The integration of knowledge graph convolution network with denoising autoencoder

The knowledge graph convolution network (KGCN) is a recommendation model that provides a set of top recommendations based on knowledge graph developed between users, items, and their attributes. In this study, we integrate the KGCN model with denoising autoencoder (DAE) to improve its recommendation...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence Vol. 135; p. 108792
Main Authors: Kaur, Gurinder, Liu, Fei, Phoebe Chen, Yi-Ping
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.09.2024
Subjects:
ISSN:0952-1976, 1873-6769
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The knowledge graph convolution network (KGCN) is a recommendation model that provides a set of top recommendations based on knowledge graph developed between users, items, and their attributes. In this study, we integrate the KGCN model with denoising autoencoder (DAE) to improve its recommendation performance. A trained DAE is used to sample K-dimensional latent representation for each user, which then transforms that representation to generate a probability distribution over items. The relationship between acquired latent representation and the meta features is modelled using multivariate multiple regression (MMR) kernel. As a result, without the need for new configuration assessments, performance estimation of new data is pursued directly through MMR and the decoder of DAE. Empirically, we demonstrate that on real-world datasets, the proposed method substantially outperforms other state-of-the-art baselines. Movie-Lens 100K (ML-100K) and Movie-Lens 1M (ML-1M), two common MovieLens datasets, are used to verify the accuracy of the proposed approach. The results from experiments show significant improvement of 41.17% when the proposed method is applied on KGCN model. The proposed framework outperforms other state-of-the-art frameworks on Recall@K and normalized discounted cumulative gain (NDCG@K) metrics by achieving higher scores for Recall@5, Recall@10, NDCG@1, and NDCG@10. •The KGCN is a recommendation model that provides a set of top recommendations.•Our framework (KGCN-DAE) integrates the KGCN model with denoising autoencoder.•The KGCN-DAE improves the performance and efficiency of the KGCN model.
AbstractList The knowledge graph convolution network (KGCN) is a recommendation model that provides a set of top recommendations based on knowledge graph developed between users, items, and their attributes. In this study, we integrate the KGCN model with denoising autoencoder (DAE) to improve its recommendation performance. A trained DAE is used to sample K-dimensional latent representation for each user, which then transforms that representation to generate a probability distribution over items. The relationship between acquired latent representation and the meta features is modelled using multivariate multiple regression (MMR) kernel. As a result, without the need for new configuration assessments, performance estimation of new data is pursued directly through MMR and the decoder of DAE. Empirically, we demonstrate that on real-world datasets, the proposed method substantially outperforms other state-of-the-art baselines. Movie-Lens 100K (ML-100K) and Movie-Lens 1M (ML-1M), two common MovieLens datasets, are used to verify the accuracy of the proposed approach. The results from experiments show significant improvement of 41.17% when the proposed method is applied on KGCN model. The proposed framework outperforms other state-of-the-art frameworks on Recall@K and normalized discounted cumulative gain (NDCG@K) metrics by achieving higher scores for Recall@5, Recall@10, NDCG@1, and NDCG@10. •The KGCN is a recommendation model that provides a set of top recommendations.•Our framework (KGCN-DAE) integrates the KGCN model with denoising autoencoder.•The KGCN-DAE improves the performance and efficiency of the KGCN model.
ArticleNumber 108792
Author Liu, Fei
Kaur, Gurinder
Phoebe Chen, Yi-Ping
Author_xml – sequence: 1
  givenname: Gurinder
  orcidid: 0000-0002-3846-9862
  surname: Kaur
  fullname: Kaur, Gurinder
  email: G.Kaur@latrobe.edu.au
– sequence: 2
  givenname: Fei
  surname: Liu
  fullname: Liu, Fei
  email: F.Liu@latrobe.edu.au
– sequence: 3
  givenname: Yi-Ping
  surname: Phoebe Chen
  fullname: Phoebe Chen, Yi-Ping
  email: phoebe.chen@latrobe.edu.au
BookMark eNqFkM1KAzEUhYNUsK2-guQFpuZnJpMBF0rRKhRE6D6kye007ZgMmbTFt3fa6sZNVxfO5TvwnREa-OABoXtKJpRQ8bCZgK9122o3YYTlfSjLil2hIZUlz0QpqgEakqpgGa1KcYNGXbchhHCZiyH6XKwBO5-gjjq54HFY4a0PhwZsDbgP2zU2we9Dszu9PaRDiFt8cGmNLfjgOudrrHcpgDfBQrxF1yvddHD3e8do8fqymL5l84_Z-_R5nhkuSMp0IS2HnBqbl9RwrpemyLUkBTNG5pIVlpNeh5ew1NxYwXhhSiYBcs4EXfIxejzXmhi6LsJKGZdOCilq1yhK1HEdtVF_66jjOuq8To-Lf3gb3ZeO35fBpzMIvdveQVSdcb06WBfBJGWDu1TxA6zjhxE
CitedBy_id crossref_primary_10_1016_j_measurement_2025_117752
crossref_primary_10_1109_TCE_2025_3564127
crossref_primary_10_1016_j_neucom_2025_131326
crossref_primary_10_1016_j_engappai_2025_110338
Cites_doi 10.1145/3591469
10.1002/cpe.7258
10.1016/j.knosys.2022.110218
10.1109/ACCESS.2019.2940603
10.1016/j.knosys.2023.110829
10.1016/j.neucom.2018.12.025
10.1109/TKDE.2018.2789443
10.1145/3158369
10.1007/s00500-023-08587-x
10.3390/math11030761
10.1016/j.future.2018.05.077
10.3390/s22134904
10.1109/ACCESS.2018.2890293
10.3390/app122311996
10.3390/electronics11071003
10.1109/TCYB.2018.2795041
10.26599/BDMA.2018.9020019
10.1016/j.knosys.2019.105020
10.1109/ACCESS.2019.2905876
10.1080/09540091.2022.2106943
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.engappai.2024.108792
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2024_108792
S0952197624009503
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c360t-a58d3e41cd471c33abc54a8052cc84825d3020237eba3cd6235c728ee43261b3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001252136400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Tue Nov 18 21:23:33 EST 2025
Sat Nov 29 03:41:19 EST 2025
Sat Aug 10 15:30:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Denoising autoencoder
Latent features representation
Recommender system
Meta feature learning
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c360t-a58d3e41cd471c33abc54a8052cc84825d3020237eba3cd6235c728ee43261b3
ORCID 0000-0002-3846-9862
OpenAccessLink https://dx.doi.org/10.1016/j.engappai.2024.108792
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2024_108792
crossref_primary_10_1016_j_engappai_2024_108792
elsevier_sciencedirect_doi_10_1016_j_engappai_2024_108792
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pan, He, Yu (bib19) 2019; 332
Colace, Conte, De Santo, Lombardi, Santaniello, Valentino (bib5) 2022; 34
Xiong, Zhang, Zhu, Li, Zhou (bib28) 2020; 109
Mamdouh Farghaly, Abd El-Hafeez (bib17) 2023; 27
Askari, Szlichta, Salehi-Abari (bib2) 2021
Pattanayak (bib20) 2023
Harper, Konstan (bib9) 2015
Feng, Liu, Liang, Nie (bib7) 2023; 278
Wu, DuBois, Zheng, Ester (bib27) 2016
Shenbin, Alekseev, Tutubalina, Malykh, Nikolenko (bib23) 2020
Khan, Zubair, Imran, Ahmad, Butt, Chaudhary (bib14) 2019; 7
Fu, Qu, Yi, Lu, Liu (bib8) 2019; 49
Salau, Hamada, Prasad, Hassan, Mahendran, Watanobe (bib22) 2022; 12
Wang, Tang, Wang, Liu (bib25) 2018; 30
Khan, Chaudhary, Abbasi, Ling, Raja (bib13) 2023; 11
Alfarhood, Cheng (bib1) 2020
Yin, Li, Zhang, Lu (bib29) 2019; 185
Zhou, Sun, Liu, Zhang, Miao (bib31) 2023; 1
Vincent, Larochelle, Bengio, Manzagol (bib24) 2008
Casillo, Gupta, Lombardi, Lorusso, Santaniello, Valentino (bib3) 2022; 11
Liu, Wang, Khan, He (bib15) 2018; 1
Jayalakshmi, Ganesh, Čep, Senthil Murugan (bib11) 2022; 22
Wang, He, Wang, Feng, Chua (bib26) 2019
Kaur, Liu, Chen (bib12) 2023
Nikolenko (bib18) 2021
Sachdeva, Manco, Ritacco, Pudi (bib21) 2019
He, Meng, Zhang (bib10) 2019; 7
Mamdouh Farghaly, Abd El‐Hafeez (bib16) 2022; 34
Deng, Xiao (bib6) 2023; 261
Zhang, Yao, Sun, Tay (bib30) 2019; 52
Chae, Shin, Kim (bib4) 2019; 7
Khan (10.1016/j.engappai.2024.108792_bib14) 2019; 7
Vincent (10.1016/j.engappai.2024.108792_bib24) 2008
Jayalakshmi (10.1016/j.engappai.2024.108792_bib11) 2022; 22
Casillo (10.1016/j.engappai.2024.108792_bib3) 2022; 11
Fu (10.1016/j.engappai.2024.108792_bib8) 2019; 49
Pattanayak (10.1016/j.engappai.2024.108792_bib20) 2023
Zhang (10.1016/j.engappai.2024.108792_bib30) 2019; 52
Salau (10.1016/j.engappai.2024.108792_bib22) 2022; 12
Mamdouh Farghaly (10.1016/j.engappai.2024.108792_bib16) 2022; 34
Kaur (10.1016/j.engappai.2024.108792_bib12) 2023
Wang (10.1016/j.engappai.2024.108792_bib25) 2018; 30
Deng (10.1016/j.engappai.2024.108792_bib6) 2023; 261
Harper (10.1016/j.engappai.2024.108792_bib9) 2015
Khan (10.1016/j.engappai.2024.108792_bib13) 2023; 11
Wu (10.1016/j.engappai.2024.108792_bib27) 2016
Askari (10.1016/j.engappai.2024.108792_bib2) 2021
Shenbin (10.1016/j.engappai.2024.108792_bib23) 2020
Colace (10.1016/j.engappai.2024.108792_bib5) 2022; 34
He (10.1016/j.engappai.2024.108792_bib10) 2019; 7
Mamdouh Farghaly (10.1016/j.engappai.2024.108792_bib17) 2023; 27
Zhou (10.1016/j.engappai.2024.108792_bib31) 2023; 1
Chae (10.1016/j.engappai.2024.108792_bib4) 2019; 7
Sachdeva (10.1016/j.engappai.2024.108792_bib21) 2019
Yin (10.1016/j.engappai.2024.108792_bib29) 2019; 185
Feng (10.1016/j.engappai.2024.108792_bib7) 2023; 278
Alfarhood (10.1016/j.engappai.2024.108792_bib1) 2020
Nikolenko (10.1016/j.engappai.2024.108792_bib18) 2021
Pan (10.1016/j.engappai.2024.108792_bib19) 2019; 332
Xiong (10.1016/j.engappai.2024.108792_bib28) 2020; 109
Wang (10.1016/j.engappai.2024.108792_bib26) 2019
Liu (10.1016/j.engappai.2024.108792_bib15) 2018; 1
References_xml – volume: 7
  start-page: 37650
  year: 2019
  end-page: 37663
  ident: bib4
  article-title: Collaborative adversarial autoencoders: an effective collaborative filtering model under the GAN framework
  publication-title: IEEE Access
– year: 2016
  ident: bib27
  article-title: Collaborative denoising auto-encoders for top-N recommender systems
  publication-title: Proc. 9th ACM Int. Conf. Web Search Data Min.
– start-page: 2061
  year: 2021
  end-page: 2065
  ident: bib2
  article-title: Variational autoencoders for top-k recommendation with implicit feedback
  publication-title: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval
– volume: 52
  start-page: 1
  year: 2019
  end-page: 38
  ident: bib30
  article-title: Deep learning based recommender system
  publication-title: ACM Comput. Surv.
– start-page: 165
  year: 2019
  end-page: 174
  ident: bib26
  article-title: Neural graph collaborative filtering
  publication-title: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval
– volume: 1
  start-page: 211
  year: 2018
  end-page: 221
  ident: bib15
  article-title: A novel deep hybrid recommender system based on auto-encoder with neural collaborative filtering
  publication-title: Big Data Min. Anal.
– start-page: 528
  year: 2020
  end-page: 536
  ident: bib23
  article-title: Recvae: a new variational autoencoder for top-n recommendations with implicit feedback
  publication-title: Proceedings of the 13th International Conference on Web Search and Data Mining
– volume: 185
  year: 2019
  ident: bib29
  article-title: A deeper graph neural network for recommender systems
  publication-title: Knowl. Base Syst.
– volume: 7
  start-page: 5707
  year: 2019
  end-page: 5713
  ident: bib10
  article-title: Collaborative additional variational Autoencoder for top-N recommender systems
  publication-title: IEEE Access
– volume: 109
  start-page: 511
  year: 2020
  end-page: 520
  ident: bib28
  article-title: Private collaborative filtering under untrusted recommender server
  publication-title: Future Generat. Comput. Syst.
– year: 2023
  ident: bib12
  article-title: A deep learning knowledge graph neural network for recommender systems
  publication-title: Mach. Learn. Appl.
– start-page: 97
  year: 2021
  end-page: 137
  ident: bib18
  article-title: Generative Models in Deep Learning
– volume: 261
  year: 2023
  ident: bib6
  article-title: Latent feature learning via autoencoder training for automatic classification configuration recommendation
  publication-title: Knowl. Base Syst.
– volume: 34
  year: 2022
  ident: bib16
  article-title: A new feature selection method based on frequent and associated itemsets for text classification
  publication-title: Concurrency Comput. Pract. Ex.
– volume: 1
  start-page: 1
  year: 2023
  end-page: 25
  ident: bib31
  article-title: Selfcf: a simple framework for self-supervised collaborative filtering
  publication-title: ACM Trans. Recommender Syst.
– volume: 278
  year: 2023
  ident: bib7
  article-title: ALCR: adaptive loss based critic ranking toward variational autoencoders with multinomial likelihood and condition for collaborative filtering
  publication-title: Knowl. Base Syst.
– start-page: 407
  year: 2023
  end-page: 510
  ident: bib20
  article-title: Unsupervised learning with restricted Boltzmann machines and autoencoders
  publication-title: Pro Deep Learning with TensorFlow 2.0: A Mathematical Approach to Advanced Artificial Intelligence in Python
– volume: 11
  start-page: 1003
  year: 2022
  ident: bib3
  article-title: Context aware recommender systems: a novel approach based on matrix factorization and contextual bias
  publication-title: Electronics
– start-page: 1
  year: 2020
  end-page: 23
  ident: bib1
  article-title: Deep learning-based recommender systems
  publication-title: Adv. Intell. Syst. Comput.
– volume: 332
  start-page: 137
  year: 2019
  end-page: 148
  ident: bib19
  article-title: A novel enhanced collaborative autoencoder with knowledge distillation for top-N recommender systems
  publication-title: Neurocomputing
– volume: 12
  year: 2022
  ident: bib22
  article-title: State-of-the-art survey on deep learning-based recommender systems for e-learning
  publication-title: Appl. Sci.
– volume: 34
  start-page: 2158
  year: 2022
  end-page: 2176
  ident: bib5
  article-title: A content-based recommendation approach based on singular value decomposition
  publication-title: Connect. Sci.
– year: 2015
  ident: bib9
  article-title: The MovieLens datasets: history and context
  publication-title: ACM Interact. Trans. Intell. Syst.
– start-page: 600
  year: 2019
  end-page: 608
  ident: bib21
  article-title: Sequential variational autoencoders for collaborative filtering
  publication-title: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining
– volume: 27
  start-page: 11259
  year: 2023
  end-page: 11274
  ident: bib17
  article-title: A high-quality feature selection method based on frequent and correlated items for text classification
  publication-title: Soft Comput.
– volume: 49
  start-page: 1084
  year: 2019
  end-page: 1096
  ident: bib8
  article-title: A novel deep learning-based collaborative filtering model for recommendation system
  publication-title: IEEE Trans. Cybern.
– volume: 7
  start-page: 141287
  year: 2019
  end-page: 141310
  ident: bib14
  article-title: A new users rating-trend based collaborative denoising auto-encoder for top-N recommender systems
  publication-title: IEEE Access
– volume: 22
  start-page: 4904
  year: 2022
  ident: bib11
  article-title: Movie recommender systems: concepts, methods, challenges, and future directions
  publication-title: Sensors
– volume: 30
  start-page: 1022
  year: 2018
  end-page: 1035
  ident: bib25
  article-title: Exploring hierarchical structures for recommender systems
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2008
  ident: bib24
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proc. 25th Int. Conf. Mach. Learn. ICML ’08
– volume: 11
  start-page: 761
  year: 2023
  ident: bib13
  article-title: Design of confidence-integrated denoising auto-encoder for personalized top-N recommender systems
  publication-title: Mathematics
– volume: 1
  start-page: 1
  issue: 2
  year: 2023
  ident: 10.1016/j.engappai.2024.108792_bib31
  article-title: Selfcf: a simple framework for self-supervised collaborative filtering
  publication-title: ACM Trans. Recommender Syst.
  doi: 10.1145/3591469
– start-page: 1
  year: 2020
  ident: 10.1016/j.engappai.2024.108792_bib1
  article-title: Deep learning-based recommender systems
  publication-title: Adv. Intell. Syst. Comput.
– volume: 34
  issue: 25
  year: 2022
  ident: 10.1016/j.engappai.2024.108792_bib16
  article-title: A new feature selection method based on frequent and associated itemsets for text classification
  publication-title: Concurrency Comput. Pract. Ex.
  doi: 10.1002/cpe.7258
– volume: 261
  year: 2023
  ident: 10.1016/j.engappai.2024.108792_bib6
  article-title: Latent feature learning via autoencoder training for automatic classification configuration recommendation
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2022.110218
– volume: 7
  start-page: 141287
  year: 2019
  ident: 10.1016/j.engappai.2024.108792_bib14
  article-title: A new users rating-trend based collaborative denoising auto-encoder for top-N recommender systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2940603
– volume: 278
  year: 2023
  ident: 10.1016/j.engappai.2024.108792_bib7
  article-title: ALCR: adaptive loss based critic ranking toward variational autoencoders with multinomial likelihood and condition for collaborative filtering
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2023.110829
– volume: 332
  start-page: 137
  year: 2019
  ident: 10.1016/j.engappai.2024.108792_bib19
  article-title: A novel enhanced collaborative autoencoder with knowledge distillation for top-N recommender systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.12.025
– volume: 30
  start-page: 1022
  issue: 6
  year: 2018
  ident: 10.1016/j.engappai.2024.108792_bib25
  article-title: Exploring hierarchical structures for recommender systems
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2789443
– volume: 52
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.engappai.2024.108792_bib30
  article-title: Deep learning based recommender system
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3158369
– volume: 27
  start-page: 11259
  issue: 16
  year: 2023
  ident: 10.1016/j.engappai.2024.108792_bib17
  article-title: A high-quality feature selection method based on frequent and correlated items for text classification
  publication-title: Soft Comput.
  doi: 10.1007/s00500-023-08587-x
– start-page: 97
  year: 2021
  ident: 10.1016/j.engappai.2024.108792_bib18
– volume: 11
  start-page: 761
  issue: 3
  year: 2023
  ident: 10.1016/j.engappai.2024.108792_bib13
  article-title: Design of confidence-integrated denoising auto-encoder for personalized top-N recommender systems
  publication-title: Mathematics
  doi: 10.3390/math11030761
– year: 2008
  ident: 10.1016/j.engappai.2024.108792_bib24
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proc. 25th Int. Conf. Mach. Learn. ICML ’08
– volume: 109
  start-page: 511
  year: 2020
  ident: 10.1016/j.engappai.2024.108792_bib28
  article-title: Private collaborative filtering under untrusted recommender server
  publication-title: Future Generat. Comput. Syst.
  doi: 10.1016/j.future.2018.05.077
– volume: 22
  start-page: 4904
  issue: 13
  year: 2022
  ident: 10.1016/j.engappai.2024.108792_bib11
  article-title: Movie recommender systems: concepts, methods, challenges, and future directions
  publication-title: Sensors
  doi: 10.3390/s22134904
– year: 2016
  ident: 10.1016/j.engappai.2024.108792_bib27
  article-title: Collaborative denoising auto-encoders for top-N recommender systems
  publication-title: Proc. 9th ACM Int. Conf. Web Search Data Min.
– volume: 7
  start-page: 5707
  year: 2019
  ident: 10.1016/j.engappai.2024.108792_bib10
  article-title: Collaborative additional variational Autoencoder for top-N recommender systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890293
– volume: 12
  issue: 23
  year: 2022
  ident: 10.1016/j.engappai.2024.108792_bib22
  article-title: State-of-the-art survey on deep learning-based recommender systems for e-learning
  publication-title: Appl. Sci.
  doi: 10.3390/app122311996
– start-page: 528
  year: 2020
  ident: 10.1016/j.engappai.2024.108792_bib23
  article-title: Recvae: a new variational autoencoder for top-n recommendations with implicit feedback
– start-page: 600
  year: 2019
  ident: 10.1016/j.engappai.2024.108792_bib21
  article-title: Sequential variational autoencoders for collaborative filtering
– volume: 11
  start-page: 1003
  issue: 7
  year: 2022
  ident: 10.1016/j.engappai.2024.108792_bib3
  article-title: Context aware recommender systems: a novel approach based on matrix factorization and contextual bias
  publication-title: Electronics
  doi: 10.3390/electronics11071003
– volume: 49
  start-page: 1084
  issue: 3
  year: 2019
  ident: 10.1016/j.engappai.2024.108792_bib8
  article-title: A novel deep learning-based collaborative filtering model for recommendation system
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2795041
– volume: 1
  start-page: 211
  issue: 3
  year: 2018
  ident: 10.1016/j.engappai.2024.108792_bib15
  article-title: A novel deep hybrid recommender system based on auto-encoder with neural collaborative filtering
  publication-title: Big Data Min. Anal.
  doi: 10.26599/BDMA.2018.9020019
– start-page: 407
  year: 2023
  ident: 10.1016/j.engappai.2024.108792_bib20
  article-title: Unsupervised learning with restricted Boltzmann machines and autoencoders
– start-page: 2061
  year: 2021
  ident: 10.1016/j.engappai.2024.108792_bib2
  article-title: Variational autoencoders for top-k recommendation with implicit feedback
– year: 2015
  ident: 10.1016/j.engappai.2024.108792_bib9
  article-title: The MovieLens datasets: history and context
  publication-title: ACM Interact. Trans. Intell. Syst.
– volume: 185
  year: 2019
  ident: 10.1016/j.engappai.2024.108792_bib29
  article-title: A deeper graph neural network for recommender systems
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2019.105020
– year: 2023
  ident: 10.1016/j.engappai.2024.108792_bib12
  article-title: A deep learning knowledge graph neural network for recommender systems
  publication-title: Mach. Learn. Appl.
– start-page: 165
  year: 2019
  ident: 10.1016/j.engappai.2024.108792_bib26
  article-title: Neural graph collaborative filtering
– volume: 7
  start-page: 37650
  year: 2019
  ident: 10.1016/j.engappai.2024.108792_bib4
  article-title: Collaborative adversarial autoencoders: an effective collaborative filtering model under the GAN framework
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2905876
– volume: 34
  start-page: 2158
  issue: 1
  year: 2022
  ident: 10.1016/j.engappai.2024.108792_bib5
  article-title: A content-based recommendation approach based on singular value decomposition
  publication-title: Connect. Sci.
  doi: 10.1080/09540091.2022.2106943
SSID ssj0003846
Score 2.4390056
Snippet The knowledge graph convolution network (KGCN) is a recommendation model that provides a set of top recommendations based on knowledge graph developed between...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108792
SubjectTerms Denoising autoencoder
Latent features representation
Meta feature learning
Recommender system
Title The integration of knowledge graph convolution network with denoising autoencoder
URI https://dx.doi.org/10.1016/j.engappai.2024.108792
Volume 135
WOSCitedRecordID wos001252136400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuvBFtAfnAbeUlsZO1fayq8hKqirSH5RQ5totSVUm13a164Mcz8SsBKkoPXKLIkp3HfBl_M5kHQm9zW6sFLUrCs7omhTSKKMsNOQVjQ1OpgYQo12yCHx-L1UqeTCY_Yi7M1TlvW3F9LS_-q6hhDITdp87eQdxpURiAcxA6HEHscPxnwcciEIENJsfZzNWndqHm4R5mrY8D9w5ZUEJd47wHarvp-hqXJkTvRuf9UL5wNv737cIJ1i7uyHUBGRX6TCpdbR06PvT-fTMEBX9pto5B22b4Q9GB0GeHIXHkW0NO4gYb_BO0SAFYg6ORklz6Li9J57JypDXzTHDfEe8Phe59C2dz236Hp1LNvL_EfJjwawXt33a2FG8YQ9nOqrhO1a9T-XXuoR3KSymmaOfg09Hqc9rJmfCJXvEJRhnmN9_RzeRmRFiWj9HDYGngA4-QJ2hi26foUbA6cNDplzAUG3vEsWfoK2AIjzCEu1OcMIQdhvAIQzhgCPcYwglDeISh52j5_mh5-JGE3htEs0W2IaoUhtki1wbYi2ZM1bosVN__QmtRCFoaBoYGZRy-daYNkOhScyqsLcAeyGv2Ak3brrUvEc5MJnTODNMFMCaRK6MXknK6MALYqZS7qIzvrNKhLn3fHuW8-rvUdtG7NO_CV2a5dYaMIqkCv_S8sQK03TJ3785X20cPhs_hFZpu1lv7Gt3XV5vmcv0mQO0nC7CjfA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+integration+of+knowledge+graph+convolution+network+with+denoising+autoencoder&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Kaur%2C+Gurinder&rft.au=Liu%2C+Fei&rft.au=Phoebe+Chen%2C+Yi-Ping&rft.date=2024-09-01&rft.issn=0952-1976&rft.volume=135&rft.spage=108792&rft_id=info:doi/10.1016%2Fj.engappai.2024.108792&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2024_108792
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon