Use of Data Visualisation for Zero-Day Malware Detection
With the explosion of Internet of Things (IoT) worldwide, there is an increasing threat from malicious software (malware) attackers that calls for efficient monitoring of vulnerable systems. Large amounts of data collected from computer networks, servers, and mobile devices need to be analysed for m...
Gespeichert in:
| Veröffentlicht in: | Security and communication networks Jg. 2018; H. 2018; S. 1 - 13 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2018
Hindawi John Wiley & Sons, Inc |
| Schlagworte: | |
| ISSN: | 1939-0114, 1939-0122 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With the explosion of Internet of Things (IoT) worldwide, there is an increasing threat from malicious software (malware) attackers that calls for efficient monitoring of vulnerable systems. Large amounts of data collected from computer networks, servers, and mobile devices need to be analysed for malware proliferation. Effective analysis methods are needed to match with the scale and complexity of such a data-intensive environment. In today’s Big Data contexts, visualisation techniques can support malware analysts going through the time-consuming process of analysing suspicious activities thoroughly. This paper takes a step further in contributing to the evolving realm of visualisation techniques used in the information security field. The aim of the paper is twofold: (1) to provide a comprehensive overview of the existing visualisation techniques for detecting suspicious behaviour of systems and (2) to design a novel visualisation using similarity matrix method for establishing malware classification accurately. The prime motivation of our proposal is to identify obfuscated malware using visualisation of the extended x86 IA-32 (opcode) similarity patterns, which are hard to detect with the existing approaches. Our approach uses hybrid models wherein static and dynamic malware analysis techniques are combined effectively along with visualisation of similarity matrices in order to detect and classify zero-day malware efficiently. Overall, the high accuracy of classification achieved with our proposed method can be visually observed since different malware families exhibit significantly dissimilar behaviour patterns. |
|---|---|
| AbstractList | With the explosion of Internet of Things (IoT) worldwide, there is an increasing threat from malicious software (malware) attackers that calls for efficient monitoring of vulnerable systems. Large amounts of data collected from computer networks, servers, and mobile devices need to be analysed for malware proliferation. Effective analysis methods are needed to match with the scale and complexity of such a data-intensive environment. In today’s Big Data contexts, visualisation techniques can support malware analysts going through the time-consuming process of analysing suspicious activities thoroughly. This paper takes a step further in contributing to the evolving realm of visualisation techniques used in the information security field. The aim of the paper is twofold: (1) to provide a comprehensive overview of the existing visualisation techniques for detecting suspicious behaviour of systems and (2) to design a novel visualisation using similarity matrix method for establishing malware classification accurately. The prime motivation of our proposal is to identify obfuscated malware using visualisation of the extended x86 IA-32 (opcode) similarity patterns, which are hard to detect with the existing approaches. Our approach uses hybrid models wherein static and dynamic malware analysis techniques are combined effectively along with visualisation of similarity matrices in order to detect and classify zero-day malware efficiently. Overall, the high accuracy of classification achieved with our proposed method can be visually observed since different malware families exhibit significantly dissimilar behaviour patterns. With the explosion of Internet of Things (IoT) worldwide, there is an increasing threat from malicious software (malware) attackers that calls for efficient monitoring of vulnerable systems. Large amounts of data collected from computer networks, servers, and mobile devices need to be analysed for malware proliferation. Effective analysis methods are needed to match with the scale and complexity of such a data-intensive environment. In today’s Big Data contexts, visualisation techniques can support malware analysts going through the time-consuming process of analysing suspicious activities thoroughly. This paper takes a step further in contributing to the evolving realm of visualisation techniques used in the information security field. The aim of the paper is twofold: ( 1 ) to provide a comprehensive overview of the existing visualisation techniques for detecting suspicious behaviour of systems and ( 2 ) to design a novel visualisation using similarity matrix method for establishing malware classification accurately. The prime motivation of our proposal is to identify obfuscated malware using visualisation of the extended x86 IA-32 (opcode) similarity patterns, which are hard to detect with the existing approaches. Our approach uses hybrid models wherein static and dynamic malware analysis techniques are combined effectively along with visualisation of similarity matrices in order to detect and classify zero-day malware efficiently. Overall, the high accuracy of classification achieved with our proposed method can be visually observed since different malware families exhibit significantly dissimilar behaviour patterns. |
| Author | Alazab, Mamoun Venkatraman, Sitalakshmi |
| Author_xml | – sequence: 1 fullname: Venkatraman, Sitalakshmi – sequence: 2 fullname: Alazab, Mamoun |
| BookMark | eNqF0EtLw0AQB_BFKthWb54l4FFj95Vs9iitL6h4qR68hMk-cEvM1t2U0m9vaoqCIJ52YH8zw_xHaND4xiB0SvAVIVk2oZgUEyJowTA7QEMimUwxoXTwXRN-hEYxLjHOCRd8iIrnaBJvkxm0kLy4uIbaRWidbxLrQ_Jqgk9nsE0eod5AMMnMtEbtvo_RoYU6mpP9O0aL25vF9D6dP909TK_nqWI5blPAQhCmi1xraXhuKUhtlbRQYaqoEForLjkmmmtcYdA5NRRXYIVVlWSWjdF5P3YV_MfaxLZc-nVouo0l5VkmCiFy2inaKxV8jMHYUrn264o2gKtLgstdQOUuoHIfUNd0-atpFdw7hO1f_KLnb67RsHH_6bNem84YCz-aEiZxwT4BfX999A |
| CitedBy_id | crossref_primary_10_1007_s00500_021_06492_9 crossref_primary_10_3390_electronics11071044 crossref_primary_10_1016_j_future_2020_02_002 crossref_primary_10_1109_ACCESS_2020_3033883 crossref_primary_10_1155_2021_1070586 crossref_primary_10_1016_j_future_2021_02_008 crossref_primary_10_1016_j_cose_2020_102133 crossref_primary_10_7717_peerj_cs_553 crossref_primary_10_3390_electronics9020274 crossref_primary_10_1016_j_compeleceng_2022_107737 crossref_primary_10_1109_ACCESS_2022_3204171 crossref_primary_10_7717_peerj_cs_504 crossref_primary_10_1109_TNSE_2021_3059881 crossref_primary_10_1109_ACCESS_2021_3090464 crossref_primary_10_1109_ACCESS_2023_3327922 crossref_primary_10_1109_TETC_2022_3170544 crossref_primary_10_1145_3491223 crossref_primary_10_1186_s42400_021_00077_7 crossref_primary_10_1016_j_micpro_2023_104935 crossref_primary_10_1049_ipr2_12222 crossref_primary_10_1016_j_comcom_2021_04_021 crossref_primary_10_1016_j_future_2021_07_015 crossref_primary_10_1155_2021_6652606 crossref_primary_10_3390_s23167084 crossref_primary_10_1007_s11276_020_02529_3 crossref_primary_10_1016_j_jisa_2020_102718 crossref_primary_10_3390_electronics10111241 crossref_primary_10_1007_s00500_023_08737_1 crossref_primary_10_1002_cpe_7691 crossref_primary_10_1007_s00500_023_07906_6 crossref_primary_10_1007_s11042_022_13426_6 crossref_primary_10_1016_j_comcom_2021_05_016 crossref_primary_10_1002_int_22877 crossref_primary_10_1049_iet_ifs_2019_0189 crossref_primary_10_1007_s00500_022_06763_z crossref_primary_10_1007_s12083_023_01507_8 crossref_primary_10_3390_s21144834 crossref_primary_10_3390_g11040064 crossref_primary_10_1155_2021_5521713 crossref_primary_10_1109_TVT_2021_3074820 crossref_primary_10_1002_dac_5159 crossref_primary_10_1016_j_jisa_2019_06_006 crossref_primary_10_1109_TITS_2021_3066487 crossref_primary_10_3390_app13031484 crossref_primary_10_1109_TC_2020_3015584 crossref_primary_10_1016_j_knosys_2021_107020 crossref_primary_10_1007_s12083_021_01121_6 crossref_primary_10_32604_cmc_2021_016736 crossref_primary_10_3390_app12178482 crossref_primary_10_7717_peerj_cs_525 crossref_primary_10_1155_2020_6724513 crossref_primary_10_1109_ACCESS_2025_3550781 crossref_primary_10_1016_j_inffus_2021_04_017 crossref_primary_10_3390_s22072798 crossref_primary_10_1016_j_comnet_2020_107138 crossref_primary_10_1109_JIOT_2021_3085422 crossref_primary_10_1080_01969722_2022_2068226 crossref_primary_10_1109_ACCESS_2019_2895334 crossref_primary_10_1109_ACCESS_2024_3485706 crossref_primary_10_32604_cmc_2021_016229 crossref_primary_10_1155_2022_1615528 crossref_primary_10_7717_peerj_cs_1319 crossref_primary_10_3390_fi13110273 crossref_primary_10_1109_TITS_2021_3056704 crossref_primary_10_1155_2021_5561816 crossref_primary_10_7717_peerj_cs_579 crossref_primary_10_1155_2021_5579851 crossref_primary_10_1007_s11042_022_13425_7 crossref_primary_10_1016_j_future_2021_03_001 crossref_primary_10_1155_2019_1315047 crossref_primary_10_3390_rs12152358 crossref_primary_10_1016_j_future_2021_03_008 crossref_primary_10_1109_ACCESS_2024_3473289 crossref_primary_10_3390_electronics9091379 |
| Cites_doi | 10.1109/TVCG.2011.144 10.1007/s12650-014-0246-x 10.2991/978-94-6239-186-4 10.1109/MCG.2006.31 10.1016/j.jss.2014.10.031 10.1155/2018/7247095 10.1109/TVCG.2014.2388208 10.1186/s13673-018-0125-x 10.1007/978-3-319-47217-1_8 10.1155/2014/132713 10.1108/17440081311316361 10.1155/2017/6451260 10.1109/MCG.2006.49 10.1007/978-3-319-60753-5_19 10.1109/2945.981847 10.1002/sec.1723 10.1016/j.cose.2017.02.003 10.1007/978-3-319-67071-3_33 10.1109/38.974517 10.1109/SURV.2013.102913.00020 10.1007/s10207-014-0242-0 10.1007/s11416-016-0267-1 10.1007/s40012-016-0095-y 10.1145/2089125.2089126 10.1504/IJESDF.2013.055047 10.5121/ijmit.2017.9301 10.1109/ACCESS.2018.2799854 10.4304/jnw.9.11.2878-2891 |
| ContentType | Journal Article |
| Copyright | Copyright © 2018 Sitalakshmi Venkatraman and Mamoun Alazab. Copyright © 2018 Sitalakshmi Venkatraman and Mamoun Alazab. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2018 Sitalakshmi Venkatraman and Mamoun Alazab. – notice: Copyright © 2018 Sitalakshmi Venkatraman and Mamoun Alazab. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1155/2018/1728303 |
| DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-0122 |
| Editor | Yang, Qing |
| Editor_xml | – sequence: 1 givenname: Qing surname: Yang fullname: Yang, Qing |
| EndPage | 13 |
| ExternalDocumentID | 10_1155_2018_1728303 1213908 |
| GroupedDBID | .4S .DC 05W 0R~ 123 24P 31~ 3SF 4.4 52U 5DZ 66C 8-1 8UM AAESR AAEVG AAFWJ AAMMB AANHP AAONW AAZKR ACBWZ ACCMX ACGFO ACRPL ACXQS ACYXJ ADBBV ADIZJ ADJCN ADMLS ADNMO AEFGJ AEIMD AENEX AFBPY AGQPQ AGXDD AHFXO AIDQK AIDYY AJXKR ALMA_UNASSIGNED_HOLDINGS AMBMR ARCSS ASPBG ATUGU AVWKF AZFZN AZVAB BCNDV BDRZF BHBCM BNHUX BOGZA BRXPI CS3 DR2 DU5 EBS EIS EJD F1Z FEDTE G-S GODZA H13 HVGLF HZ~ IX1 LH4 LITHE LW6 MY. MY~ NNB O9- OIG OK1 P2P PUEGO ROL SUPJJ TH9 TUS W99 WBKPD XV2 1OC AAJEY AFKRA ARAPS BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ IAO ICD ITC K7- PIMPY RHU RHW RHX AAYXX ALUQN CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c360t-a07713d86dd9e46f2a9dfc9fab02c277ddc49401d4d0b0ad62e20baf7fcb93f3 |
| IEDL.DBID | RHX |
| ISICitedReferencesCount | 92 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453813700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-0114 |
| IngestDate | Sun Jul 13 05:28:28 EDT 2025 Tue Nov 18 22:32:11 EST 2025 Sat Nov 29 02:59:30 EST 2025 Sun Jun 02 18:54:26 EDT 2024 Thu Sep 25 15:24:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2018 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c360t-a07713d86dd9e46f2a9dfc9fab02c277ddc49401d4d0b0ad62e20baf7fcb93f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1928-3704 0000-0002-2772-133X |
| OpenAccessLink | https://dx.doi.org/10.1155/2018/1728303 |
| PQID | 2455787762 |
| PQPubID | 1046363 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2455787762 crossref_citationtrail_10_1155_2018_1728303 crossref_primary_10_1155_2018_1728303 hindawi_primary_10_1155_2018_1728303 emarefa_primary_1213908 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-01 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cairo, Egypt |
| PublicationPlace_xml | – name: Cairo, Egypt – name: London |
| PublicationTitle | Security and communication networks |
| PublicationYear | 2018 |
| Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc |
| References | 44 23 24 25 47 26 (35) 2017 (39) 2009 (11) 2006 (31) 2014 (37) 2017 (38) 2007 50 30 10 54 55 34 56 13 14 58 16 (62) 2017 (2) 2017 (1) 2006 5 (40) 2014 7 8 9 60 (27) 2006 61 (33) 2015 41 63 20 21 (32) 2017; 60 43 |
| References_xml | – ident: 30 doi: 10.1109/TVCG.2011.144 – ident: 24 doi: 10.1007/s12650-014-0246-x – ident: 25 doi: 10.2991/978-94-6239-186-4 – year: 2006 ident: 11 – ident: 43 doi: 10.1109/MCG.2006.31 – ident: 20 doi: 10.1016/j.jss.2014.10.031 – ident: 55 doi: 10.1155/2018/7247095 – year: 2009 ident: 39 – ident: 56 doi: 10.1109/TVCG.2014.2388208 – ident: 16 doi: 10.1186/s13673-018-0125-x – ident: 13 doi: 10.1007/978-3-319-47217-1_8 – ident: 50 doi: 10.1155/2014/132713 – ident: 58 doi: 10.1108/17440081311316361 – ident: 54 doi: 10.1155/2017/6451260 – ident: 34 doi: 10.1109/MCG.2006.49 – year: 2007 ident: 38 – ident: 44 doi: 10.1007/978-3-319-60753-5_19 – year: 2006 ident: 27 – ident: 26 doi: 10.1109/2945.981847 – ident: 60 doi: 10.1002/sec.1723 – volume: 60 issue: 12 year: 2017 ident: 32 publication-title: Scince China Information Sciences – start-page: 139 volume-title: Visual Analytics: Foundations and Experiences in Malware Analysis year: 2017 ident: 35 – ident: 63 doi: 10.1016/j.cose.2017.02.003 – year: 2015 ident: 33 – year: 2014 ident: 31 – volume-title: Computer Viruses and Malware year: 2006 ident: 1 – year: 2017 ident: 2 publication-title: System American Journal of Applied Sciences – ident: 14 doi: 10.1007/978-3-319-67071-3_33 – ident: 41 doi: 10.1109/38.974517 – ident: 23 doi: 10.1109/SURV.2013.102913.00020 – ident: 47 doi: 10.1007/s10207-014-0242-0 – ident: 7 doi: 10.1007/s11416-016-0267-1 – ident: 10 doi: 10.1007/s40012-016-0095-y – year: 2017 ident: 37 – ident: 5 doi: 10.1145/2089125.2089126 – year: 2017 ident: 62 publication-title: Computers & Security – ident: 9 doi: 10.1504/IJESDF.2013.055047 – ident: 21 doi: 10.5121/ijmit.2017.9301 – ident: 61 doi: 10.1109/ACCESS.2018.2799854 – volume-title: Data-driven security analysis, visualisation, and dashboards year: 2014 ident: 40 – ident: 8 doi: 10.4304/jnw.9.11.2878-2891 |
| SSID | ssj0061474 |
| Score | 2.4591324 |
| Snippet | With the explosion of Internet of Things (IoT) worldwide, there is an increasing threat from malicious software (malware) attackers that calls for efficient... |
| SourceID | proquest crossref hindawi emarefa |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Application programming interface Automation Big Data Classification Computer networks Computer viruses Computers Criminal investigations Cybersecurity Data analysis Data encryption Data mining Electronic devices Internet of Things Machine learning Malware Network security Reverse engineering Scientific visualization Similarity Similarity measures Subject specialists Support vector machines Visualization Wireless networks |
| Title | Use of Data Visualisation for Zero-Day Malware Detection |
| URI | https://search.emarefa.net/detail/BIM-1213908 https://dx.doi.org/10.1155/2018/1728303 https://www.proquest.com/docview/2455787762 |
| Volume | 2018 |
| WOSCitedRecordID | wos000453813700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1939-0122 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061474 issn: 1939-0114 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5ssaAH8W21lj3UkwTTzSabHMVaerEUqVK8hMk-sFBTaaLFf-9usvFVRG8JTDbw7Wa-mezsNwh1hCelT4R0EhZyR_Ot5wBw5kQBV75SkkovKZpNsOEwnEyikRVJyla38DXb6fS8G16YNkqeUfWshb5ZvLeDSeVwNcEwu3lsSn-6tKpv__HsN-ZpyCfQF5qOGo8m-V1OV5xxwTD9bbRlQ0N8Wc7lDlqT6S7a_CIYuIfCu0ziucI9yAHfTzNzIrIsx8E6-MQPcjF3evCGb2C21C_GPZkXpVbpPhr3r8dXA8f2PnC4F7i5Ay7T6aMIAyEiSQNFIBKKRwoSl3DCmBCcRjo3ElS4iQsiIJK4CSimeBJ5yjtA9XSeyiOEOXSB6yABopBRQQGU6HIQZbNQ5fEmOq9gibnVBTftKWZxkR_4fmxAjC2ITXT2Yf1c6mH8YndoEf40IzradMMm6ljE_xigVU1HbD-rLCbUNx5GO_Dj_41ygjbMbfnPpIXq-eJFnqJ1_ppPs0Ub1QgdtYvF9A5d1b-s |
| linkProvider | Hindawi Publishing |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+Data+Visualisation+for+Zero-Day+Malware+Detection&rft.jtitle=Security+and+communication+networks&rft.au=Venkatraman%2C+Sitalakshmi&rft.au=Alazab%2C+Mamoun&rft.date=2018-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1939-0114&rft.eissn=1939-0122&rft.volume=2018&rft_id=info:doi/10.1155%2F2018%2F1728303&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-0114&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-0114&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-0114&client=summon |