Exact and efficient evaluation of the InCircle predicate for parametric ellipses and smooth convex objects
We study the Voronoi diagram, under the Euclidean metric, of a set of ellipses, given in parametric representation. The article concentrates on the InCircle predicate, which is the hardest to compute, and describes an exact and complete solution. It consists of a customized subdivision-based method...
Uloženo v:
| Vydáno v: | Computer aided design Ročník 40; číslo 6; s. 691 - 700 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.06.2008
|
| Témata: | |
| ISSN: | 0010-4485, 1879-2685 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study the Voronoi diagram, under the Euclidean metric, of a set of ellipses, given in parametric representation. The article concentrates on the
InCircle predicate, which is the hardest to compute, and describes an exact and complete solution. It consists of a customized subdivision-based method that achieves quadratic convergence, leading to a real-time implementation for non-degenerate inputs. Degenerate cases are handled using exact algebraic computation. We conclude with experiments showing that most instances run in less than 0.1 s, on a 2.6 GHz Pentium-4, whereas degenerate cases may take up to 13 s. Our approach readily generalizes to smooth convex objects. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0010-4485 1879-2685 |
| DOI: | 10.1016/j.cad.2008.05.001 |