Saliency Detection via the Improved Hierarchical Principal Component Analysis Method

Aiming at the problems of intensive background noise, low accuracy, and high computational complexity of the current significant object detection methods, the visual saliency detection algorithm based on Hierarchical Principal Component Analysis (HPCA) has been proposed in the paper. Firstly, the or...

Full description

Saved in:
Bibliographic Details
Published in:Wireless communications and mobile computing Vol. 2020; no. 2020; pp. 1 - 12
Main Authors: Ghabally, Mike, Masri, Christina, Tantak, Nour, Ward, Fadi, Omar, Ghefar, Gennatas, Constantine, Chen, Yuantao, Chammout, Anwar
Format: Journal Article
Language:English
Published: Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Subjects:
ISSN:1530-8669, 1530-8677
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Aiming at the problems of intensive background noise, low accuracy, and high computational complexity of the current significant object detection methods, the visual saliency detection algorithm based on Hierarchical Principal Component Analysis (HPCA) has been proposed in the paper. Firstly, the original RGB image has been converted to a grayscale image, and the original grayscale image has been divided into eight layers by the bit surface stratification technique. Each image layer contains significant object information matching the layer image features. Secondly, taking the color structure of the original image as the reference image, the grayscale image is reassigned by the grayscale color conversion method, so that the layered image not only reflects the original structural features but also effectively preserves the color feature of the original image. Thirdly, the Principal Component Analysis (PCA) has been performed on the layered image to obtain the structural difference characteristics and color difference characteristics of each layer of the image in the principal component direction. Fourthly, two features are integrated to get the saliency map with high robustness and to further refine our results; the known priors have been incorporated on image organization, which can place the subject of the photograph near the center of the image. Finally, the entropy calculation has been used to determine the optimal image from the layered saliency map; the optimal map has the least background information and most prominently saliency objects than others. The object detection results of the proposed model are closer to the ground truth and take advantages of performance parameters including precision rate (PRE), recall rate (REC), and F-measure (FME). The HPCA model’s conclusion can obviously reduce the interference of redundant information and effectively separate the saliency object from the background. At the same time, it had more improved detection accuracy than others.
AbstractList Aiming at the problems of intensive background noise, low accuracy, and high computational complexity of the current significant object detection methods, the visual saliency detection algorithm based on Hierarchical Principal Component Analysis (HPCA) has been proposed in the paper. Firstly, the original RGB image has been converted to a grayscale image, and the original grayscale image has been divided into eight layers by the bit surface stratification technique. Each image layer contains significant object information matching the layer image features. Secondly, taking the color structure of the original image as the reference image, the grayscale image is reassigned by the grayscale color conversion method, so that the layered image not only reflects the original structural features but also effectively preserves the color feature of the original image. Thirdly, the Principal Component Analysis (PCA) has been performed on the layered image to obtain the structural difference characteristics and color difference characteristics of each layer of the image in the principal component direction. Fourthly, two features are integrated to get the saliency map with high robustness and to further refine our results; the known priors have been incorporated on image organization, which can place the subject of the photograph near the center of the image. Finally, the entropy calculation has been used to determine the optimal image from the layered saliency map; the optimal map has the least background information and most prominently saliency objects than others. The object detection results of the proposed model are closer to the ground truth and take advantages of performance parameters including precision rate (PRE), recall rate (REC), and F-measure (FME). The HPCA model’s conclusion can obviously reduce the interference of redundant information and effectively separate the saliency object from the background. At the same time, it had more improved detection accuracy than others.
Aiming at the problems of intensive background noise, low accuracy, and high computational complexity of the current significant object detection methods, the visual saliency detection algorithm based on Hierarchical Principal Component Analysis (HPCA) has been proposed in the paper. Firstly, the original RGB image has been converted to a grayscale image, and the original grayscale image has been divided into eight layers by the bit surface stratification technique. Each image layer contains significant object information matching the layer image features. Secondly, taking the color structure of the original image as the reference image, the grayscale image is reassigned by the grayscale color conversion method, so that the layered image not only reflects the original structural features but also effectively preserves the color feature of the original image. Thirdly, the Principal Component Analysis (PCA) has been performed on the layered image to obtain the structural difference characteristics and color difference characteristics of each layer of the image in the principal component direction. Fourthly, two features are integrated to get the saliency map with high robustness and to further refine our results; the known priors have been incorporated on image organization, which can place the subject of the photograph near the center of the image. Finally, the entropy calculation has been used to determine the optimal image from the layered saliency map; the optimal map has the least background information and most prominently saliency objects than others. The object detection results of the proposed model are closer to the ground truth and take advantages of performance parameters including precision rate (PRE), recall rate (REC), and F -measure (FME). The HPCA model’s conclusion can obviously reduce the interference of redundant information and effectively separate the saliency object from the background. At the same time, it had more improved detection accuracy than others.
Author Ward, Fadi
Tantak, Nour
Chen, Yuantao
Gennatas, Constantine
Masri, Christina
Omar, Ghefar
Ghabally, Mike
Chammout, Anwar
Author_xml – sequence: 1
  fullname: Ghabally, Mike
– sequence: 2
  fullname: Masri, Christina
– sequence: 3
  fullname: Tantak, Nour
– sequence: 4
  fullname: Ward, Fadi
– sequence: 5
  fullname: Omar, Ghefar
– sequence: 6
  fullname: Gennatas, Constantine
– sequence: 7
  fullname: Chen, Yuantao
– sequence: 8
  fullname: Chammout, Anwar
BookMark eNqFkE1Lw0AQhhepYFu9eZaAR43dj-wmeyz1o0JFwd7DZLMhW9Ik7m4r_fcmpCgI4mnm8LwzL88Ejeqm1ghdEnxHCOcziimeJQmlcRyfoDHhDIeJiOPR9y7kGZo4t8EYM0zJGK3foTK6VofgXnutvGnqYG8g8KUOnretbfY6D5ZGW7CqNAqq4M2aWpm22xbNtu0K1D6Y11AdnHHBi_Zlk5-j0wIqpy-Oc4rWjw_rxTJcvT49L-arUDGBfZhxCZBgSbkgAlMODGKhZUIJB0IBs0iwWHKuaRbriCRSMJUXOSVFJmSRsSm6Hs52NT922vl00-xsV8WlNCK4j0a0o24HStnGOauLtLVmC_aQEpz22tJeW3rU1uH0F66Mh96Lt2Cqv0I3Q6g0dQ6f5r8XVwOtO0YX8ENTEgks2RfPFIdA
CitedBy_id crossref_primary_10_1007_s11042_021_11209_z
crossref_primary_10_1007_s11042_021_11416_8
crossref_primary_10_1155_2020_7219659
crossref_primary_10_1007_s11042_021_11668_4
crossref_primary_10_32604_cmc_2021_013488
crossref_primary_10_1080_00051144_2020_1821535
crossref_primary_10_1007_s11042_020_09796_4
crossref_primary_10_1007_s11042_020_09583_1
crossref_primary_10_1109_ACCESS_2020_3007896
crossref_primary_10_1007_s11042_021_10721_6
crossref_primary_10_1155_2020_8891778
crossref_primary_10_1007_s11042_020_10218_8
crossref_primary_10_1007_s11042_021_10924_x
crossref_primary_10_1007_s11042_022_11962_9
crossref_primary_10_1007_s12652_020_02066_z
crossref_primary_10_1038_s41598_024_61105_3
crossref_primary_10_1007_s10994_024_06518_x
crossref_primary_10_1007_s11042_020_10010_8
crossref_primary_10_1007_s11042_020_09946_8
crossref_primary_10_1007_s10489_020_01971_2
crossref_primary_10_1109_ACCESS_2020_3040424
crossref_primary_10_1007_s11042_022_13275_3
crossref_primary_10_1007_s11227_021_04188_3
crossref_primary_10_1155_2022_5605846
crossref_primary_10_1007_s11042_020_10141_y
crossref_primary_10_1007_s11042_020_09448_7
crossref_primary_10_1155_2020_8894760
crossref_primary_10_3390_math8091558
crossref_primary_10_1007_s11042_020_10426_2
crossref_primary_10_1007_s11042_020_10427_1
crossref_primary_10_1007_s11042_021_10672_y
crossref_primary_10_1166_jmihi_2021_3315
crossref_primary_10_1007_s11042_020_09883_6
crossref_primary_10_1007_s11042_020_09887_2
crossref_primary_10_1007_s11042_021_11223_1
crossref_primary_10_1007_s11042_020_10001_9
crossref_primary_10_1155_2020_8864239
crossref_primary_10_1007_s11042_021_10515_w
crossref_primary_10_1007_s11042_020_10348_z
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122501
crossref_primary_10_1007_s11042_020_09708_6
crossref_primary_10_1007_s11042_021_10693_7
crossref_primary_10_1007_s00371_020_01932_3
crossref_primary_10_1007_s11042_020_10080_8
crossref_primary_10_1007_s11042_022_13729_8
crossref_primary_10_48175_IJARSCT_28296
Cites_doi 10.1109/TNSM.2019.2941869
10.1109/TNNLS.2018.2856253
10.1109/MWC.2019.1800325
10.1002/cpe.5533
10.1007/s12243-019-00731-9
10.1109/TPAMI.2014.2345401
10.1109/ACCESS.2019.2901742
10.1109/JIOT.2017.2737479
10.1155/2020/8034196
10.1109/tpami.2011.146
10.1109/JIOT.2019.2949352
10.1016/j.apm.2017.07.009
10.1016/j.sigpro.2020.107456
10.1007/s10586-018-1772-4
10.1155/2020/5859273
10.1007/s11554-019-00917-3
10.1109/ACCESS.2019.2911892
10.1016/j.jvcir.2019.01.029
10.1109/34.730558
10.1007/s11263-016-0977-3
10.1007/s12652-018-01171-4
10.1145/3281746
10.1016/j.neucom.2019.03.053
10.1109/TIP.2017.2721112
ContentType Journal Article
Copyright Copyright © 2020 Yuantao Chen et al.
Copyright © 2020 Yuantao Chen et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2020 Yuantao Chen et al.
– notice: Copyright © 2020 Yuantao Chen et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1155/2020/8822777
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-8677
Editor Lu, Huimin
Editor_xml – sequence: 1
  givenname: Huimin
  surname: Lu
  fullname: Lu, Huimin
EndPage 12
ExternalDocumentID 10_1155_2020_8822777
1214609
GrantInformation_xml – fundername: Research Foundation of Education Bureau of Hunan Province
  grantid: 19B005; 17A007
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20190089
– fundername: Changsha Science and Technology Planning
  grantid: KQ1703018-04; KQ1703018-01; KQ1706064; KQ1703018
– fundername: Junior Faculty Development Program Project of Changsha University of Science and Technology
  grantid: 2019QJCZ011
– fundername: Changsha Industrial Science and Technology Commissioner
  grantid: 2017-7
– fundername: National Natural Science Foundation of China
  grantid: 61981340416; 61402053; 61972212; 61972056
– fundername: Open Research Fund of Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation
  grantid: 2015TP1005
GroupedDBID .3N
.DC
.GA
.Y3
05W
0R~
123
1L6
24P
31~
3SF
3WU
4.4
4ZD
50Y
50Z
52M
52O
52T
52U
52W
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAZKR
ABIJN
ABPVW
ACBWZ
ACCMX
ACGFO
ACRPL
ACXQS
ACYXJ
ADBBV
ADIZJ
ADJCN
ADNMO
AEFGJ
AEIMD
AENEX
AEUCX
AFBPY
AFKRA
AFZJQ
AGQPQ
AGXDD
AHFXO
AIAGR
AIDQK
AIDYY
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BNHUX
BROTX
BRXPI
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
H13
HCIFZ
HF~
HVGLF
HZ~
ITG
ITH
IX1
JPC
K7-
KQQ
LAW
LH4
LITHE
LP6
LP7
LW6
MK4
MY~
N04
N05
NF~
O9-
OIG
OK1
P2P
P2X
P4D
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
Q.N
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
UB1
W8V
W99
WBKPD
WYUIH
XPP
XV2
~IA
~WT
.4S
1OC
33P
AAJEY
AEUQT
ARCSS
EDO
GROUPED_DOAJ
I-F
IAO
ITC
M0N
O66
P2W
RHU
RHW
RHX
RWI
TUS
WIH
WLBEL
AAYXX
AFFHD
ALUQN
CITATION
O8X
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c360t-b59aa80925616025a3a76e98215a12a034637955e2b7e418963cdfd21fb69fb3
IEDL.DBID K7-
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000536146400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-8669
IngestDate Fri Jul 25 09:33:57 EDT 2025
Sat Nov 29 01:44:00 EST 2025
Tue Nov 18 22:16:52 EST 2025
Sun Jun 02 18:55:10 EDT 2024
Thu Sep 25 15:22:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2020
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-b59aa80925616025a3a76e98215a12a034637955e2b7e418963cdfd21fb69fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2277-1765
OpenAccessLink https://www.proquest.com/docview/2410795542?pq-origsite=%requestingapplication%
PQID 2410795542
PQPubID 2034344
PageCount 12
ParticipantIDs proquest_journals_2410795542
crossref_primary_10_1155_2020_8822777
crossref_citationtrail_10_1155_2020_8822777
hindawi_primary_10_1155_2020_8822777
emarefa_primary_1214609
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: Oxford
PublicationTitle Wireless communications and mobile computing
PublicationYear 2020
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
References 22
23
24
25
28
29
(14) 2019; 28
30
31
10
11
12
13
15
16
17
18
19
1
4
5
6
8
20
21
References_xml – ident: 22
  doi: 10.1109/TNSM.2019.2941869
– ident: 15
  doi: 10.1109/TNNLS.2018.2856253
– ident: 28
  doi: 10.1109/MWC.2019.1800325
– ident: 16
  doi: 10.1002/cpe.5533
– ident: 29
  doi: 10.1007/s12243-019-00731-9
– ident: 8
  doi: 10.1109/TPAMI.2014.2345401
– ident: 4
  doi: 10.1109/ACCESS.2019.2901742
– ident: 21
  doi: 10.1109/JIOT.2017.2737479
– ident: 12
  doi: 10.1155/2020/8034196
– ident: 6
  doi: 10.1109/tpami.2011.146
– ident: 19
  doi: 10.1109/JIOT.2019.2949352
– ident: 17
  doi: 10.1016/j.apm.2017.07.009
– ident: 20
  doi: 10.1016/j.sigpro.2020.107456
– ident: 10
  doi: 10.1007/s10586-018-1772-4
– ident: 13
  doi: 10.1155/2020/5859273
– ident: 11
  doi: 10.1007/s11554-019-00917-3
– ident: 30
  doi: 10.1109/ACCESS.2019.2911892
– ident: 5
  doi: 10.1016/j.jvcir.2019.01.029
– ident: 1
  doi: 10.1109/34.730558
– ident: 23
  doi: 10.1007/s11263-016-0977-3
– ident: 24
  doi: 10.1007/s12652-018-01171-4
– ident: 18
  doi: 10.1145/3281746
– ident: 31
  doi: 10.1016/j.neucom.2019.03.053
– ident: 25
  doi: 10.1109/TIP.2017.2721112
– volume: 28
  start-page: 593
  issue: 6
  year: 2019
  ident: 14
  publication-title: Journal of Seismic Exploration
SSID ssj0003021
Score 2.4690237
Snippet Aiming at the problems of intensive background noise, low accuracy, and high computational complexity of the current significant object detection methods, the...
SourceID proquest
crossref
hindawi
emarefa
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Background noise
Color
Color matching
Efficiency
Gray scale
Ground truth
Machine learning
Methods
Object recognition
Principal components analysis
Researchers
Salience
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62WNCD-LZaJYd6ksXsK4-j-KAXS9EeeluySRYX6irtWv--k91sfRTRWwJJlp1J8n0zSWYQ6oPJoePUF54KMjBQojDyUqK1R6TPBQuoiqSskk2w4ZBPJmLkgiTNV4_wAe2seU4ugQgGjLEWavHYTt6HwWS54YYkcGFRiccpFc399h99vyFPxzxLKAAcdZ6s8fuer2zGFcLcbaMtRw3xVa3LHbRmil20-SVg4B4aPwJtto8l8Y0pq0tUBV7kEgOLw7V7wGg8yO2j4irHyRSPamc6lOzKfykAY3ATiATfV-mj99H47nZ8PfBcXgRPhZSUXhoLKTkRwFZ8CpxFhpJRIzigt_QDScKIhkzEsQlSZiKQOQ2VznTgZykVWRoeoHYB3ztCWBOuFTNx5mseAZWTCmrQnVkol4x10UUjskS5mOE2dcU0qWyHOE6sgBMn4C46X7Z-rWNl_NLu0En_s5nNL05EF_WdNv4YoNeoKnFLbp4AFSH2r6Pg-H-jnKANW639KT3ULmdv5hStq0WZz2dn1RT7AN6BxkQ
  priority: 102
  providerName: Hindawi Publishing
Title Saliency Detection via the Improved Hierarchical Principal Component Analysis Method
URI https://search.emarefa.net/detail/BIM-1214609
https://dx.doi.org/10.1155/2020/8822777
https://www.proquest.com/docview/2410795542
Volume 2020
WOSCitedRecordID wos000536146400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: P5Z
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: K7-
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: PIMPY
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access (Activated by CARLI)
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003021
  issn: 1530-8669
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xlOgBKK9uC8gHekIWjpPY8QmVAlqEWEV0D9teIsd2xErL8tgt_fuMEweKKuiBS2QnjvMYZ-abiT0fwB66HDYtI0UNr9BBSeKElsxaynSUKcmFSbSuySZkr5cNBioPAbdJmFbZ6sRaUdsb42PkB2hpmFRo_Pjh7R31rFH-72qg0JiF-YjzyI_zc0mfNHHMeMiXymgmhGonvqep9_nZAaJLLqV8YZIW3bXGAtqpxSvvFf8Z_qOla9NzuvLem16F5QA6ybdmlHyEGTdegw9_pSJch_4PBOR-GSY5dtN6etaYPAw1QXxImsCDs6Q79MuVa_aUEcmbMD2WvE65GaP1Im2KE3JRE1NvQP_0pP-9SwPjAjWxYFNapkrrjCnEQZFANKRjLYVTGeICHXHN4kTE_nkcL6VLUJoiNrayPKpKoaoy3oS5MV7vExDLMmukS6vIZgmCRG2whqdLDxK0lB3Yb995YUI2ck-KMSpqryRNCy-hIkioA1-fWt82WTheabcVxPfczDOXM9WBvSDO_3Sw3QqyCB_zpHiW4ue3D3-BJd9ZE6HZhrnp_W-3AwvmYTqc3O_C_NFJL7_crccobvP0F-7Lzy7yn1i77A4eAWw57BI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RKAIOQFse2_LwAU6VhWMndnxAFSpFixZWSN0Dt8ixHXUlWB67gPhR_EfGeUARAk4cuDmKYyfxeL6ZsT0fwAa6HC7JI00tL9BBiUVMc-YcZSZKteLSxsaUZBOq202Pj_XRGNw1Z2HCtspGJ5aK2p3ZECPfQqRhSiP48V_nFzSwRoXV1YZCoxKLjr-9QZdtuL2_i-O7yfnen97vNq1ZBagVko1onmhjUqYR6yOJiG-EUdLrFLHPRNwwEUsROvI8Vz7GN5bCusLxqMilLnKBzX6CiVikKqTq7yj6oPgF43V6VkZTKXWzzz5JQoiBbaExy5VSTxBw0p8aLCAsTv4LTvhN_xkolEi3N_fB_tE8zNYmNdmp5sAXGPODrzDzX6LFb9D7i-5GOGRKdv2o3Hw2INd9Q9D6JVVYxTvS7ofD2CU3zAk5qhYhsBQ05tkAsZk0CVzIYUm7vQC99_iqRRgfYH_LQBxLnVU-KSKXxmgCG4tX-LgKJpBRqgU_myHObJ1rPVB-nGSlz5UkWRCIrBaIFmw-1D6vcoy8UG-plpbHaoGXnekWbNTS80YDK43cZLWqGmaPQvP99dvrMNXuHR5kB_vdzg-YDg1XsagVGB9dXvlV-GyvR_3h5Vo5LQhk7yxi9y6FP_0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9swFH5iMCY4sF-MdcDmA5wmq46T2PEBTYiuKuqoKq0HbpFjO1olKIx2VPxp_Hd7ThxgQsCJw26O4thJ_Pl97z3b7wHsoMlh0yJS1PASDZQkTmjBrKVMR5mSXJhE6yrZhBwMsuNjNVyA6-YsjN9W2cjESlDbM-N95G1kGiYVkh9vl2FbxLDT_Xb-m_oMUn6ltUmnUUOk767maL5N9w47ONa7nHe_jw56NGQYoCYWbEaLVGmdMYW8Hwlkfx1rKZzKkAd1xDWLExH7Th0vpEvw7UVsbGl5VBZClUWMzb6AJSTh1E-xvqQ3JBAzHkK1MpoJoZo992nq3Q2sjYotl1L-w4bL7lRjASly-Zc3yOfjewRRsV739X_8v97AWlC1yX49N97Cgpu8g9U7ARjfw-gnmiH-8CnpuFm1KW1CLseaoFZManeLs6Q39oe0q5wxJ2RYL05gyUvSswlyNmkCu5CjKh33Ooye46s-wOIE-_sIxLLMGunSMrJZgqqxNniFj0uvGmkpW_C1Ge7chBjsPhXISV7ZYmmae3DkARwt2L2pfV7HHnmg3kZAzm01n6-dqRbsBCQ90cBWg6E8iLBpfgugT4_f_gKvEFn5j8NBfxNWfLu1i2oLFmcXf9w2vDSXs_H04nM1Qwjkz4ywvwMESLc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Saliency+Detection+via+the+Improved+Hierarchical+Principal+Component+Analysis+Method&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Ghabally%2C+Mike&rft.au=Masri%2C+Christina&rft.au=Tantak%2C+Nour&rft.au=Ward%2C+Fadi&rft.date=2020&rft.pub=Hindawi+Publishing+Corporation&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1155%2F2020%2F8822777&rft.externalDBID=ADJCN&rft.externalDocID=1214609
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon