The integration of knowledge graph convolution network with denoising autoencoder
The knowledge graph convolution network (KGCN) is a recommendation model that provides a set of top recommendations based on knowledge graph developed between users, items, and their attributes. In this study, we integrate the KGCN model with denoising autoencoder (DAE) to improve its recommendation...
Saved in:
| Published in: | Engineering applications of artificial intelligence Vol. 135; p. 108792 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.09.2024
|
| Subjects: | |
| ISSN: | 0952-1976, 1873-6769 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The knowledge graph convolution network (KGCN) is a recommendation model that provides a set of top recommendations based on knowledge graph developed between users, items, and their attributes. In this study, we integrate the KGCN model with denoising autoencoder (DAE) to improve its recommendation performance. A trained DAE is used to sample K-dimensional latent representation for each user, which then transforms that representation to generate a probability distribution over items. The relationship between acquired latent representation and the meta features is modelled using multivariate multiple regression (MMR) kernel. As a result, without the need for new configuration assessments, performance estimation of new data is pursued directly through MMR and the decoder of DAE. Empirically, we demonstrate that on real-world datasets, the proposed method substantially outperforms other state-of-the-art baselines. Movie-Lens 100K (ML-100K) and Movie-Lens 1M (ML-1M), two common MovieLens datasets, are used to verify the accuracy of the proposed approach. The results from experiments show significant improvement of 41.17% when the proposed method is applied on KGCN model. The proposed framework outperforms other state-of-the-art frameworks on Recall@K and normalized discounted cumulative gain (NDCG@K) metrics by achieving higher scores for Recall@5, Recall@10, NDCG@1, and NDCG@10.
•The KGCN is a recommendation model that provides a set of top recommendations.•Our framework (KGCN-DAE) integrates the KGCN model with denoising autoencoder.•The KGCN-DAE improves the performance and efficiency of the KGCN model. |
|---|---|
| AbstractList | The knowledge graph convolution network (KGCN) is a recommendation model that provides a set of top recommendations based on knowledge graph developed between users, items, and their attributes. In this study, we integrate the KGCN model with denoising autoencoder (DAE) to improve its recommendation performance. A trained DAE is used to sample K-dimensional latent representation for each user, which then transforms that representation to generate a probability distribution over items. The relationship between acquired latent representation and the meta features is modelled using multivariate multiple regression (MMR) kernel. As a result, without the need for new configuration assessments, performance estimation of new data is pursued directly through MMR and the decoder of DAE. Empirically, we demonstrate that on real-world datasets, the proposed method substantially outperforms other state-of-the-art baselines. Movie-Lens 100K (ML-100K) and Movie-Lens 1M (ML-1M), two common MovieLens datasets, are used to verify the accuracy of the proposed approach. The results from experiments show significant improvement of 41.17% when the proposed method is applied on KGCN model. The proposed framework outperforms other state-of-the-art frameworks on Recall@K and normalized discounted cumulative gain (NDCG@K) metrics by achieving higher scores for Recall@5, Recall@10, NDCG@1, and NDCG@10.
•The KGCN is a recommendation model that provides a set of top recommendations.•Our framework (KGCN-DAE) integrates the KGCN model with denoising autoencoder.•The KGCN-DAE improves the performance and efficiency of the KGCN model. |
| ArticleNumber | 108792 |
| Author | Liu, Fei Kaur, Gurinder Phoebe Chen, Yi-Ping |
| Author_xml | – sequence: 1 givenname: Gurinder orcidid: 0000-0002-3846-9862 surname: Kaur fullname: Kaur, Gurinder email: G.Kaur@latrobe.edu.au – sequence: 2 givenname: Fei surname: Liu fullname: Liu, Fei email: F.Liu@latrobe.edu.au – sequence: 3 givenname: Yi-Ping surname: Phoebe Chen fullname: Phoebe Chen, Yi-Ping email: phoebe.chen@latrobe.edu.au |
| BookMark | eNqFkM1KAzEUhYNUsK2-guQFpuZnJpMBF0rRKhRE6D6kye007ZgMmbTFt3fa6sZNVxfO5TvwnREa-OABoXtKJpRQ8bCZgK9122o3YYTlfSjLil2hIZUlz0QpqgEakqpgGa1KcYNGXbchhHCZiyH6XKwBO5-gjjq54HFY4a0PhwZsDbgP2zU2we9Dszu9PaRDiFt8cGmNLfjgOudrrHcpgDfBQrxF1yvddHD3e8do8fqymL5l84_Z-_R5nhkuSMp0IS2HnBqbl9RwrpemyLUkBTNG5pIVlpNeh5ew1NxYwXhhSiYBcs4EXfIxejzXmhi6LsJKGZdOCilq1yhK1HEdtVF_66jjOuq8To-Lf3gb3ZeO35fBpzMIvdveQVSdcb06WBfBJGWDu1TxA6zjhxE |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2025_117752 crossref_primary_10_1109_TCE_2025_3564127 crossref_primary_10_1016_j_neucom_2025_131326 crossref_primary_10_1016_j_engappai_2025_110338 |
| Cites_doi | 10.1145/3591469 10.1002/cpe.7258 10.1016/j.knosys.2022.110218 10.1109/ACCESS.2019.2940603 10.1016/j.knosys.2023.110829 10.1016/j.neucom.2018.12.025 10.1109/TKDE.2018.2789443 10.1145/3158369 10.1007/s00500-023-08587-x 10.3390/math11030761 10.1016/j.future.2018.05.077 10.3390/s22134904 10.1109/ACCESS.2018.2890293 10.3390/app122311996 10.3390/electronics11071003 10.1109/TCYB.2018.2795041 10.26599/BDMA.2018.9020019 10.1016/j.knosys.2019.105020 10.1109/ACCESS.2019.2905876 10.1080/09540091.2022.2106943 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.engappai.2024.108792 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2024_108792 S0952197624009503 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c360t-a58d3e41cd471c33abc54a8052cc84825d3020237eba3cd6235c728ee43261b3 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001252136400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Tue Nov 18 21:23:33 EST 2025 Sat Nov 29 03:41:19 EST 2025 Sat Aug 10 15:30:43 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Denoising autoencoder Latent features representation Recommender system Meta feature learning |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c360t-a58d3e41cd471c33abc54a8052cc84825d3020237eba3cd6235c728ee43261b3 |
| ORCID | 0000-0002-3846-9862 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.engappai.2024.108792 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2024_108792 crossref_primary_10_1016_j_engappai_2024_108792 elsevier_sciencedirect_doi_10_1016_j_engappai_2024_108792 |
| PublicationCentury | 2000 |
| PublicationDate | September 2024 2024-09-00 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Pan, He, Yu (bib19) 2019; 332 Colace, Conte, De Santo, Lombardi, Santaniello, Valentino (bib5) 2022; 34 Xiong, Zhang, Zhu, Li, Zhou (bib28) 2020; 109 Mamdouh Farghaly, Abd El-Hafeez (bib17) 2023; 27 Askari, Szlichta, Salehi-Abari (bib2) 2021 Pattanayak (bib20) 2023 Harper, Konstan (bib9) 2015 Feng, Liu, Liang, Nie (bib7) 2023; 278 Wu, DuBois, Zheng, Ester (bib27) 2016 Shenbin, Alekseev, Tutubalina, Malykh, Nikolenko (bib23) 2020 Khan, Zubair, Imran, Ahmad, Butt, Chaudhary (bib14) 2019; 7 Fu, Qu, Yi, Lu, Liu (bib8) 2019; 49 Salau, Hamada, Prasad, Hassan, Mahendran, Watanobe (bib22) 2022; 12 Wang, Tang, Wang, Liu (bib25) 2018; 30 Khan, Chaudhary, Abbasi, Ling, Raja (bib13) 2023; 11 Alfarhood, Cheng (bib1) 2020 Yin, Li, Zhang, Lu (bib29) 2019; 185 Zhou, Sun, Liu, Zhang, Miao (bib31) 2023; 1 Vincent, Larochelle, Bengio, Manzagol (bib24) 2008 Casillo, Gupta, Lombardi, Lorusso, Santaniello, Valentino (bib3) 2022; 11 Liu, Wang, Khan, He (bib15) 2018; 1 Jayalakshmi, Ganesh, Čep, Senthil Murugan (bib11) 2022; 22 Wang, He, Wang, Feng, Chua (bib26) 2019 Kaur, Liu, Chen (bib12) 2023 Nikolenko (bib18) 2021 Sachdeva, Manco, Ritacco, Pudi (bib21) 2019 He, Meng, Zhang (bib10) 2019; 7 Mamdouh Farghaly, Abd El‐Hafeez (bib16) 2022; 34 Deng, Xiao (bib6) 2023; 261 Zhang, Yao, Sun, Tay (bib30) 2019; 52 Chae, Shin, Kim (bib4) 2019; 7 Khan (10.1016/j.engappai.2024.108792_bib14) 2019; 7 Vincent (10.1016/j.engappai.2024.108792_bib24) 2008 Jayalakshmi (10.1016/j.engappai.2024.108792_bib11) 2022; 22 Casillo (10.1016/j.engappai.2024.108792_bib3) 2022; 11 Fu (10.1016/j.engappai.2024.108792_bib8) 2019; 49 Pattanayak (10.1016/j.engappai.2024.108792_bib20) 2023 Zhang (10.1016/j.engappai.2024.108792_bib30) 2019; 52 Salau (10.1016/j.engappai.2024.108792_bib22) 2022; 12 Mamdouh Farghaly (10.1016/j.engappai.2024.108792_bib16) 2022; 34 Kaur (10.1016/j.engappai.2024.108792_bib12) 2023 Wang (10.1016/j.engappai.2024.108792_bib25) 2018; 30 Deng (10.1016/j.engappai.2024.108792_bib6) 2023; 261 Harper (10.1016/j.engappai.2024.108792_bib9) 2015 Khan (10.1016/j.engappai.2024.108792_bib13) 2023; 11 Wu (10.1016/j.engappai.2024.108792_bib27) 2016 Askari (10.1016/j.engappai.2024.108792_bib2) 2021 Shenbin (10.1016/j.engappai.2024.108792_bib23) 2020 Colace (10.1016/j.engappai.2024.108792_bib5) 2022; 34 He (10.1016/j.engappai.2024.108792_bib10) 2019; 7 Mamdouh Farghaly (10.1016/j.engappai.2024.108792_bib17) 2023; 27 Zhou (10.1016/j.engappai.2024.108792_bib31) 2023; 1 Chae (10.1016/j.engappai.2024.108792_bib4) 2019; 7 Sachdeva (10.1016/j.engappai.2024.108792_bib21) 2019 Yin (10.1016/j.engappai.2024.108792_bib29) 2019; 185 Feng (10.1016/j.engappai.2024.108792_bib7) 2023; 278 Alfarhood (10.1016/j.engappai.2024.108792_bib1) 2020 Nikolenko (10.1016/j.engappai.2024.108792_bib18) 2021 Pan (10.1016/j.engappai.2024.108792_bib19) 2019; 332 Xiong (10.1016/j.engappai.2024.108792_bib28) 2020; 109 Wang (10.1016/j.engappai.2024.108792_bib26) 2019 Liu (10.1016/j.engappai.2024.108792_bib15) 2018; 1 |
| References_xml | – volume: 7 start-page: 37650 year: 2019 end-page: 37663 ident: bib4 article-title: Collaborative adversarial autoencoders: an effective collaborative filtering model under the GAN framework publication-title: IEEE Access – year: 2016 ident: bib27 article-title: Collaborative denoising auto-encoders for top-N recommender systems publication-title: Proc. 9th ACM Int. Conf. Web Search Data Min. – start-page: 2061 year: 2021 end-page: 2065 ident: bib2 article-title: Variational autoencoders for top-k recommendation with implicit feedback publication-title: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval – volume: 52 start-page: 1 year: 2019 end-page: 38 ident: bib30 article-title: Deep learning based recommender system publication-title: ACM Comput. Surv. – start-page: 165 year: 2019 end-page: 174 ident: bib26 article-title: Neural graph collaborative filtering publication-title: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval – volume: 1 start-page: 211 year: 2018 end-page: 221 ident: bib15 article-title: A novel deep hybrid recommender system based on auto-encoder with neural collaborative filtering publication-title: Big Data Min. Anal. – start-page: 528 year: 2020 end-page: 536 ident: bib23 article-title: Recvae: a new variational autoencoder for top-n recommendations with implicit feedback publication-title: Proceedings of the 13th International Conference on Web Search and Data Mining – volume: 185 year: 2019 ident: bib29 article-title: A deeper graph neural network for recommender systems publication-title: Knowl. Base Syst. – volume: 7 start-page: 5707 year: 2019 end-page: 5713 ident: bib10 article-title: Collaborative additional variational Autoencoder for top-N recommender systems publication-title: IEEE Access – volume: 109 start-page: 511 year: 2020 end-page: 520 ident: bib28 article-title: Private collaborative filtering under untrusted recommender server publication-title: Future Generat. Comput. Syst. – year: 2023 ident: bib12 article-title: A deep learning knowledge graph neural network for recommender systems publication-title: Mach. Learn. Appl. – start-page: 97 year: 2021 end-page: 137 ident: bib18 article-title: Generative Models in Deep Learning – volume: 261 year: 2023 ident: bib6 article-title: Latent feature learning via autoencoder training for automatic classification configuration recommendation publication-title: Knowl. Base Syst. – volume: 34 year: 2022 ident: bib16 article-title: A new feature selection method based on frequent and associated itemsets for text classification publication-title: Concurrency Comput. Pract. Ex. – volume: 1 start-page: 1 year: 2023 end-page: 25 ident: bib31 article-title: Selfcf: a simple framework for self-supervised collaborative filtering publication-title: ACM Trans. Recommender Syst. – volume: 278 year: 2023 ident: bib7 article-title: ALCR: adaptive loss based critic ranking toward variational autoencoders with multinomial likelihood and condition for collaborative filtering publication-title: Knowl. Base Syst. – start-page: 407 year: 2023 end-page: 510 ident: bib20 article-title: Unsupervised learning with restricted Boltzmann machines and autoencoders publication-title: Pro Deep Learning with TensorFlow 2.0: A Mathematical Approach to Advanced Artificial Intelligence in Python – volume: 11 start-page: 1003 year: 2022 ident: bib3 article-title: Context aware recommender systems: a novel approach based on matrix factorization and contextual bias publication-title: Electronics – start-page: 1 year: 2020 end-page: 23 ident: bib1 article-title: Deep learning-based recommender systems publication-title: Adv. Intell. Syst. Comput. – volume: 332 start-page: 137 year: 2019 end-page: 148 ident: bib19 article-title: A novel enhanced collaborative autoencoder with knowledge distillation for top-N recommender systems publication-title: Neurocomputing – volume: 12 year: 2022 ident: bib22 article-title: State-of-the-art survey on deep learning-based recommender systems for e-learning publication-title: Appl. Sci. – volume: 34 start-page: 2158 year: 2022 end-page: 2176 ident: bib5 article-title: A content-based recommendation approach based on singular value decomposition publication-title: Connect. Sci. – year: 2015 ident: bib9 article-title: The MovieLens datasets: history and context publication-title: ACM Interact. Trans. Intell. Syst. – start-page: 600 year: 2019 end-page: 608 ident: bib21 article-title: Sequential variational autoencoders for collaborative filtering publication-title: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining – volume: 27 start-page: 11259 year: 2023 end-page: 11274 ident: bib17 article-title: A high-quality feature selection method based on frequent and correlated items for text classification publication-title: Soft Comput. – volume: 49 start-page: 1084 year: 2019 end-page: 1096 ident: bib8 article-title: A novel deep learning-based collaborative filtering model for recommendation system publication-title: IEEE Trans. Cybern. – volume: 7 start-page: 141287 year: 2019 end-page: 141310 ident: bib14 article-title: A new users rating-trend based collaborative denoising auto-encoder for top-N recommender systems publication-title: IEEE Access – volume: 22 start-page: 4904 year: 2022 ident: bib11 article-title: Movie recommender systems: concepts, methods, challenges, and future directions publication-title: Sensors – volume: 30 start-page: 1022 year: 2018 end-page: 1035 ident: bib25 article-title: Exploring hierarchical structures for recommender systems publication-title: IEEE Trans. Knowl. Data Eng. – year: 2008 ident: bib24 article-title: Extracting and composing robust features with denoising autoencoders publication-title: Proc. 25th Int. Conf. Mach. Learn. ICML ’08 – volume: 11 start-page: 761 year: 2023 ident: bib13 article-title: Design of confidence-integrated denoising auto-encoder for personalized top-N recommender systems publication-title: Mathematics – volume: 1 start-page: 1 issue: 2 year: 2023 ident: 10.1016/j.engappai.2024.108792_bib31 article-title: Selfcf: a simple framework for self-supervised collaborative filtering publication-title: ACM Trans. Recommender Syst. doi: 10.1145/3591469 – start-page: 1 year: 2020 ident: 10.1016/j.engappai.2024.108792_bib1 article-title: Deep learning-based recommender systems publication-title: Adv. Intell. Syst. Comput. – volume: 34 issue: 25 year: 2022 ident: 10.1016/j.engappai.2024.108792_bib16 article-title: A new feature selection method based on frequent and associated itemsets for text classification publication-title: Concurrency Comput. Pract. Ex. doi: 10.1002/cpe.7258 – volume: 261 year: 2023 ident: 10.1016/j.engappai.2024.108792_bib6 article-title: Latent feature learning via autoencoder training for automatic classification configuration recommendation publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2022.110218 – volume: 7 start-page: 141287 year: 2019 ident: 10.1016/j.engappai.2024.108792_bib14 article-title: A new users rating-trend based collaborative denoising auto-encoder for top-N recommender systems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2940603 – volume: 278 year: 2023 ident: 10.1016/j.engappai.2024.108792_bib7 article-title: ALCR: adaptive loss based critic ranking toward variational autoencoders with multinomial likelihood and condition for collaborative filtering publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2023.110829 – volume: 332 start-page: 137 year: 2019 ident: 10.1016/j.engappai.2024.108792_bib19 article-title: A novel enhanced collaborative autoencoder with knowledge distillation for top-N recommender systems publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.12.025 – volume: 30 start-page: 1022 issue: 6 year: 2018 ident: 10.1016/j.engappai.2024.108792_bib25 article-title: Exploring hierarchical structures for recommender systems publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2789443 – volume: 52 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.engappai.2024.108792_bib30 article-title: Deep learning based recommender system publication-title: ACM Comput. Surv. doi: 10.1145/3158369 – volume: 27 start-page: 11259 issue: 16 year: 2023 ident: 10.1016/j.engappai.2024.108792_bib17 article-title: A high-quality feature selection method based on frequent and correlated items for text classification publication-title: Soft Comput. doi: 10.1007/s00500-023-08587-x – start-page: 97 year: 2021 ident: 10.1016/j.engappai.2024.108792_bib18 – volume: 11 start-page: 761 issue: 3 year: 2023 ident: 10.1016/j.engappai.2024.108792_bib13 article-title: Design of confidence-integrated denoising auto-encoder for personalized top-N recommender systems publication-title: Mathematics doi: 10.3390/math11030761 – year: 2008 ident: 10.1016/j.engappai.2024.108792_bib24 article-title: Extracting and composing robust features with denoising autoencoders publication-title: Proc. 25th Int. Conf. Mach. Learn. ICML ’08 – volume: 109 start-page: 511 year: 2020 ident: 10.1016/j.engappai.2024.108792_bib28 article-title: Private collaborative filtering under untrusted recommender server publication-title: Future Generat. Comput. Syst. doi: 10.1016/j.future.2018.05.077 – volume: 22 start-page: 4904 issue: 13 year: 2022 ident: 10.1016/j.engappai.2024.108792_bib11 article-title: Movie recommender systems: concepts, methods, challenges, and future directions publication-title: Sensors doi: 10.3390/s22134904 – year: 2016 ident: 10.1016/j.engappai.2024.108792_bib27 article-title: Collaborative denoising auto-encoders for top-N recommender systems publication-title: Proc. 9th ACM Int. Conf. Web Search Data Min. – volume: 7 start-page: 5707 year: 2019 ident: 10.1016/j.engappai.2024.108792_bib10 article-title: Collaborative additional variational Autoencoder for top-N recommender systems publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890293 – volume: 12 issue: 23 year: 2022 ident: 10.1016/j.engappai.2024.108792_bib22 article-title: State-of-the-art survey on deep learning-based recommender systems for e-learning publication-title: Appl. Sci. doi: 10.3390/app122311996 – start-page: 528 year: 2020 ident: 10.1016/j.engappai.2024.108792_bib23 article-title: Recvae: a new variational autoencoder for top-n recommendations with implicit feedback – start-page: 600 year: 2019 ident: 10.1016/j.engappai.2024.108792_bib21 article-title: Sequential variational autoencoders for collaborative filtering – volume: 11 start-page: 1003 issue: 7 year: 2022 ident: 10.1016/j.engappai.2024.108792_bib3 article-title: Context aware recommender systems: a novel approach based on matrix factorization and contextual bias publication-title: Electronics doi: 10.3390/electronics11071003 – volume: 49 start-page: 1084 issue: 3 year: 2019 ident: 10.1016/j.engappai.2024.108792_bib8 article-title: A novel deep learning-based collaborative filtering model for recommendation system publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2795041 – volume: 1 start-page: 211 issue: 3 year: 2018 ident: 10.1016/j.engappai.2024.108792_bib15 article-title: A novel deep hybrid recommender system based on auto-encoder with neural collaborative filtering publication-title: Big Data Min. Anal. doi: 10.26599/BDMA.2018.9020019 – start-page: 407 year: 2023 ident: 10.1016/j.engappai.2024.108792_bib20 article-title: Unsupervised learning with restricted Boltzmann machines and autoencoders – start-page: 2061 year: 2021 ident: 10.1016/j.engappai.2024.108792_bib2 article-title: Variational autoencoders for top-k recommendation with implicit feedback – year: 2015 ident: 10.1016/j.engappai.2024.108792_bib9 article-title: The MovieLens datasets: history and context publication-title: ACM Interact. Trans. Intell. Syst. – volume: 185 year: 2019 ident: 10.1016/j.engappai.2024.108792_bib29 article-title: A deeper graph neural network for recommender systems publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2019.105020 – year: 2023 ident: 10.1016/j.engappai.2024.108792_bib12 article-title: A deep learning knowledge graph neural network for recommender systems publication-title: Mach. Learn. Appl. – start-page: 165 year: 2019 ident: 10.1016/j.engappai.2024.108792_bib26 article-title: Neural graph collaborative filtering – volume: 7 start-page: 37650 year: 2019 ident: 10.1016/j.engappai.2024.108792_bib4 article-title: Collaborative adversarial autoencoders: an effective collaborative filtering model under the GAN framework publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2905876 – volume: 34 start-page: 2158 issue: 1 year: 2022 ident: 10.1016/j.engappai.2024.108792_bib5 article-title: A content-based recommendation approach based on singular value decomposition publication-title: Connect. Sci. doi: 10.1080/09540091.2022.2106943 |
| SSID | ssj0003846 |
| Score | 2.4390056 |
| Snippet | The knowledge graph convolution network (KGCN) is a recommendation model that provides a set of top recommendations based on knowledge graph developed between... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108792 |
| SubjectTerms | Denoising autoencoder Latent features representation Meta feature learning Recommender system |
| Title | The integration of knowledge graph convolution network with denoising autoencoder |
| URI | https://dx.doi.org/10.1016/j.engappai.2024.108792 |
| Volume | 135 |
| WOSCitedRecordID | wos001252136400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuvBFtAfnAbeUlsZO1fayq8hKqirSH5RQ5totSVUm13a164Mcz8SsBKkoPXKLIkp3HfBl_M5kHQm9zW6sFLUrCs7omhTSKKMsNOQVjQ1OpgYQo12yCHx-L1UqeTCY_Yi7M1TlvW3F9LS_-q6hhDITdp87eQdxpURiAcxA6HEHscPxnwcciEIENJsfZzNWndqHm4R5mrY8D9w5ZUEJd47wHarvp-hqXJkTvRuf9UL5wNv737cIJ1i7uyHUBGRX6TCpdbR06PvT-fTMEBX9pto5B22b4Q9GB0GeHIXHkW0NO4gYb_BO0SAFYg6ORklz6Li9J57JypDXzTHDfEe8Phe59C2dz236Hp1LNvL_EfJjwawXt33a2FG8YQ9nOqrhO1a9T-XXuoR3KSymmaOfg09Hqc9rJmfCJXvEJRhnmN9_RzeRmRFiWj9HDYGngA4-QJ2hi26foUbA6cNDplzAUG3vEsWfoK2AIjzCEu1OcMIQdhvAIQzhgCPcYwglDeISh52j5_mh5-JGE3htEs0W2IaoUhtki1wbYi2ZM1bosVN__QmtRCFoaBoYGZRy-daYNkOhScyqsLcAeyGv2Ak3brrUvEc5MJnTODNMFMCaRK6MXknK6MALYqZS7qIzvrNKhLn3fHuW8-rvUdtG7NO_CV2a5dYaMIqkCv_S8sQK03TJ3785X20cPhs_hFZpu1lv7Gt3XV5vmcv0mQO0nC7CjfA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+integration+of+knowledge+graph+convolution+network+with+denoising+autoencoder&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Kaur%2C+Gurinder&rft.au=Liu%2C+Fei&rft.au=Phoebe+Chen%2C+Yi-Ping&rft.date=2024-09-01&rft.issn=0952-1976&rft.volume=135&rft.spage=108792&rft_id=info:doi/10.1016%2Fj.engappai.2024.108792&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2024_108792 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |