crossref_primary_10_1007_s11263_023_01905_8 crossref_primary_10_1016_j_sigpro_2014_07_025 crossref_primary_10_1007_s00530_014_0407_8 crossref_primary_10_1109_MMUL_2014_20 crossref_primary_10_1108_EC_10_2015_0315 crossref_primary_10_1109_ACCESS_2018_2886791 crossref_primary_10_1109_TIE_2014_2336602 crossref_primary_10_1007_s00530_015_0485_2 crossref_primary_10_1007_s11042_020_09252_3 crossref_primary_10_1109_TIP_2012_2199502 crossref_primary_10_1007_s11042_014_2267_9 crossref_primary_10_1007_s11042_015_2840_x crossref_primary_10_1088_1742_6596_735_1_012007 crossref_primary_10_1016_j_neucom_2012_12_022 crossref_primary_10_1007_s11042_018_7102_2 crossref_primary_10_1109_TCSVT_2021_3091581 crossref_primary_10_1016_j_ins_2015_04_042 crossref_primary_10_1109_ACCESS_2018_2845362 crossref_primary_10_1016_j_ins_2014_03_079 crossref_primary_10_1016_j_sigpro_2014_09_038 crossref_primary_10_1016_j_ins_2014_08_017 crossref_primary_10_1016_j_ins_2015_01_027 crossref_primary_10_1109_TIP_2014_2343460 crossref_primary_10_1177_0954405414564233 crossref_primary_10_1109_TCYB_2017_2778764 crossref_primary_10_1016_j_neucom_2014_06_088 crossref_primary_10_1109_TMM_2024_3521706 crossref_primary_10_1016_j_compeleceng_2019_06_022 crossref_primary_10_1016_j_neucom_2014_06_089 crossref_primary_10_1007_s11042_017_4417_3 crossref_primary_10_1016_j_neucom_2014_06_086 crossref_primary_10_1016_j_neucom_2014_06_084 crossref_primary_10_1016_j_jvcir_2018_11_046 crossref_primary_10_1016_j_neucom_2014_06_085 crossref_primary_10_1016_j_neucom_2014_04_088 crossref_primary_10_1109_TIP_2014_2311658 crossref_primary_10_1109_TIP_2016_2609814 crossref_primary_10_1016_j_knosys_2015_10_019 crossref_primary_10_1145_3387920 crossref_primary_10_1007_s00530_022_00939_1 |
| Cites_doi | 10.1109/34.55109 10.1109/TVCG.2004.19 10.1109/TMM.2006.886359 10.1145/571647.571648 10.1016/j.neucom.2011.06.002 10.1109/CVPR.2011.5995344 10.1109/ICIP.2003.1247355 10.1109/CVPR.2003.1211497 10.1007/s11263-009-0281-6 10.1016/S0923-5965(00)00019-9 10.1145/566282.566322 10.1145/1126004.1126006 10.1007/s11263-009-0277-2 10.1142/S021946780300097X 10.1016/j.patcog.2006.04.034 10.1007/s11704-010-0366-y 10.1109/CVPR.2010.5540118 10.1145/588272.588279 10.1109/CVPR.2006.311 10.1016/j.patcog.2010.08.022 10.1109/TCSVT.2008.2002825 10.1109/TCSVT.2009.2017400 10.1109/34.765655 10.1016/j.patcog.2009.04.024 10.1109/ICPR.2002.1048337 10.1007/s11042-007-0181-0 10.1007/s11042-007-0188-6 10.1016/j.neucom.2009.11.050 10.1109/TMM.2009.2012919 10.1016/j.image.2009.11.001 10.1111/1467-8659.00669 10.1145/1873951.1874122 10.1145/1618452.1618505 10.1109/SMI.2008.4547955 10.1109/ICCV.2007.4408987 10.1007/s11263-009-0280-7 10.1016/j.image.2010.10.006 10.1109/TMM.2011.2160619 10.1007/s11042-009-0424-3 10.1016/S0923-5965(00)00020-5 10.1109/TSMCC.2007.905756 10.1016/j.patcog.2009.07.012 10.1007/s11263-011-0472-9 10.1109/TMM.2010.2055045 10.1109/LSP.2008.2010819 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1109/TIP.2011.2170081 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 2281 |
| ExternalDocumentID | 21965212 10_1109_TIP_2011_2170081 6030936 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c360t-c0bb6fff245d708c7b2dd7298fca3caa3d2dcf387a260ffa5638f67a6c6ad08b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 196 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302181800068&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Sun Sep 28 05:59:52 EDT 2025 Mon Jul 21 05:58:02 EDT 2025 Tue Nov 18 22:18:53 EST 2025 Sat Nov 29 03:20:47 EST 2025 Tue Aug 26 16:57:54 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c360t-c0bb6fff245d708c7b2dd7298fca3caa3d2dcf387a260ffa5638f67a6c6ad08b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://scholarbank.nus.edu.sg/handle/10635/43076 |
| PMID | 21965212 |
| PQID | 940837392 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_940837392 pubmed_primary_21965212 crossref_citationtrail_10_1109_TIP_2011_2170081 ieee_primary_6030936 crossref_primary_10_1109_TIP_2011_2170081 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-April 2012-4-00 2012-Apr 20120401 |
| PublicationDateYYYYMMDD | 2012-04-01 |
| PublicationDate_xml | – month: 04 year: 2012 text: 2012-April |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2012 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref57 ref13 ref56 ref12 ohbuchi (ref26) 2008 ref15 ref14 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref18 ref51 vranic (ref41) 2004 furuya (ref35) 2008 su (ref47) 2009 ref45 ref48 paquet (ref19) 0 ref42 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ohbuchi (ref33) 2008 ref6 ref5 ref40 ref34 ref37 ref36 ref31 ref30 ref32 gao (ref24) 2010 ref2 leng (ref20) 2009; 18 ref1 ref39 (ref53) 1999 ref38 ref23 ref25 ref21 yang (ref3) 2007; 37 ref28 ref27 sun (ref46) 2009 ref29 steinbach (ref50) 2000 gao (ref22) 2010 |
| References_xml | – ident: ref48 doi: 10.1109/34.55109 – year: 2004 ident: ref41 publication-title: 3D Model Retrieval – ident: ref18 doi: 10.1109/TVCG.2004.19 – ident: ref42 doi: 10.1109/TMM.2006.886359 – ident: ref11 doi: 10.1145/571647.571648 – ident: ref7 doi: 10.1016/j.neucom.2011.06.002 – ident: ref28 doi: 10.1109/CVPR.2011.5995344 – ident: ref52 doi: 10.1109/ICIP.2003.1247355 – ident: ref51 doi: 10.1109/CVPR.2003.1211497 – ident: ref38 doi: 10.1007/s11263-009-0281-6 – ident: ref49 doi: 10.1016/S0923-5965(00)00019-9 – ident: ref10 doi: 10.1145/566282.566322 – ident: ref1 doi: 10.1145/1126004.1126006 – year: 1999 ident: ref53 publication-title: Description of Core Experiments for MPEG-7 Color/Texture Descriptors – ident: ref34 doi: 10.1007/s11263-009-0277-2 – ident: ref14 doi: 10.1142/S021946780300097X – start-page: 1 year: 2000 ident: ref50 article-title: A comparison of document clustering techniques publication-title: Proc KDD Workshop Text Mining – ident: ref32 doi: 10.1016/j.patcog.2006.04.034 – ident: ref6 doi: 10.1007/s11704-010-0366-y – ident: ref29 doi: 10.1109/CVPR.2010.5540118 – ident: ref15 doi: 10.1145/588272.588279 – ident: ref44 doi: 10.1109/CVPR.2006.311 – ident: ref30 doi: 10.1016/j.patcog.2010.08.022 – ident: ref8 doi: 10.1109/TCSVT.2008.2002825 – ident: ref56 doi: 10.1109/TCSVT.2009.2017400 – ident: ref16 doi: 10.1109/34.765655 – ident: ref12 doi: 10.1016/j.patcog.2009.04.024 – ident: ref39 doi: 10.1109/ICPR.2002.1048337 – ident: ref2 doi: 10.1007/s11042-007-0181-0 – start-page: 1711 year: 2010 ident: ref24 article-title: Intelligent query: Open another door to 3-D object retrieval publication-title: Proc ACM Conf Multimedia – start-page: 213 year: 2009 ident: ref47 article-title: Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories publication-title: Proc IEEE Int Conf Comput Vis – ident: ref9 doi: 10.1007/s11042-007-0188-6 – ident: ref43 doi: 10.1016/j.neucom.2009.11.050 – volume: 18 start-page: 291 year: 2009 ident: ref20 article-title: Mate: A visual based 3-D shape descriptor publication-title: Chin J Electron – start-page: 63 year: 2008 ident: ref33 article-title: Scale-weighted dense bag of visual features for 3-D model retrieval from a partial view 3-D model publication-title: Proc IEEE ICCV Workshop S3DV – ident: ref55 doi: 10.1109/TMM.2009.2012919 – ident: ref23 doi: 10.1016/j.image.2009.11.001 – ident: ref31 doi: 10.1111/1467-8659.00669 – ident: ref36 doi: 10.1145/1873951.1874122 – ident: ref27 doi: 10.1145/1618452.1618505 – ident: ref25 doi: 10.1109/SMI.2008.4547955 – start-page: 947 year: 2010 ident: ref22 article-title: Representative views re-ranking for 3-D model retrieval with multi-bipartite graph reinforcement model publication-title: Proc ACM Conf Multimedia – start-page: 1247 year: 2009 ident: ref46 article-title: A multi-view probabilistic model for 3-D object classes publication-title: Proc Comput Vis Pattern Recognit – ident: ref45 doi: 10.1109/ICCV.2007.4408987 – start-page: 26 year: 2008 ident: ref35 article-title: Dense sampling and fast encoding for 3-D model retrieval using bag-of-visual features publication-title: Proceedings of International Conference on Image Video Retrieval – ident: ref17 doi: 10.1007/s11263-009-0280-7 – ident: ref40 doi: 10.1016/j.image.2010.10.006 – ident: ref5 doi: 10.1109/TMM.2011.2160619 – ident: ref4 doi: 10.1007/s11042-009-0424-3 – ident: ref13 doi: 10.1016/S0923-5965(00)00020-5 – volume: 37 start-page: 1081 year: 2007 ident: ref3 article-title: Content-based 3-d model retrieval: A survey publication-title: IEEE Trans Syst Man Cybern C Appl Rev doi: 10.1109/TSMCC.2007.905756 – ident: ref37 doi: 10.1016/j.patcog.2009.07.012 – ident: ref54 doi: 10.1007/s11263-011-0472-9 – start-page: 22 year: 2008 ident: ref26 article-title: Accelerating bag-of-features sift algorithm for 3-D model retrieval publication-title: Proc SAMT Workshop Semantic 3-D Media – year: 0 ident: ref19 – ident: ref57 doi: 10.1109/TMM.2010.2055045 – ident: ref21 doi: 10.1109/LSP.2008.2010819 |
| SSID | ssj0014516 |
| Score | 2.5054832 |
| Snippet | Recently, extensive research efforts have been dedicated to view-based methods for 3-D object retrieval due to the highly discriminative property of multiviews... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2269 |
| SubjectTerms | 3-D object Algorithms Arrays Camera constraint-free Cameras Computational modeling Educational institutions Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Information Storage and Retrieval - methods Pattern Recognition, Automated - methods Photography - methods Reproducibility of Results retrieval Sensitivity and Specificity Signal Processing, Computer-Assisted Solid modeling Subtraction Technique Three dimensional displays view-based |
| Title | Camera Constraint-Free View-Based 3-D Object Retrieval |
| URI | https://ieeexplore.ieee.org/document/6030936 https://www.ncbi.nlm.nih.gov/pubmed/21965212 https://www.proquest.com/docview/940837392 |
| Volume | 21 |
| WOSCitedRecordID | wos000302181800068&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB7WxQd98D7WY8mDL4Jxa49J-ui1KMgqorJvJc0BC9KVPfTvm6QHCir41ockbebofJnJzAAcKYNGcsHt2QQFjY0WVDDUVDGTsyDRgiufKHzHBgM-HKYPLThpcmG01v7ymT51jz6Wr8Zy7lxlPfRxO1yABcawzNVqIgau4ayPbCaMMgv765BkkPaebh_KWp2hK0bHz3wB4BRd1uo3a-Tbq_yONL3F6a_-71vXYKVCluS8FIV1aOliA1YrlEkqHZ5uwPKXEoSbgJfCuaWIa9zp20XMaH-iNXkZ6Q96YU2cIhG9Ive589eQR99_ywrnFjz3r58ub2jVS4HKCIMZlUGeozEmjBPFAi5ZHiplgTU3UkRSiEiFSpqIM2EPOMaIxOqlQSZQolABz6NtaBfjQu8Csfs6C1EbgzqJMUyFsf-oWKkAZSwNkx3o1TTNZFVo3G3gNfMHjiDNLEMyx5CsYkgHjpsZb2WRjT_GbjpiN-MqOneA1GzLrIK4qIco9Hg-zdLYokxmYWAHdkp2NnNrKdj7ec19WLJvDst7OgfQnk3m-hAW5ftsNJ10rRAOedcL4ScmCdV3 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB5qFdQHj3rVMw--CMbGPZLso1dpsdYiVXxbsjlAkFZ66N83yW4XBRV824ckJJmZnW9mMjMAx8pQI7ng1jahAkdGCywY1VgxkzESa8GVTxTusG6XPz8nvQqclrkwWmv_-EyfuU8fy1dDOXWusgb1cTs6B_NxFAUkz9YqYwau5ayPbcYMMwv8Z0FJkjT67V5erTNw5ej4uS8BnFCXt_pNH_kGK79jTa9zmqv_2-0arBTYEl3kzLAOFT2owWqBM1EhxeMaLH8pQrgB9Eo4xxRyrTt9w4gJbo60Rk8v-gNfWiWnUIiv0X3mPDbowXfgsuy5CY_Nm_5VCxfdFLAMKZlgSbKMGmOCKFaMcMmyQCkLrbmRIpRChCpQ0oScCWviGCNiK5mGMkElFYrwLNyC6mA40DuA7LnOA6qNoTqOaJAIY_9SkVKEykgaJuvQmN1pKotS4-4Ar6k3OUiSWoKkjiBpQZA6nJQz3vIyG3-M3XCXXY4r7rkOaEa21IqIi3uIgR5Ox2kSWZzJLBCsw3ZOznLujAt2f17zCBZb_btO2ml3b_dgye4iyF_t7EN1MprqA1iQ75OX8ejQs-InZN3X1g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Camera+Constraint-Free+View-Based+3-D+Object+Retrieval&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Gao%2C+Yue&rft.au=Tang%2C+Jinhui&rft.au=Hong%2C+Richang&rft.au=Yan%2C+Shuicheng&rft.date=2012-04-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=21&rft.issue=4&rft.spage=2269&rft.epage=2281&rft_id=info:doi/10.1109%2FTIP.2011.2170081&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2011_2170081 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |