Sequential Quadratic Programming Method for Nonlinear Least Squares Estimation and Its Application

In this study, we propose a direction-controlled nonlinear least squares estimation model that combines the penalty function and sequential quadratic programming. The least squares model is transformed into a sequential quadratic programming model, allowing for the iteration direction to be controll...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical problems in engineering Ročník 2019; číslo 2019; s. 1 - 8
Hlavní autori: Fu, Zhengqing, Guo, Lanlan, Liu, Guolin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cairo, Egypt Hindawi Publishing Corporation 2019
Hindawi
John Wiley & Sons, Inc
Predmet:
ISSN:1024-123X, 1563-5147
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this study, we propose a direction-controlled nonlinear least squares estimation model that combines the penalty function and sequential quadratic programming. The least squares model is transformed into a sequential quadratic programming model, allowing for the iteration direction to be controlled. An ill-conditioned matrix is processed by our model; the least squares estimate, the ridge estimate, and the results are compared based on a combination of qualitative and quantitative analyses. For comparison, we use two equality indicators: estimated residual fluctuation of different methods and the deviation between estimated and true values. The root-mean-squared error and standard deviation are used for quantitative analysis. The results demonstrate that our proposed model has a smaller error than other methods. Our proposed model is thereby found to be effective and has high precision. It can obtain more precise results compared with other classical unwrapping algorithms, as shown by unwrapping using both simulated and real data from the Jining area in China.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1024-123X
1563-5147
DOI:10.1155/2019/3087949