Quantum Criticality Under Decoherence or Weak Measurement
Decoherence inevitably happens when a quantum state is exposed to its environment, which can affect quantum critical points (QCPs) in a nontrivial way. As was pointed out in the recent literature on (1+1)d conformal field theory (CFT) [Garratt et al. Measurements conspire nonlocally to restructure c...
Uložené v:
| Vydané v: | PRX quantum Ročník 4; číslo 3; s. 030317 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
American Physical Society
01.08.2023
|
| ISSN: | 2691-3399, 2691-3399 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Decoherence inevitably happens when a quantum state is exposed to its environment, which can affect quantum critical points (QCPs) in a nontrivial way. As was pointed out in the recent literature on (1+1)d conformal field theory (CFT) [Garratt et al. Measurements conspire nonlocally to restructure critical quantum states, arXiv:2207.09476 (2022)], the effect of weak measurement can be mathematically mapped to the problem of boundary CFT. In this work, we focus on the (2+1)d QCPs, whose boundary and defect effects have attracted enormous theoretical and numerical interests very recently. We focus on decoherence caused by weak measurements with and without postselecting the measurement outcomes. Our main results are as follows: (1) for an O(N) Wilson-Fisher QCP under weak measurement with postselection, an observer would, in general, observe two different types of boundary and defect criticality with very different behaviors from the well-known Wilson-Fisher fixed points; in particular, it is possible to observe the recently proposed exotic “extraordinary-log” correlation. (2) An extra quantum phase transition can be driven by decoherence, if we consider quantities nonlinear with the decohered density matrix, such as the Renyi entropy. We demonstrate the connection between this transition to the information-theoretic transition driven by an error in the toric code model. (3) When there is no postselection, though correlation functions between local operators remain the same as the undecohered pure state, nonlocal operators such as the “disorder operator” would have qualitatively distinct behaviors; and we also show that the decoherence can lead to confinement. |
|---|---|
| AbstractList | Decoherence inevitably happens when a quantum state is exposed to its environment, which can affect quantum critical points (QCPs) in a nontrivial way. As was pointed out in the recent literature on (1+1)d conformal field theory (CFT) [Garratt et al. Measurements conspire nonlocally to restructure critical quantum states, arXiv:2207.09476 (2022)], the effect of weak measurement can be mathematically mapped to the problem of boundary CFT. In this work, we focus on the (2+1)d QCPs, whose boundary and defect effects have attracted enormous theoretical and numerical interests very recently. We focus on decoherence caused by weak measurements with and without postselecting the measurement outcomes. Our main results are as follows: (1) for an O(N) Wilson-Fisher QCP under weak measurement with postselection, an observer would, in general, observe two different types of boundary and defect criticality with very different behaviors from the well-known Wilson-Fisher fixed points; in particular, it is possible to observe the recently proposed exotic “extraordinary-log” correlation. (2) An extra quantum phase transition can be driven by decoherence, if we consider quantities nonlinear with the decohered density matrix, such as the Renyi entropy. We demonstrate the connection between this transition to the information-theoretic transition driven by an error in the toric code model. (3) When there is no postselection, though correlation functions between local operators remain the same as the undecohered pure state, nonlocal operators such as the “disorder operator” would have qualitatively distinct behaviors; and we also show that the decoherence can lead to confinement. |
| ArticleNumber | 030317 |
| Author | Lee, Jong Yeon Xu, Cenke Jian, Chao-Ming |
| Author_xml | – sequence: 1 givenname: Jong Yeon orcidid: 0000-0002-7387-3326 surname: Lee fullname: Lee, Jong Yeon – sequence: 2 givenname: Chao-Ming surname: Jian fullname: Jian, Chao-Ming – sequence: 3 givenname: Cenke surname: Xu fullname: Xu, Cenke |
| BookMark | eNp9kMtOwzAQRS0EEqX0C9jkB1rGjzjxEpVXpSIeooKdNXEmkJLGyHEX_XsCLQKxYDVXI52jq3vE9lvfEmMnHCacgzy9e3i-X2Mb16uJmoAEybM9NhDa8LGUxuz_yods1HVLABApl1yZATM7NJmGOtYOmzpukkVbUkjOyflXCtQ6SnxIngjfkhvCbh1oRW08ZgcVNh2NdnfIFpcXj9Pr8fz2ajY9m4-d1BDHxplUplSUhCbLpDagUeZpSXleOMUzBYR5oSQ44CkXlRA5SSAlyhSrAkEO2WzrLT0u7XuoVxg21mNtvx4-vFgMffWGrFAEmUu5FkWqoBIGtc6N641QCnC6d5mtywXfdYEq6-qIsfZtDFg3loP9nNT-TGqV3U7as_IP-93lP-oDHXN-IA |
| CitedBy_id | crossref_primary_10_1103_l4b7_h5cd crossref_primary_10_1007_JHEP12_2023_157 crossref_primary_10_1103_fy9r_hpcw crossref_primary_10_1103_PhysRevB_111_155143 crossref_primary_10_1103_PRXQuantum_5_030311 crossref_primary_10_1103_PRXQuantum_5_030310 crossref_primary_10_1103_66pk_1byg crossref_primary_10_1103_nn2m_w4vk crossref_primary_10_1103_PhysRevX_15_011068 crossref_primary_10_22331_q_2025_06_17_1771 crossref_primary_10_1103_PhysRevX_15_011069 crossref_primary_10_1103_PhysRevX_15_021062 crossref_primary_10_1103_PhysRevX_15_021060 crossref_primary_10_1103_PRXQuantum_6_010347 crossref_primary_10_1103_PRXQuantum_6_010348 crossref_primary_10_1103_PhysRevB_111_115123 crossref_primary_10_1093_nsr_nwae287 crossref_primary_10_1103_Physics_18_9 crossref_primary_10_1103_PhysRevResearch_6_L042063 crossref_primary_10_1103_PRXQuantum_5_040313 crossref_primary_10_1103_PhysRevB_111_L060304 crossref_primary_10_1007_JHEP12_2023_004 crossref_primary_10_1038_s42005_025_02199_7 crossref_primary_10_1103_PhysRevResearch_6_L042014 crossref_primary_10_1103_PRXQuantum_5_030307 crossref_primary_10_1103_PhysRevLett_133_210601 crossref_primary_10_1103_PhysRevB_111_125106 crossref_primary_10_1103_PhysRevB_111_L201108 crossref_primary_10_1103_PRXQuantum_6_020333 crossref_primary_10_1103_PhysRevB_111_174110 crossref_primary_10_1103_hchr_rqq9 crossref_primary_10_1103_PhysRevLett_134_070403 crossref_primary_10_1103_PhysRevB_111_125147 crossref_primary_10_1103_PhysRevB_111_054106 crossref_primary_10_1103_PRXQuantum_6_010329 crossref_primary_10_1103_PhysRevB_111_224301 crossref_primary_10_1103_PhysRevB_111_115142 crossref_primary_10_1016_j_ceramint_2024_06_241 crossref_primary_10_1103_PhysRevX_14_031044 crossref_primary_10_1103_7p5x_7yqb crossref_primary_10_1103_PhysRevLett_134_096503 crossref_primary_10_1103_PhysRevB_111_064111 crossref_primary_10_1103_PRXQuantum_5_040336 crossref_primary_10_1103_PhysRevResearch_7_013263 crossref_primary_10_1103_PhysRevResearch_6_043258 crossref_primary_10_1103_5ywn_6d3q crossref_primary_10_1103_hlfh_86yz crossref_primary_10_1103_PhysRevResearch_7_023166 crossref_primary_10_1103_PhysRevB_111_115137 crossref_primary_10_1103_PhysRevX_13_041042 crossref_primary_10_1103_PRXQuantum_6_010313 crossref_primary_10_1007_JHEP05_2024_059 crossref_primary_10_1103_PRXQuantum_6_010314 crossref_primary_10_1103_PRXQuantum_6_010358 crossref_primary_10_1103_PRXQuantum_6_010315 crossref_primary_10_1103_PhysRevA_111_032402 crossref_primary_10_1103_PhysRevB_111_125128 crossref_primary_10_1103_PhysRevLett_134_150405 crossref_primary_10_1103_PhysRevResearch_7_023052 crossref_primary_10_1007_JHEP10_2024_134 crossref_primary_10_1103_PRXQuantum_6_020353 crossref_primary_10_1103_pjs3_14cc crossref_primary_10_1016_j_ssc_2025_115848 |
| Cites_doi | 10.1103/PhysRevLett.62.2056 10.1016/0003-4916(78)90252-X 10.1073/pnas.1807840116 10.1103/PhysRevLett.112.247203 10.1103/PhysRevLett.112.247202 10.1103/PhysRevB.90.115157 10.1103/PhysRevB.93.115150 10.1103/PhysRevX.7.041048 10.1103/PhysRevB.87.174412 10.1103/PhysRevLett.64.88 10.1103/PhysRevB.98.140403 10.1126/science.1091806 10.21468/SciPostPhys.13.6.123 10.1103/PhysRevLett.61.625 10.1143/PTP.70.1226 10.1103/PhysRevLett.121.177203 10.1016/0034-4877(72)90011-0 10.1017/CBO9780511973765 10.1103/PhysRevB.101.184419 10.1103/PhysRevB.103.174309 10.1063/1.1499754 10.1103/PhysRevLett.47.1556 10.1103/PhysRevB.77.224509 10.1038/s41467-021-27727-1 10.22331/q-2022-11-10-856 10.1103/PhysRevResearch.3.033024 10.1103/PhysRevLett.124.120601 10.1103/PhysRevB.91.195117 10.1103/PhysRevLett.121.030502 10.22331/q-2021-12-28-612 10.1103/PhysRevLett.120.235701 10.1103/PhysRevB.93.155163 10.1103/PhysRevResearch.2.033417 10.1038/s41586-019-1070-1 10.1103/PhysRevLett.118.087201 10.1103/RevModPhys.75.715 10.1103/PhysRevB.70.144407 10.21468/SciPostPhys.12.4.131 10.1103/PhysRevB.40.546 10.1103/PhysRevLett.120.156601 10.1103/PhysRevLett.70.1501 10.1103/PhysRevLett.126.135701 10.1103/PhysRevX.7.031051 10.1016/j.aop.2004.01.004 10.1103/PhysRevB.93.115105 10.1103/PhysRevB.46.15233 10.1103/PhysRevB.93.195164 10.1103/PhysRevB.104.104201 10.1103/PhysRevB.100.054437 10.1126/science.abi8794 10.21468/SciPostPhys.12.6.190 10.1103/PhysRevB.78.020501 10.1038/nphys2887 10.22331/q-2021-09-09-539 10.1126/science.abi8378 10.1103/PhysRevLett.106.157205 10.1140/epjb/e2017-80102-0 10.1103/PhysRevB.101.104301 10.1103/PhysRevB.93.245141 10.1088/1742-5468/ac08fe 10.21468/SciPostPhys.12.6.196 10.1103/PhysRevB.92.165123 10.1142/S0217984914300178 10.1126/science.aav9105 10.1143/PTP.66.1169 10.1088/1367-2630/aa7144 10.22331/q-2018-08-06-79 10.1016/0024-3795(75)90075-0 10.1143/JPSJ.55.3305 10.21468/SciPostPhys.10.2.033 10.21468/SciPostPhys.11.2.033 10.1103/PhysRevB.39.2756 10.1103/PhysRevLett.101.076401 10.1103/PhysRevLett.128.215701 10.1103/PhysRevB.3.3918 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.1103/PRXQuantum.4.030317 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2691-3399 |
| ExternalDocumentID | oai_doaj_org_article_24e07c5162b540f29a6689c28e0d20c6 10_1103_PRXQuantum_4_030317 |
| GroupedDBID | 3MX AAFWJ AAYXX AECSF AFGMR AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION EBS GROUPED_DOAJ M~E OK1 ROL |
| ID | FETCH-LOGICAL-c360t-9c9535ebdea97736906a385de88bc41740ea8b430c01512f228e30e42d5afba03 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 89 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001048527800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2691-3399 |
| IngestDate | Sat Oct 25 03:40:43 EDT 2025 Tue Nov 18 20:54:00 EST 2025 Sat Nov 29 05:13:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c360t-9c9535ebdea97736906a385de88bc41740ea8b430c01512f228e30e42d5afba03 |
| ORCID | 0000-0002-7387-3326 |
| OpenAccessLink | https://doaj.org/article/24e07c5162b540f29a6689c28e0d20c6 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_24e07c5162b540f29a6689c28e0d20c6 crossref_citationtrail_10_1103_PRXQuantum_4_030317 crossref_primary_10_1103_PRXQuantum_4_030317 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | PRX quantum |
| PublicationYear | 2023 |
| Publisher | American Physical Society |
| Publisher_xml | – name: American Physical Society |
| References | PRXQuantum.4.030317Cc3R1 PRXQuantum.4.030317Cc1R1 PRXQuantum.4.030317Cc7R1 PRXQuantum.4.030317Cc5R1 PRXQuantum.4.030317Cc25R1 PRXQuantum.4.030317Cc46R1 PRXQuantum.4.030317Cc27R1 PRXQuantum.4.030317Cc48R1 PRXQuantum.4.030317Cc29R1 PRXQuantum.4.030317Cc84R1 PRXQuantum.4.030317Cc63R1 PRXQuantum.4.030317Cc82R1 PRXQuantum.4.030317Cc40R1 PRXQuantum.4.030317Cc88R1 PRXQuantum.4.030317Cc21R1 PRXQuantum.4.030317Cc42R1 PRXQuantum.4.030317Cc67R1 PRXQuantum.4.030317Cc86R1 PRXQuantum.4.030317Cc23R1 PRXQuantum.4.030317Cc65R1 PRXQuantum.4.030317Cc80R1 PRXQuantum.4.030317Cc16R1 PRXQuantum.4.030317Cc58R1 PRXQuantum.4.030317Cc79R1 PRXQuantum.4.030317Cc39R1 PRXQuantum.4.030317Cc50R1 PRXQuantum.4.030317Cc73R1 PRXQuantum.4.030317Cc71R1 PRXQuantum.4.030317Cc31R1 PRXQuantum.4.030317Cc54R1 PRXQuantum.4.030317Cc77R1 PRXQuantum.4.030317Cc33R1 PRXQuantum.4.030317Cc56R1 PRXQuantum.4.030317Cc75R1 PRXQuantum.4.030317Cc10R1 PRXQuantum.4.030317Cc92R1 PRXQuantum.4.030317Cc2R1 PRXQuantum.4.030317Cc6R1 PRXQuantum.4.030317Cc4R1 PRXQuantum.4.030317Cc24R1 PRXQuantum.4.030317Cc26R1 PRXQuantum.4.030317Cc49R1 PRXQuantum.4.030317Cc68R1 PRXQuantum.4.030317Cc28R1 PRXQuantum.4.030317Cc85R1 PRXQuantum.4.030317Cc41R1 PRXQuantum.4.030317Cc62R1 PRXQuantum.4.030317Cc83R1 PRXQuantum.4.030317Cc20R1 PRXQuantum.4.030317Cc43R1 PRXQuantum.4.030317Cc66R1 PRXQuantum.4.030317Cc64R1 PRXQuantum.4.030317Cc89R1 PRXQuantum.4.030317Cc22R1 PRXQuantum.4.030317Cc45R1 S. Sachdev (PRXQuantum.4.030317Cc69R1) 2011 PRXQuantum.4.030317Cc81R1 PRXQuantum.4.030317Cc19R1 PRXQuantum.4.030317Cc17R1 PRXQuantum.4.030317Cc15R1 PRXQuantum.4.030317Cc57R1 PRXQuantum.4.030317Cc38R1 H. Jeffreys (PRXQuantum.4.030317Cc44R1) 1948 PRXQuantum.4.030317Cc74R1 PRXQuantum.4.030317Cc30R1 PRXQuantum.4.030317Cc51R1 PRXQuantum.4.030317Cc72R1 PRXQuantum.4.030317Cc93R1 PRXQuantum.4.030317Cc32R1 PRXQuantum.4.030317Cc53R1 PRXQuantum.4.030317Cc78R1 PRXQuantum.4.030317Cc34R1 PRXQuantum.4.030317Cc55R1 PRXQuantum.4.030317Cc76R1 PRXQuantum.4.030317Cc70R1 PRXQuantum.4.030317Cc91R1 |
| References_xml | – ident: PRXQuantum.4.030317Cc39R1 doi: 10.1103/PhysRevLett.62.2056 – ident: PRXQuantum.4.030317Cc62R1 doi: 10.1016/0003-4916(78)90252-X – ident: PRXQuantum.4.030317Cc68R1 doi: 10.1073/pnas.1807840116 – ident: PRXQuantum.4.030317Cc75R1 doi: 10.1103/PhysRevLett.112.247203 – ident: PRXQuantum.4.030317Cc17R1 doi: 10.1103/PhysRevLett.112.247202 – ident: PRXQuantum.4.030317Cc76R1 doi: 10.1103/PhysRevB.90.115157 – ident: PRXQuantum.4.030317Cc81R1 doi: 10.1103/PhysRevB.93.115150 – ident: PRXQuantum.4.030317Cc86R1 doi: 10.1103/PhysRevX.7.041048 – ident: PRXQuantum.4.030317Cc16R1 doi: 10.1103/PhysRevB.87.174412 – ident: PRXQuantum.4.030317Cc40R1 doi: 10.1103/PhysRevLett.64.88 – ident: PRXQuantum.4.030317Cc21R1 doi: 10.1103/PhysRevB.98.140403 – ident: PRXQuantum.4.030317Cc71R1 doi: 10.1126/science.1091806 – ident: PRXQuantum.4.030317Cc58R1 doi: 10.21468/SciPostPhys.13.6.123 – ident: PRXQuantum.4.030317Cc51R1 doi: 10.1103/PhysRevLett.61.625 – ident: PRXQuantum.4.030317Cc38R1 doi: 10.1143/PTP.70.1226 – ident: PRXQuantum.4.030317Cc88R1 doi: 10.1103/PhysRevLett.121.177203 – ident: PRXQuantum.4.030317Cc33R1 doi: 10.1016/0034-4877(72)90011-0 – volume-title: Quantum Phase Transitions year: 2011 ident: PRXQuantum.4.030317Cc69R1 doi: 10.1017/CBO9780511973765 – ident: PRXQuantum.4.030317Cc23R1 doi: 10.1103/PhysRevB.101.184419 – ident: PRXQuantum.4.030317Cc93R1 doi: 10.1103/PhysRevB.103.174309 – ident: PRXQuantum.4.030317Cc31R1 doi: 10.1063/1.1499754 – ident: PRXQuantum.4.030317Cc63R1 doi: 10.1103/PhysRevLett.47.1556 – ident: PRXQuantum.4.030317Cc42R1 doi: 10.1103/PhysRevB.77.224509 – ident: PRXQuantum.4.030317Cc65R1 doi: 10.1038/s41467-021-27727-1 – ident: PRXQuantum.4.030317Cc10R1 doi: 10.22331/q-2022-11-10-856 – ident: PRXQuantum.4.030317Cc56R1 doi: 10.1103/PhysRevResearch.3.033024 – ident: PRXQuantum.4.030317Cc91R1 doi: 10.1103/PhysRevLett.124.120601 – ident: PRXQuantum.4.030317Cc78R1 doi: 10.1103/PhysRevB.91.195117 – ident: PRXQuantum.4.030317Cc3R1 doi: 10.1103/PhysRevLett.121.030502 – ident: PRXQuantum.4.030317Cc92R1 doi: 10.22331/q-2021-12-28-612 – ident: PRXQuantum.4.030317Cc20R1 doi: 10.1103/PhysRevLett.120.235701 – ident: PRXQuantum.4.030317Cc82R1 doi: 10.1103/PhysRevB.93.155163 – ident: PRXQuantum.4.030317Cc54R1 doi: 10.1103/PhysRevResearch.2.033417 – ident: PRXQuantum.4.030317Cc6R1 doi: 10.1038/s41586-019-1070-1 – ident: PRXQuantum.4.030317Cc19R1 doi: 10.1103/PhysRevLett.118.087201 – ident: PRXQuantum.4.030317Cc1R1 doi: 10.1103/RevModPhys.75.715 – ident: PRXQuantum.4.030317Cc72R1 doi: 10.1103/PhysRevB.70.144407 – ident: PRXQuantum.4.030317Cc25R1 doi: 10.21468/SciPostPhys.12.4.131 – ident: PRXQuantum.4.030317Cc70R1 doi: 10.1103/PhysRevB.40.546 – ident: PRXQuantum.4.030317Cc89R1 doi: 10.1103/PhysRevLett.120.156601 – ident: PRXQuantum.4.030317Cc74R1 doi: 10.1103/PhysRevLett.70.1501 – volume-title: Theory of Probability year: 1948 ident: PRXQuantum.4.030317Cc44R1 – ident: PRXQuantum.4.030317Cc28R1 doi: 10.1103/PhysRevLett.126.135701 – ident: PRXQuantum.4.030317Cc73R1 doi: 10.1103/PhysRevX.7.031051 – ident: PRXQuantum.4.030317Cc32R1 doi: 10.1016/j.aop.2004.01.004 – ident: PRXQuantum.4.030317Cc80R1 doi: 10.1103/PhysRevB.93.115105 – ident: PRXQuantum.4.030317Cc15R1 doi: 10.1103/PhysRevB.46.15233 – ident: PRXQuantum.4.030317Cc83R1 doi: 10.1103/PhysRevB.93.195164 – ident: PRXQuantum.4.030317Cc27R1 doi: 10.1103/PhysRevB.104.104201 – ident: PRXQuantum.4.030317Cc22R1 doi: 10.1103/PhysRevB.100.054437 – ident: PRXQuantum.4.030317Cc7R1 doi: 10.1126/science.abi8794 – ident: PRXQuantum.4.030317Cc26R1 doi: 10.21468/SciPostPhys.12.6.190 – ident: PRXQuantum.4.030317Cc43R1 doi: 10.1103/PhysRevB.78.020501 – ident: PRXQuantum.4.030317Cc67R1 doi: 10.1038/nphys2887 – ident: PRXQuantum.4.030317Cc45R1 doi: 10.22331/q-2021-09-09-539 – ident: PRXQuantum.4.030317Cc4R1 doi: 10.1126/science.abi8378 – ident: PRXQuantum.4.030317Cc66R1 doi: 10.1103/PhysRevLett.106.157205 – ident: PRXQuantum.4.030317Cc85R1 doi: 10.1140/epjb/e2017-80102-0 – ident: PRXQuantum.4.030317Cc46R1 doi: 10.1103/PhysRevB.101.104301 – ident: PRXQuantum.4.030317Cc84R1 doi: 10.1103/PhysRevB.93.245141 – ident: PRXQuantum.4.030317Cc55R1 doi: 10.1088/1742-5468/ac08fe – ident: PRXQuantum.4.030317Cc30R1 doi: 10.21468/SciPostPhys.12.6.196 – ident: PRXQuantum.4.030317Cc79R1 doi: 10.1103/PhysRevB.92.165123 – ident: PRXQuantum.4.030317Cc77R1 doi: 10.1142/S0217984914300178 – ident: PRXQuantum.4.030317Cc5R1 doi: 10.1126/science.aav9105 – ident: PRXQuantum.4.030317Cc49R1 doi: 10.1143/PTP.66.1169 – ident: PRXQuantum.4.030317Cc48R1 doi: 10.1088/1367-2630/aa7144 – ident: PRXQuantum.4.030317Cc2R1 doi: 10.22331/q-2018-08-06-79 – ident: PRXQuantum.4.030317Cc34R1 doi: 10.1016/0024-3795(75)90075-0 – ident: PRXQuantum.4.030317Cc50R1 doi: 10.1143/JPSJ.55.3305 – ident: PRXQuantum.4.030317Cc24R1 doi: 10.21468/SciPostPhys.10.2.033 – ident: PRXQuantum.4.030317Cc57R1 doi: 10.21468/SciPostPhys.11.2.033 – ident: PRXQuantum.4.030317Cc64R1 doi: 10.1103/PhysRevB.39.2756 – ident: PRXQuantum.4.030317Cc41R1 doi: 10.1103/PhysRevLett.101.076401 – ident: PRXQuantum.4.030317Cc29R1 doi: 10.1103/PhysRevLett.128.215701 – ident: PRXQuantum.4.030317Cc53R1 doi: 10.1103/PhysRevB.3.3918 |
| SSID | ssj0002513149 |
| Score | 2.6064963 |
| Snippet | Decoherence inevitably happens when a quantum state is exposed to its environment, which can affect quantum critical points (QCPs) in a nontrivial way. As was... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 030317 |
| Title | Quantum Criticality Under Decoherence or Weak Measurement |
| URI | https://doaj.org/article/24e07c5162b540f29a6689c28e0d20c6 |
| Volume | 4 |
| WOSCitedRecordID | wos001048527800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2691-3399 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513149 issn: 2691-3399 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2691-3399 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513149 issn: 2691-3399 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLYQAokFcYpyyQMjaV0fiT1ytGKgVUEc3SJfEQhoUQ9GfjvPTnpMsLBkiBzL-Z6V973o-fsQOsscF4xbnzhhioRrLhNDuE4ssZklihgdvQGfbrNuV_b7qrdk9RV6wkp54BK4BuWeZFY0U2qAXBRU6TSVylLpiaPERrFtYD1LxVT4BkPWZsD9K5mhJmGN3n3_bgqLnX7UeR12NosWZYtUtKTYH1NLewttVpwQX5Rr2UYrfrCD1mNvph3vIlXNiGe2BECccfQrwtdQPL6UB_bwcISfvX7DncVfvz302G49XN0kleNBYllKJomySjDhjfMaeBkLIsKaSeG8lMZyKB6I19JwRiwJmbqgAAMjnlMndGE0YftodTAc-AOEKSucg3rOQMUSWl-Ml8oV0noFYBrhaojOXj63lRx4cKV4z2NZQFi-QCzneYlYDZ3PH_os1TB-H34ZUJ0PDVLW8QYEOK8CnP8V4MP_mOQIbQSf-LJz7xitTkZTf4LW7NfkdTw6jXsHrp3v1g-wY8kv |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Criticality+Under+Decoherence+or+Weak+Measurement&rft.jtitle=PRX+quantum&rft.au=Jong+Yeon+Lee&rft.au=Chao-Ming+Jian&rft.au=Cenke+Xu&rft.date=2023-08-01&rft.pub=American+Physical+Society&rft.eissn=2691-3399&rft.volume=4&rft.issue=3&rft.spage=030317&rft_id=info:doi/10.1103%2FPRXQuantum.4.030317&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_24e07c5162b540f29a6689c28e0d20c6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3399&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3399&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3399&client=summon |