Increasing subsequences, matrix loci and Viennot shadows

Let ${\mathbf {x}}_{n \times n}$ be an $n \times n$ matrix of variables, and let ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]$ be the polynomial ring in these variables over a field ${\mathbb {F}}$ . We study the ideal $I_n \subseteq {\mathbb {F}}[{\mathbf {x}}_{n \times n}]$ generated by all row and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of Mathematics, Sigma Jg. 12
1. Verfasser: Rhoades, Brendon
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge, UK Cambridge University Press 11.11.2024
Schlagworte:
ISSN:2050-5094, 2050-5094
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Let ${\mathbf {x}}_{n \times n}$ be an $n \times n$ matrix of variables, and let ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]$ be the polynomial ring in these variables over a field ${\mathbb {F}}$ . We study the ideal $I_n \subseteq {\mathbb {F}}[{\mathbf {x}}_{n \times n}]$ generated by all row and column variable sums and all products of two variables drawn from the same row or column. We show that the quotient ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$ admits a standard monomial basis determined by Viennot’s shadow line avatar of the Schensted correspondence. As a corollary, the Hilbert series of ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$ is the generating function of permutations in ${\mathfrak {S}}_n$ by the length of their longest increasing subsequence. Along the way, we describe a ‘shadow junta’ basis of the vector space of k-local permutation statistics. We also calculate the structure of ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$ as a graded ${\mathfrak {S}}_n \times {\mathfrak {S}}_n$ -module.
AbstractList Let \({\mathbf {x}}_{n \times n}\) be an \(n \times n\) matrix of variables, and let \({\mathbb {F}}[{\mathbf {x}}_{n \times n}]\) be the polynomial ring in these variables over a field \({\mathbb {F}}\). We study the ideal \(I_n \subseteq {\mathbb {F}}[{\mathbf {x}}_{n \times n}]\) generated by all row and column variable sums and all products of two variables drawn from the same row or column. We show that the quotient \({\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n\) admits a standard monomial basis determined by Viennot’s shadow line avatar of the Schensted correspondence. As a corollary, the Hilbert series of \({\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n\) is the generating function of permutations in \({\mathfrak {S}}_n\) by the length of their longest increasing subsequence. Along the way, we describe a ‘shadow junta’ basis of the vector space of k-local permutation statistics. We also calculate the structure of \({\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n\) as a graded \({\mathfrak {S}}_n \times {\mathfrak {S}}_n\)-module.
Let ${\mathbf {x}}_{n \times n}$ be an $n \times n$ matrix of variables, and let ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]$ be the polynomial ring in these variables over a field ${\mathbb {F}}$ . We study the ideal $I_n \subseteq {\mathbb {F}}[{\mathbf {x}}_{n \times n}]$ generated by all row and column variable sums and all products of two variables drawn from the same row or column. We show that the quotient ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$ admits a standard monomial basis determined by Viennot’s shadow line avatar of the Schensted correspondence. As a corollary, the Hilbert series of ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$ is the generating function of permutations in ${\mathfrak {S}}_n$ by the length of their longest increasing subsequence. Along the way, we describe a ‘shadow junta’ basis of the vector space of k-local permutation statistics. We also calculate the structure of ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$ as a graded ${\mathfrak {S}}_n \times {\mathfrak {S}}_n$ -module.
Let ${\mathbf {x}}_{n \times n}$ be an $n \times n$ matrix of variables, and let ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]$ be the polynomial ring in these variables over a field ${\mathbb {F}}$ . We study the ideal $I_n \subseteq {\mathbb {F}}[{\mathbf {x}}_{n \times n}]$ generated by all row and column variable sums and all products of two variables drawn from the same row or column. We show that the quotient ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$ admits a standard monomial basis determined by Viennot’s shadow line avatar of the Schensted correspondence. As a corollary, the Hilbert series of ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$ is the generating function of permutations in ${\mathfrak {S}}_n$ by the length of their longest increasing subsequence. Along the way, we describe a ‘shadow junta’ basis of the vector space of k -local permutation statistics. We also calculate the structure of ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$ as a graded ${\mathfrak {S}}_n \times {\mathfrak {S}}_n$ -module.
ArticleNumber e97
Author Rhoades, Brendon
Author_xml – sequence: 1
  givenname: Brendon
  surname: Rhoades
  fullname: Rhoades, Brendon
  email: bprhoades@ucsd.edu
  organization: Department of Mathematics, University of California, San Diego, 9500 Gilman Dr., La Jolla, 92093-0112, USA
BookMark eNptkE1LAzEQhoNUsNae_AMLHnXr5Hv3KMWPQsGLeg3Z7Gzd0iY12aL-e7e2qAdPGcIzz8y8p2Tgg0dCzilMKFB93azThAETEy2PyJCBhFxCKQZ_6hMyTmkJAJQyLbUekmLmXUSbWr_I0rZK-LZF7zBdZWvbxfYjWwXXZtbX2UuL3ocuS6-2Du_pjBw3dpVwfHhH5Pnu9mn6kM8f72fTm3nuuIIurxoOjWZaVZVE51AAsMqV3FFeK-WYkLyWBRXUWrBMuoqVWhRlSZUtS8YoH5HZ3lsHuzSb2K5t_DTBtub7I8SFsbFr3QoNyrpwjUPKlBYKVCGaSjScW7RCo8DedbF3bWLo70ydWYZt9P36hvdNCpikuqcu95SLIaWIzc9UCmaXtOmTNrukjZY9nR9ou65iWy_wV_of_wW-rX_Y
Cites_doi 10.4153/CJM-1961-015-3
10.1007/s00026-017-0365-x
10.1093/imrn/rnad033
10.1016/0001-8708(92)90034-I
10.1090/tran/8237
10.1007/s00209-021-02800-z
10.1112/plms/s2-26.1.531
10.1090/S0002-9947-1979-0526314-6
10.1007/BFb0090011
10.1090/S0002-9904-1963-10980-5
10.1016/j.aim.2018.01.028
10.1007/978-1-4757-6804-6
ContentType Journal Article
Copyright The Author(s), 2024. Published by Cambridge University Press
The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2024. Published by Cambridge University Press
– notice: The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IKXGN
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1017/fms.2024.75
DatabaseName Cambridge University Press Open Access journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Databases
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: IKXGN
  name: Cambridge University Press Open Access journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2050-5094
ExternalDocumentID oai_doaj_org_article_e5d8cfce1267460684fb4f33aea47e4e
10_1017_fms_2024_75
GroupedDBID 09C
09E
0E1
0R~
5VS
8FE
8FG
AABES
AABWE
AACJH
AAGFV
AAKTX
AARAB
AASVR
ABBXD
ABDBF
ABGDZ
ABJCF
ABKKG
ABMWE
ABQTM
ABROB
ABVZP
ACBMC
ACGFS
ACIMK
ACIWK
ACUIJ
ACZBM
ACZUX
ACZWT
ADBBV
ADCGK
ADDNB
ADFEC
ADKIL
ADVJH
AEBAK
AEGXH
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
AUXHV
BBLKV
BCNDV
BENPR
BGHMG
BGLVJ
BLZWO
BMAJL
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CJCSC
DOHLZ
EBS
GROUPED_DOAJ
HCIFZ
HG-
HZ~
I.6
IKXGN
IOEEP
IPYYG
IS6
I~P
JHPGK
JQKCU
KCGVB
KFECR
KQ8
L6V
M-V
M7S
M~E
NIKVX
O9-
OK1
PTHSS
PYCCK
RAMDC
RCA
ROL
RR0
S6-
S6U
SAAAG
T9M
UT1
WFFJZ
ZYDXJ
AANRG
AAYXX
ABVKB
ABXHF
ACAJB
ACDLN
ACUHS
ADOVH
AEHGV
AFFHD
AFZFC
AKMAY
AMVHM
CHEAL
CITATION
EJD
M48
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c360t-bf30f7276bb5ecce4002bc93c13d66c2453d58141aa0a25cb297489916a992213
IEDL.DBID IKXGN
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001352190900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-5094
IngestDate Tue Oct 14 14:52:50 EDT 2025
Fri Jul 25 11:49:37 EDT 2025
Sat Nov 29 02:40:40 EST 2025
Mon Nov 11 02:58:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 05E10
13P10
Language English
License https://creativecommons.org/licenses/by/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-bf30f7276bb5ecce4002bc93c13d66c2453d58141aa0a25cb297489916a992213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.cambridge.org/core/product/identifier/S2050509424000756/type/journal_article
PQID 3126602517
PQPubID 2035935
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_e5d8cfce1267460684fb4f33aea47e4e
proquest_journals_3126602517
crossref_primary_10_1017_fms_2024_75
cambridge_journals_10_1017_fms_2024_75
PublicationCentury 2000
PublicationDate 2024-11-11
PublicationDateYYYYMMDD 2024-11-11
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-11
  day: 11
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Forum of Mathematics, Sigma
PublicationTitleAlternate Forum of Mathematics, Sigma
PublicationYear 2024
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 1963; 69
1927; 26
2023
2023; 5
2022
2017; 21
1979; 249
2018
2018; 329
2021; 374
1961; 13
1992; 94
2022; 300
Beullens (S2050509424000756_r1) 2018
Fulton (S2050509424000756_r6) 1997; 35
S2050509424000756_r4
S2050509424000756_r3
S2050509424000756_r5
S2050509424000756_r8
S2050509424000756_r19
S2050509424000756_r18
S2050509424000756_r7
S2050509424000756_r17
S2050509424000756_r9
S2050509424000756_r16
S2050509424000756_r15
S2050509424000756_r14
S2050509424000756_r13
S2050509424000756_r12
S2050509424000756_r11
Hamaker (S2050509424000756_r10) 2022
Briaud (S2050509424000756_r2) 2023; 5
S2050509424000756_r20
References_xml – volume: 13
  start-page: 179
  year: 1961
  end-page: 191
  article-title: Longest increasing and decreasing subsequences
  publication-title: Canad. J. Math.
– year: 2023
  article-title: Zonotopal algebras, orbit harmonics, and Donaldson–Thomas invariants of symmetric quivers
  publication-title: Int. Math. Res. Not. IMRN
– year: 2022
  article-title: The characters of local and regular permutation statistics
  publication-title: Preprint
– volume: 26
  start-page: 531
  year: 1927
  end-page: 555
  article-title: Some properties of enumeration in the theory of modular systems
  publication-title: Proc. London Math. Soc.
– volume: 374
  start-page: 2609
  year: 2021
  end-page: 2660
  article-title: Ordered set partitions, Garsia–Procesi modules, and rank varieties
  publication-title: Trans. Amer. Math. Soc.
– volume: 5
  start-page: 391
  year: 2023
  end-page: 422
  article-title: A new algebraic approach to the regular syndrome decoding problem and implications for PCG constructions
  publication-title: EUROCRYPT
– volume: 300
  start-page: 639
  year: 2022
  end-page: 660
  article-title: Cyclic sieving and orbit harmonics
  publication-title: Math. Z.
– year: 2018
  article-title: PKP-based signature scheme
  publication-title: Cryptology
– volume: 329
  start-page: 851
  year: 2018
  end-page: 915
  article-title: Ordered set partitions, generalized coinvariant algebras, and the Delta conjecture
  publication-title: Adv. Math.
– volume: 249
  start-page: 139
  issue: 1
  year: 1979
  end-page: 157
  article-title: Balanced Cohen–Macaulay complexes
  publication-title: Trans. Amer. Math. Soc.
– volume: 69
  start-page: 518
  issue: 4
  year: 1963
  end-page: 526
  article-title: Lie group representations on polynomial rings
  publication-title: Bull. Amer. Math. Soc.
– volume: 94
  start-page: 82
  year: 1992
  end-page: 138
  article-title: On certain graded ${S}_n$ -modules and the $q$ -Kostka polynomials
  publication-title: Adv. Math.
– volume: 21
  start-page: 535
  year: 2017
  end-page: 549
  article-title: Longest increasing subsequences and log concavity
  publication-title: Ann. Comb.
– ident: S2050509424000756_r4
– ident: S2050509424000756_r18
  doi: 10.4153/CJM-1961-015-3
– year: 2018
  ident: S2050509424000756_r1
  article-title: PKP-based signature scheme
  publication-title: Cryptology
– ident: S2050509424000756_r3
  doi: 10.1007/s00026-017-0365-x
– ident: S2050509424000756_r16
  doi: 10.1093/imrn/rnad033
– ident: S2050509424000756_r7
  doi: 10.1016/0001-8708(92)90034-I
– ident: S2050509424000756_r8
  doi: 10.1090/tran/8237
– ident: S2050509424000756_r15
  doi: 10.1007/s00209-021-02800-z
– ident: S2050509424000756_r13
  doi: 10.1112/plms/s2-26.1.531
– ident: S2050509424000756_r19
  doi: 10.1090/S0002-9947-1979-0526314-6
– ident: S2050509424000756_r20
  doi: 10.1007/BFb0090011
– ident: S2050509424000756_r12
– year: 2022
  ident: S2050509424000756_r10
  article-title: The characters of local and regular permutation statistics
  publication-title: Preprint
– ident: S2050509424000756_r14
– ident: S2050509424000756_r5
– ident: S2050509424000756_r11
  doi: 10.1090/S0002-9904-1963-10980-5
– ident: S2050509424000756_r9
  doi: 10.1016/j.aim.2018.01.028
– ident: S2050509424000756_r17
  doi: 10.1007/978-1-4757-6804-6
– volume: 5
  start-page: 391
  year: 2023
  ident: S2050509424000756_r2
  article-title: A new algebraic approach to the regular syndrome decoding problem and implications for PCG constructions
  publication-title: EUROCRYPT
– volume: 35
  volume-title: Young Tableaux: With Applications to Representation Theory and Geometry
  year: 1997
  ident: S2050509424000756_r6
SSID ssj0001127577
Score 2.3195238
Snippet Let ${\mathbf {x}}_{n \times n}$ be an $n \times n$ matrix of variables, and let ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]$ be the polynomial ring in these...
Let \({\mathbf {x}}_{n \times n}\) be an \(n \times n\) matrix of variables, and let \({\mathbb {F}}[{\mathbf {x}}_{n \times n}]\) be the polynomial ring in...
Let ${\mathbf {x}}_{n \times n}$ be an $n \times n$ matrix of variables, and let ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]$ be the polynomial ring in these...
SourceID doaj
proquest
crossref
cambridge
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms 05E10
13P10
Avatars
Combinatorics
Discrete Mathematics
Matrices (mathematics)
Permutations
Polynomials
Rings (mathematics)
Series (mathematics)
Shadows
Variables
Vector space
Vector spaces
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8NAEIAXKR70ID6xWmUPxZPR7CubHFUsHrR40NJb2Cf20Faa-Pj57iTpQxS8eAthYYd57EzC7DcIda1TIW0IEVEvFUC1WaSc1SHcVWIy7jytJs8N7mW_nw6H2ePKqC_oCavxwLXiLp2wqfHGEZpIHqrtlHvNPWPKKS4dd3D6xjJb-Ziq_q4At1zK5kIeMKL9GODclF9AR-ESo_AtHVXU_h-HcpVpettoqykR8VUt2g5ac5NdtPmw4KsWeygNYQ3d5CHv4CKE_rwf-hyPAbn_iUOKGmE1sXgADV3TEhcvyk4_in303Lt9urmLmhkIkWFJXEbas9iHGiPRWgRtuxByVJuMGcJskhjKBbMiJZwoFSsqjKYZ8GRC0aeAOEvYAWpNphN3iLBnTvOMU-mF5zZj4VFRA0Q7Iq1OeRudLdSSN55c5HUXmAw-X-Sgv1yKNurOdZa_1kyM35ddgz4XSwBkXb0I5s0b8-Z_mbeNOnNrLGViYXVSwdaO_mOPY7QBIsMNQ0I6qFXO3twJWjfv5aiYnVaO9QUQQNJL
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMctKAww8EYUCspQMRGoX3EyIUBUDFAhAVW3yE_o0KQ05fHx8aVpKwRiYYscD5bPd-c4f_8Ooaax0qcNzkPihASoNg2lNcq7u4x0wqwjZeW57q3odOJeL7mvDtyKSlY5jYlloDa5hjPyM4p9KikBW-fD1xCqRsHf1aqExiJaAkoCLqV7D_MzFqCXC1FdywNStBsAopuwU9AVzmEK35JSye7_EZrLfNNe_-9IN9BatdMMLiZLYxMt2GwLrd7NMK3FNop9dABRuk9fQeEjyFRWfRIMgNz_GfhM1w9kZoIu6MLycVC8SJN_FDvoqX39eHUTVqUUQk2j1jhUjrac36pESnFvNOs9lyidUI2piSJNGKeGx5hhKVuScK1IAlgav3eUAK7FdBfVsjyzeyhw1CqWMCIcd8wk1D9KogGMh4VRMauj49m8ppVDFOlETCa86xQpGCAVvI6a00lPhxO0xu_dLsEgsy7Awy4b8tFzWrlXarmJtdPWT71g_pssZk4xR6m0kgnLbB01praaj2luqP2_Xx-gFRgMXEHEuIFq49GbPUTL-n3cL0ZH5Zr7AgWy31s
  priority: 102
  providerName: ProQuest
Title Increasing subsequences, matrix loci and Viennot shadows
URI https://www.cambridge.org/core/product/identifier/S2050509424000756/type/journal_article
https://www.proquest.com/docview/3126602517
https://doaj.org/article/e5d8cfce1267460684fb4f33aea47e4e
Volume 12
WOSCitedRecordID wos001352190900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAEN
  databaseName: Cambridge University Press Open Access journals
  customDbUrl:
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: IKXGN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://journals.cambridge.org/action/login
  providerName: Cambridge University Press
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: M7S
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3LbxMxEIdHpeEAh1JeIn1Ee6h6YknWz91ji1JaAVHVQpXbyk-RQ5MqGx4n_nZm9pEIlQOXXlaW5YPtsT229-dvAI58MOg2pExZ1Iag2jw1wVuc7ka5QoTI6shzN5_0ZJJPp8XlFky7tzAkq1wzDuo_-XV8tLsGfzqc-UZDE5bDa0ZB2PB0QipIdHxqSJeWw9YEZdvxj6CHOxiGU7Z38XH6YbK5fyGyudbtkz2iSMdbwncz8Y40hxvQwl8Oq-b631u2a1909uzhWrELO-3-NDlpcp7DVpi_gKef13DX6iXkuKaQlB2dXlLhutOJsd8mt8T7_5Wgf5wlZu6TG1KTLVZJ9c34xc_qFXw9G395f562ARhSx9VoldrIRxE3OMpaiaYOWEVmXcFdxr1SjgnJvcwzkRkzMkw6ywqC2eCO0xDuNuOvYXu-mIc3kEQerMBW6iij8AXHpGGOcHqZ9jYXfThed1jZtr4qGwmaxglXlWSaUss-HHXmKO8aIMe_i52SqdZFiKJdZ6Axul4tg_S5iy5kTGmBJ7lcRCsi5yYYoYMIfTjoDL2pE44mpWrS297_1nkfnlCKnjBm2QFsr5bfwyE8dj9Ws2o5gN7peHJ5NaivAwbtOB2QCPWavr_HfwC9wPpC
linkProvider Cambridge University Press
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4gmKgH8IFxBbQP6MmRnX5MzxyMAZRAWDYmIuE29lM5sIM7q8Cf8jdaNTuzG6PxxsHbZKYzqUx9XV93T9VXAJs-GKQNpRIetSFRbZGY4C1Od5O5QobIm85zJwM9HOanp8WHBfjZ1cJQWmUXE5tA7StHZ-RbIkUqaQS23l58S6hrFP1d7VpoTGFxGK4vcctWvzl4h_59wfne--Pd_aTtKpA4kfUniY2iH5G1M2sV2h8QxNy6QrhU-CxzXCrhVZ7K1Ji-4cpZXpBCCy6jDGm4pgLfewuWcBnBiyZV8OP8TIfU0rVuywBJmTqekyQ4l68pj3Eu3vAbCTa9Av6ggobf9lb-ty9zH5bblTTbnkL_ASyE0UO4dzSToa0fQY7Rj5LukZ5ZjRGySxt_xc6pM8EVQyY_Y2bk2QnlvVUTVn81vrqsV-HTjZj-GBZH1Sg8ARZFsLKQXEcVpS8EXhruSPgv1d7msgcvZ34s2wlfl9NkOY2hoS7J4aVWPdjsnFxeTKVD_j5shwAwG0J6382NavylbMNHGZTPXXQBXa0l7jlzGa2MQphgpA4y9GC9w8bcpjkwnv778XO4s398NCgHB8PDNbhLhlG5ZZquw-Jk_D1swG33Y3JWj581eGfw-aZh9AsdMzoh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+subsequences%2C+matrix+loci+and+Viennot+shadows&rft.jtitle=Forum+of+Mathematics%2C+Sigma&rft.au=Rhoades%2C+Brendon&rft.date=2024-11-11&rft.issn=2050-5094&rft.eissn=2050-5094&rft.volume=12&rft_id=info:doi/10.1017%2Ffms.2024.75&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_fms_2024_75
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-5094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-5094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-5094&client=summon