A variational autoencoder inspired unsupervised remote sensing image super resolution method with multi-degradation

In current super-resolution (SR) research, blind SR models capable of handling multiple degradations have attracted significant attention. Inspired by variational autoencoders (VAEs) that model data distributions through latent representations, this paper proposes a VAE framework for unsupervised re...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of applied earth observation and geoinformation Ročník 144; s. 104885
Hlavní autori: Zhang, Ning, Wang, Yongcheng, Li, Gang, Xu, Dongdong, Werner, Martin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.11.2025
Elsevier
Predmet:
ISSN:1569-8432
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In current super-resolution (SR) research, blind SR models capable of handling multiple degradations have attracted significant attention. Inspired by variational autoencoders (VAEs) that model data distributions through latent representations, this paper proposes a VAE framework for unsupervised remote sensing image (RSI) SR. VAEs excel at learning rich latent representations, modeling probabilistic distributions of input data and unsupervised learning, making them inherently well-suited to real-world blind SR scenarios. The proposed framework consists of an encoder that maps low-resolution (LR) images into a latent space and a decoder that reconstructs super-resolved images from the latent representations. To enhance latent modeling, an alternating optimization strategy is implemented for training the encoder and decoder. Furthermore, a comprehensive loss function and a latent coding regularization strategy are designed to constrain latent representations while maintaining image domain consistency. Experimental results demonstrate that on synthetic data, our method achieves favorable performance in both visual quality and quantitative metrics. It also demonstrates competitively performance compared to supervised methods, particularly in 4× and 8× SR tasks. Additionally, evaluations on Jilin-1 satellite RSIs further validate the effectiveness of our approach. •The unsupervised SR method handles multi-degradation with satisfying performance.•The encoder and decoder are trained alternately.•The decoder decodes latent code into SR image with fine details.•Constraining latent code with comprehensive loss improves the SR results.•Regularization strategy improves SR performance on large ratios 4 and 8.
AbstractList In current super-resolution (SR) research, blind SR models capable of handling multiple degradations have attracted significant attention. Inspired by variational autoencoders (VAEs) that model data distributions through latent representations, this paper proposes a VAE framework for unsupervised remote sensing image (RSI) SR. VAEs excel at learning rich latent representations, modeling probabilistic distributions of input data and unsupervised learning, making them inherently well-suited to real-world blind SR scenarios. The proposed framework consists of an encoder that maps low-resolution (LR) images into a latent space and a decoder that reconstructs super-resolved images from the latent representations. To enhance latent modeling, an alternating optimization strategy is implemented for training the encoder and decoder. Furthermore, a comprehensive loss function and a latent coding regularization strategy are designed to constrain latent representations while maintaining image domain consistency. Experimental results demonstrate that on synthetic data, our method achieves favorable performance in both visual quality and quantitative metrics. It also demonstrates competitively performance compared to supervised methods, particularly in 4× and 8× SR tasks. Additionally, evaluations on Jilin-1 satellite RSIs further validate the effectiveness of our approach. •The unsupervised SR method handles multi-degradation with satisfying performance.•The encoder and decoder are trained alternately.•The decoder decodes latent code into SR image with fine details.•Constraining latent code with comprehensive loss improves the SR results.•Regularization strategy improves SR performance on large ratios 4 and 8.
In current super-resolution (SR) research, blind SR models capable of handling multiple degradations have attracted significant attention. Inspired by variational autoencoders (VAEs) that model data distributions through latent representations, this paper proposes a VAE framework for unsupervised remote sensing image (RSI) SR. VAEs excel at learning rich latent representations, modeling probabilistic distributions of input data and unsupervised learning, making them inherently well-suited to real-world blind SR scenarios. The proposed framework consists of an encoder that maps low-resolution (LR) images into a latent space and a decoder that reconstructs super-resolved images from the latent representations. To enhance latent modeling, an alternating optimization strategy is implemented for training the encoder and decoder. Furthermore, a comprehensive loss function and a latent coding regularization strategy are designed to constrain latent representations while maintaining image domain consistency. Experimental results demonstrate that on synthetic data, our method achieves favorable performance in both visual quality and quantitative metrics. It also demonstrates competitively performance compared to supervised methods, particularly in 4× and 8× SR tasks. Additionally, evaluations on Jilin-1 satellite RSIs further validate the effectiveness of our approach.
ArticleNumber 104885
Author Wang, Yongcheng
Li, Gang
Xu, Dongdong
Werner, Martin
Zhang, Ning
Author_xml – sequence: 1
  givenname: Ning
  orcidid: 0000-0002-1920-0649
  surname: Zhang
  fullname: Zhang, Ning
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
– sequence: 2
  givenname: Yongcheng
  orcidid: 0000-0002-1647-2956
  surname: Wang
  fullname: Wang, Yongcheng
  organization: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
– sequence: 3
  givenname: Gang
  surname: Li
  fullname: Li, Gang
  email: gangli@mail.tsinghua.edu.cn
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
– sequence: 4
  givenname: Dongdong
  surname: Xu
  fullname: Xu, Dongdong
  organization: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
– sequence: 5
  givenname: Martin
  surname: Werner
  fullname: Werner, Martin
  organization: Professorship for Big Geospatial Data Management, School of Engineering and Design, Technical University of Munich, Ottobrunn, 85521, Germany
BookMark eNp9kMtu5CAQRVlkpMnrA2bHD7gHsHm0soqiTCZSpGySNSpD2cFymxbgHs3fh05HWWaFLqV7KM4FOVvigoT84mzDGVe_p80E40YwIWvujJFn5JxLtW1M14qf5CLniTGutTLnJN_SA6QAJcQFZgpribi46DHRsOR9SOjpuuR1j-kQcg0Jd7EgzbjksIw07GCs6Tivoxzn9UiiOyxv0dN_obzR3TqX0HgcE_iPd67IjwHmjNef5yV5_XP_cve3eXp-eLy7fWpcq1hpwOut11xq75SG1kkNgjst_bY1RggxAPZeCgOuV77rDQPXodZOKyENyra9JI8nro8w2X2qu6b_NkKwHxcxjRZSCW5Gy3gLQiunBjd0zLi-BTcwwQ3rBTLjK4ufWC7FnBMOXzzO7NG6nWy1bo_W7cl67dycOlg_eQiYbHah2kVftbpStwjftN8BjBWRpQ
Cites_doi 10.1145/1869790.1869829
10.1109/CVPR.2018.00344
10.1109/TPAMI.2015.2439281
10.1109/ICCV.2015.67
10.1109/CVPRW.2017.151
10.1109/TCSVT.2020.3003832
10.1109/CVPR42600.2020.00251
10.1109/CVPR52688.2022.00217
10.1109/CVPRW53098.2021.00063
10.1109/CVPR46437.2021.01044
10.1080/01431161.2016.1264027
10.1109/ICCV.2017.299
10.1109/CVPR52688.2022.01712
10.1109/CVPRW50498.2020.00241
10.1109/CCCI52664.2021.9583193
10.1016/j.isprsjprs.2021.12.009
10.1016/j.rse.2024.114139
10.1007/978-3-030-01234-2_18
10.1109/CVPR52733.2024.02436
10.1109/ICCVW54120.2021.00217
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jag.2025.104885
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID oai_doaj_org_article_013a276c6fcf408cb3acf02180b2e08d
10_1016_j_jag_2025_104885
S1569843225005321
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAHBH
AALRI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABQEM
ABQYD
ABWVN
ACLOT
ACLVX
ACRLP
ACRPL
ACSBN
ADBBV
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFXIZ
AGQPQ
AGYEJ
AHEUO
AIIUN
AIKHN
AITUG
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EFJIC
EFKBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
M41
O-L
P-8
P-9
P2P
R2-
ROL
SES
SPC
SSE
SSJ
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c360t-ad79d7157dc67a3c57a21c75d9388222faebd528acb6d4b80ac4e77c76258e533
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001598030300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1569-8432
IngestDate Mon Nov 24 19:21:14 EST 2025
Thu Nov 27 01:02:35 EST 2025
Wed Dec 10 14:25:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Variational autoencoder (VAE)
Multi-degradation
Super-resolution (SR)
Unsupervised learning
Remote sensing image (RSI)
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-ad79d7157dc67a3c57a21c75d9388222faebd528acb6d4b80ac4e77c76258e533
ORCID 0000-0002-1920-0649
0000-0002-1647-2956
OpenAccessLink https://doaj.org/article/013a276c6fcf408cb3acf02180b2e08d
ParticipantIDs doaj_primary_oai_doaj_org_article_013a276c6fcf408cb3acf02180b2e08d
crossref_primary_10_1016_j_jag_2025_104885
elsevier_sciencedirect_doi_10_1016_j_jag_2025_104885
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Li, B., Li, X., Zhu, H., Jin, Y., Feng, R., Zhang, Z., Chen, Z., 2024. SeD: Semantic-Aware Discriminator for Image Super-Resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Luo, Z., Huang, Y., Li, S., Wang, L., Tan, T., 2022a. Learning the degradation distribution for blind image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6063–6072.
Zi, Li, Gade, Fu, Min (b33) 2024; 307
Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M., 2017. Enhanced Deep Residual Networks for Single Image Super-Resolution. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 136–144.
Liu, Siu, Chan (b13) 2020; 31
Fernandezbeltran, Latorrecarmona, Pla (b5) 2017; 38
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y., 2018a. Image Super-Resolution Using Very Deep Residual Channel Attention Networks. In: The European Conference on Computer Vision. pp. 294–310.
Zhang, Zhou, Tong, Gao (b31) 2020
Liu, Xiao, Ma, Cui, An (b15) 2022; 184
Riegler, G., Schulter, S., Ruther, M., Bischof, H., 2015. Conditioned Regression Models for Non-blind Single Image Super-Resolution. In: IEEE International Conference on Computer Vision. pp. 522–530.
Dong, Loy, He, Tang (b4) 2015; 38
Gong, Han, Lu (b6) 2017; 10
Wang, X., Xie, L., Dong, C., Shan, Y., 2021b. Real-ESRGAN: Training Real-World Blind Super-Resolution With Pure Synthetic Data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops. pp. 1905–1914.
Ji, X., Cao, Y., Tai, Y., Wang, C., Li, J., Huang, F., 2020. Real-world super-resolution via kernel estimation and noise injection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. pp. 466–467.
Dardour, Zaied, Radeva (b3) 2021; vol. 11605
Menon, S., Damian, A., Hu, S., Ravi, N., Rudin, C., 2020. Pulse: Self-supervised photo upsampling via latent space exploration of generative models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2437–2445.
Bao, J., Chen, D., Wen, F., Li, H., Hua, G., 2017. CVAE-GAN: fine-grained image generation through asymmetric training. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2745–2754.
Chira, Haralampiev, Winther, Dittadi (b2) 2022
Yan, Jiang, Luo, Wu, Dong, Mao, Wang, Liu, Yao (b24) 2024; 129
Yue, Z., Zhao, Q., Xie, J., Zhang, L., Meng, D., Wong, K.Y.K., 2022. Blind image super-resolution with elaborate degradation modeling on noise and kernel. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2128–2138.
Zhang, Wang, Zhang, Xu, Wang, Ben, Zhao, Li (b29) 2022; 60
Heydari, Mehmood (b7) 2020; vol. 11400
Kingma, Welling (b9) 2013
Makhzani, Shlens, Jaitly, Goodfellow, Frey (b19) 2015
Ma, Li, Huang, Luo, He (b18) 2019
Lei, Shi (b10) 2021; 60
Wang, L., Wang, Y., Dong, X., Xu, Q., Yang, J., An, W., Guo, Y., 2021a. Unsupervised degradation representation learning for blind super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10581–10590.
Liu, Z., Siu, W., Wang, L., et al., 2021. Variational autoencoder for reference based image superresolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 516–525.
Zhang, K., Zuo, W., Zhang, L., 2018b. Learning a Single Convolutional Super-Resolution Network for Multiple Degradations. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. pp. 3262–3271.
Zhang, You, Shi, Gu (b30) 2025
Yang, M., Qi, J., 2021. Reference-based Image Super-Resolution by Dual-Variational AutoEncoder. In: 2021 International Conference on Communications, Computing, Cybersecurity, and Informatics. CCCI, pp. 1–5.
Luo, Z., Huang, H., Yu, L., Li, Y., Fan, H., Liu, S., 2022b. Deep constrained least squares for blind image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 17642–17652.
Yang, Y., Newsam, S., 2010. Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. pp. 270–279.
10.1016/j.jag.2025.104885_b28
Dong (10.1016/j.jag.2025.104885_b4) 2015; 38
Makhzani (10.1016/j.jag.2025.104885_b19) 2015
10.1016/j.jag.2025.104885_b23
10.1016/j.jag.2025.104885_b22
10.1016/j.jag.2025.104885_b21
Ma (10.1016/j.jag.2025.104885_b18) 2019
10.1016/j.jag.2025.104885_b20
10.1016/j.jag.2025.104885_b27
10.1016/j.jag.2025.104885_b26
Fernandezbeltran (10.1016/j.jag.2025.104885_b5) 2017; 38
10.1016/j.jag.2025.104885_b25
Liu (10.1016/j.jag.2025.104885_b15) 2022; 184
10.1016/j.jag.2025.104885_b1
Zhang (10.1016/j.jag.2025.104885_b31) 2020
Heydari (10.1016/j.jag.2025.104885_b7) 2020; vol. 11400
Yan (10.1016/j.jag.2025.104885_b24) 2024; 129
Kingma (10.1016/j.jag.2025.104885_b9) 2013
10.1016/j.jag.2025.104885_b17
Lei (10.1016/j.jag.2025.104885_b10) 2021; 60
Liu (10.1016/j.jag.2025.104885_b13) 2020; 31
10.1016/j.jag.2025.104885_b12
10.1016/j.jag.2025.104885_b11
Zhang (10.1016/j.jag.2025.104885_b29) 2022; 60
10.1016/j.jag.2025.104885_b32
10.1016/j.jag.2025.104885_b16
10.1016/j.jag.2025.104885_b8
Gong (10.1016/j.jag.2025.104885_b6) 2017; 10
10.1016/j.jag.2025.104885_b14
Chira (10.1016/j.jag.2025.104885_b2) 2022
Dardour (10.1016/j.jag.2025.104885_b3) 2021; vol. 11605
Zi (10.1016/j.jag.2025.104885_b33) 2024; 307
Zhang (10.1016/j.jag.2025.104885_b30) 2025
References_xml – volume: 60
  start-page: 1
  year: 2022
  end-page: 14
  ident: b29
  article-title: A multi-degradation aided method for unsupervised remote sensing image super resolution with convolution neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Li, B., Li, X., Zhu, H., Jin, Y., Feng, R., Zhang, Z., Chen, Z., 2024. SeD: Semantic-Aware Discriminator for Image Super-Resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
– year: 2025
  ident: b30
  article-title: Uncertainty-guided perturbation for image super-resolution diffusion model
– volume: 38
  start-page: 295
  year: 2015
  end-page: 307
  ident: b4
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Wang, L., Wang, Y., Dong, X., Xu, Q., Yang, J., An, W., Guo, Y., 2021a. Unsupervised degradation representation learning for blind super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10581–10590.
– reference: Bao, J., Chen, D., Wen, F., Li, H., Hua, G., 2017. CVAE-GAN: fine-grained image generation through asymmetric training. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2745–2754.
– reference: Yue, Z., Zhao, Q., Xie, J., Zhang, L., Meng, D., Wong, K.Y.K., 2022. Blind image super-resolution with elaborate degradation modeling on noise and kernel. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2128–2138.
– reference: Luo, Z., Huang, H., Yu, L., Li, Y., Fan, H., Liu, S., 2022b. Deep constrained least squares for blind image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 17642–17652.
– reference: Luo, Z., Huang, Y., Li, S., Wang, L., Tan, T., 2022a. Learning the degradation distribution for blind image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6063–6072.
– reference: Yang, Y., Newsam, S., 2010. Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. pp. 270–279.
– reference: Yang, M., Qi, J., 2021. Reference-based Image Super-Resolution by Dual-Variational AutoEncoder. In: 2021 International Conference on Communications, Computing, Cybersecurity, and Informatics. CCCI, pp. 1–5.
– year: 2015
  ident: b19
  article-title: Adversarial autoencoders
– reference: Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M., 2017. Enhanced Deep Residual Networks for Single Image Super-Resolution. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 136–144.
– volume: vol. 11605
  start-page: 593
  year: 2021
  end-page: 601
  ident: b3
  article-title: DVAE-SR: denoiser variational auto-encoder and super-resolution to counter adversarial attacks
  publication-title: Thirteenth International Conference on Machine Vision
– volume: 10
  start-page: 1865
  year: 2017
  end-page: 1883
  ident: b6
  article-title: Remote sensing image scene classification: Benchmark and state of the art
  publication-title: Proc. IEEE
– reference: Riegler, G., Schulter, S., Ruther, M., Bischof, H., 2015. Conditioned Regression Models for Non-blind Single Image Super-Resolution. In: IEEE International Conference on Computer Vision. pp. 522–530.
– reference: Ji, X., Cao, Y., Tai, Y., Wang, C., Li, J., Huang, F., 2020. Real-world super-resolution via kernel estimation and noise injection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. pp. 466–467.
– reference: Menon, S., Damian, A., Hu, S., Ravi, N., Rudin, C., 2020. Pulse: Self-supervised photo upsampling via latent space exploration of generative models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2437–2445.
– volume: 38
  start-page: 314
  year: 2017
  end-page: 354
  ident: b5
  article-title: Single-frame super-resolution in remote sensing: a practical overview
  publication-title: Int. J. Remote Sens.
– reference: Liu, Z., Siu, W., Wang, L., et al., 2021. Variational autoencoder for reference based image superresolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 516–525.
– reference: Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y., 2018a. Image Super-Resolution Using Very Deep Residual Channel Attention Networks. In: The European Conference on Computer Vision. pp. 294–310.
– year: 2022
  ident: b2
  article-title: Image super-resolution with deep variational autoencoders
– volume: vol. 11400
  start-page: 87
  year: 2020
  end-page: 100
  ident: b7
  article-title: SRVAE: super resolution using variational autoencoders
  publication-title: Pattern Recognition and Tracking XXXI
– reference: Wang, X., Xie, L., Dong, C., Shan, Y., 2021b. Real-ESRGAN: Training Real-World Blind Super-Resolution With Pure Synthetic Data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops. pp. 1905–1914.
– year: 2013
  ident: b9
  article-title: Auto-encoding variational bayes
– volume: 31
  start-page: 1351
  year: 2020
  end-page: 1365
  ident: b13
  article-title: Photo-realistic image super-resolution via variational autoencoders
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 1
  year: 2020
  end-page: 3
  ident: b31
  article-title: Image super resolution in real world using variational auto encoder
  publication-title: 2020 Cross Strait Radio Science & Wireless Technology Conference
– volume: 184
  start-page: 131
  year: 2022
  end-page: 147
  ident: b15
  article-title: Red tide detection based on high spatial resolution broad band optical satellite data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Zhang, K., Zuo, W., Zhang, L., 2018b. Learning a Single Convolutional Super-Resolution Network for Multiple Degradations. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. pp. 3262–3271.
– volume: 60
  start-page: 1
  year: 2021
  end-page: 10
  ident: b10
  article-title: Hybrid-scale self-similarity exploitation for remote sensing image super-resolution
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2019
  ident: b18
  article-title: Exploiting style and attention in real-world super-resolution
– volume: 129
  year: 2024
  ident: b24
  article-title: A multimodal data fusion model for accurate and interpretable urban land use mapping with uncertainty analysis
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 307
  year: 2024
  ident: b33
  article-title: Ocean eddy detection based on YOLO deep learning algorithm by synthetic aperture radar data
  publication-title: Remote Sens. Environ.
– year: 2022
  ident: 10.1016/j.jag.2025.104885_b2
– ident: 10.1016/j.jag.2025.104885_b25
  doi: 10.1145/1869790.1869829
– ident: 10.1016/j.jag.2025.104885_b32
  doi: 10.1109/CVPR.2018.00344
– volume: vol. 11605
  start-page: 593
  year: 2021
  ident: 10.1016/j.jag.2025.104885_b3
  article-title: DVAE-SR: denoiser variational auto-encoder and super-resolution to counter adversarial attacks
– volume: 38
  start-page: 295
  issue: 2
  year: 2015
  ident: 10.1016/j.jag.2025.104885_b4
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– ident: 10.1016/j.jag.2025.104885_b21
  doi: 10.1109/ICCV.2015.67
– ident: 10.1016/j.jag.2025.104885_b12
  doi: 10.1109/CVPRW.2017.151
– volume: 31
  start-page: 1351
  issue: 4
  year: 2020
  ident: 10.1016/j.jag.2025.104885_b13
  article-title: Photo-realistic image super-resolution via variational autoencoders
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2020.3003832
– volume: 10
  start-page: 1865
  issue: 105
  year: 2017
  ident: 10.1016/j.jag.2025.104885_b6
  article-title: Remote sensing image scene classification: Benchmark and state of the art
  publication-title: Proc. IEEE
– ident: 10.1016/j.jag.2025.104885_b20
  doi: 10.1109/CVPR42600.2020.00251
– start-page: 1
  year: 2020
  ident: 10.1016/j.jag.2025.104885_b31
  article-title: Image super resolution in real world using variational auto encoder
– ident: 10.1016/j.jag.2025.104885_b27
  doi: 10.1109/CVPR52688.2022.00217
– ident: 10.1016/j.jag.2025.104885_b14
  doi: 10.1109/CVPRW53098.2021.00063
– ident: 10.1016/j.jag.2025.104885_b22
  doi: 10.1109/CVPR46437.2021.01044
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.jag.2025.104885_b29
  article-title: A multi-degradation aided method for unsupervised remote sensing image super resolution with convolution neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 38
  start-page: 314
  issue: 1
  year: 2017
  ident: 10.1016/j.jag.2025.104885_b5
  article-title: Single-frame super-resolution in remote sensing: a practical overview
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1264027
– year: 2013
  ident: 10.1016/j.jag.2025.104885_b9
– year: 2025
  ident: 10.1016/j.jag.2025.104885_b30
– volume: 129
  year: 2024
  ident: 10.1016/j.jag.2025.104885_b24
  article-title: A multimodal data fusion model for accurate and interpretable urban land use mapping with uncertainty analysis
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: 10.1016/j.jag.2025.104885_b1
  doi: 10.1109/ICCV.2017.299
– ident: 10.1016/j.jag.2025.104885_b17
  doi: 10.1109/CVPR52688.2022.01712
– ident: 10.1016/j.jag.2025.104885_b8
  doi: 10.1109/CVPRW50498.2020.00241
– year: 2015
  ident: 10.1016/j.jag.2025.104885_b19
– volume: 60
  start-page: 1
  year: 2021
  ident: 10.1016/j.jag.2025.104885_b10
  article-title: Hybrid-scale self-similarity exploitation for remote sensing image super-resolution
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: 10.1016/j.jag.2025.104885_b26
  doi: 10.1109/CCCI52664.2021.9583193
– volume: vol. 11400
  start-page: 87
  year: 2020
  ident: 10.1016/j.jag.2025.104885_b7
  article-title: SRVAE: super resolution using variational autoencoders
– volume: 184
  start-page: 131
  year: 2022
  ident: 10.1016/j.jag.2025.104885_b15
  article-title: Red tide detection based on high spatial resolution broad band optical satellite data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.12.009
– volume: 307
  year: 2024
  ident: 10.1016/j.jag.2025.104885_b33
  article-title: Ocean eddy detection based on YOLO deep learning algorithm by synthetic aperture radar data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2024.114139
– ident: 10.1016/j.jag.2025.104885_b28
  doi: 10.1007/978-3-030-01234-2_18
– ident: 10.1016/j.jag.2025.104885_b11
  doi: 10.1109/CVPR52733.2024.02436
– ident: 10.1016/j.jag.2025.104885_b16
– ident: 10.1016/j.jag.2025.104885_b23
  doi: 10.1109/ICCVW54120.2021.00217
– year: 2019
  ident: 10.1016/j.jag.2025.104885_b18
SSID ssj0017768
Score 2.4168382
Snippet In current super-resolution (SR) research, blind SR models capable of handling multiple degradations have attracted significant attention. Inspired by...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 104885
SubjectTerms Multi-degradation
Remote sensing image (RSI)
Super-resolution (SR)
Unsupervised learning
Variational autoencoder (VAE)
Title A variational autoencoder inspired unsupervised remote sensing image super resolution method with multi-degradation
URI https://dx.doi.org/10.1016/j.jag.2025.104885
https://doaj.org/article/013a276c6fcf408cb3acf02180b2e08d
Volume 144
WOSCitedRecordID wos001598030300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1569-8432
  databaseCode: DOA
  dateStart: 20200101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0017768
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQguiquL3LwJBTT5tmjyooHWTyo7K3kValglXbX32-mabUX8eKxTUhKZjqPzMw3CJ1zZZzwzCZEy-Cg5CxNlMih3Ys0JaG5UF1vwOd7OZ-rxSJ_GLX6gpywCA8cD-4ymCg6k8KK0paMKGuotiUoJmIyT5QD6UtkPjhTffxAylgEx0WeKEazIZ7ZZXa96pfgGGYc4psKmiiPNFIH3D9STCNlc7uDtnsrEV_Fr9tFa76eoK0RduAEHcx-StTC1P4fbfdQe4U_gwPcX_JhvVq-A1il8w2uaoire4dXdbv6ACnRhofGB3J53EIqe_2Cq7cgYnA3HoYG1sSx1TSGe1vcZSEmDnAmYkumffR0O3u8uUv61gqJpYIsE-1k7mTKpbNCamq51FlqJXc5VWAylNobxzOlrRGOGUW0ZV5KG0QnVz6YiAdovX6v_SHCWWqs8ZTpVBPmndPUuDIYcoam3Cmhp-hiON7iIyJoFENq2WsRaFEALYpIiym6BgJ8TwTw6-5FYImiZ4niL5aYIjaQr-jtiGgfhKWq3_c--o-9j9EmLBmrFU_Q-rJZ-VO0YT-XVducdUz6BSh87b4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+variational+autoencoder+inspired+unsupervised+remote+sensing+image+super+resolution+method+with+multi-degradation&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Zhang%2C+Ning&rft.au=Wang%2C+Yongcheng&rft.au=Li%2C+Gang&rft.au=Xu%2C+Dongdong&rft.date=2025-11-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.volume=144&rft_id=info:doi/10.1016%2Fj.jag.2025.104885&rft.externalDocID=S1569843225005321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon