Quantum Criticality Under Decoherence or Weak Measurement

Decoherence inevitably happens when a quantum state is exposed to its environment, which can affect quantum critical points (QCPs) in a nontrivial way. As was pointed out in the recent literature on (1+1)d conformal field theory (CFT) [Garratt et al. Measurements conspire nonlocally to restructure c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PRX quantum Ročník 4; číslo 3; s. 030317
Hlavní autori: Lee, Jong Yeon, Jian, Chao-Ming, Xu, Cenke
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: American Physical Society 01.08.2023
ISSN:2691-3399, 2691-3399
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Decoherence inevitably happens when a quantum state is exposed to its environment, which can affect quantum critical points (QCPs) in a nontrivial way. As was pointed out in the recent literature on (1+1)d conformal field theory (CFT) [Garratt et al. Measurements conspire nonlocally to restructure critical quantum states, arXiv:2207.09476 (2022)], the effect of weak measurement can be mathematically mapped to the problem of boundary CFT. In this work, we focus on the (2+1)d QCPs, whose boundary and defect effects have attracted enormous theoretical and numerical interests very recently. We focus on decoherence caused by weak measurements with and without postselecting the measurement outcomes. Our main results are as follows: (1) for an O(N) Wilson-Fisher QCP under weak measurement with postselection, an observer would, in general, observe two different types of boundary and defect criticality with very different behaviors from the well-known Wilson-Fisher fixed points; in particular, it is possible to observe the recently proposed exotic “extraordinary-log” correlation. (2) An extra quantum phase transition can be driven by decoherence, if we consider quantities nonlinear with the decohered density matrix, such as the Renyi entropy. We demonstrate the connection between this transition to the information-theoretic transition driven by an error in the toric code model. (3) When there is no postselection, though correlation functions between local operators remain the same as the undecohered pure state, nonlocal operators such as the “disorder operator” would have qualitatively distinct behaviors; and we also show that the decoherence can lead to confinement.
AbstractList Decoherence inevitably happens when a quantum state is exposed to its environment, which can affect quantum critical points (QCPs) in a nontrivial way. As was pointed out in the recent literature on (1+1)d conformal field theory (CFT) [Garratt et al. Measurements conspire nonlocally to restructure critical quantum states, arXiv:2207.09476 (2022)], the effect of weak measurement can be mathematically mapped to the problem of boundary CFT. In this work, we focus on the (2+1)d QCPs, whose boundary and defect effects have attracted enormous theoretical and numerical interests very recently. We focus on decoherence caused by weak measurements with and without postselecting the measurement outcomes. Our main results are as follows: (1) for an O(N) Wilson-Fisher QCP under weak measurement with postselection, an observer would, in general, observe two different types of boundary and defect criticality with very different behaviors from the well-known Wilson-Fisher fixed points; in particular, it is possible to observe the recently proposed exotic “extraordinary-log” correlation. (2) An extra quantum phase transition can be driven by decoherence, if we consider quantities nonlinear with the decohered density matrix, such as the Renyi entropy. We demonstrate the connection between this transition to the information-theoretic transition driven by an error in the toric code model. (3) When there is no postselection, though correlation functions between local operators remain the same as the undecohered pure state, nonlocal operators such as the “disorder operator” would have qualitatively distinct behaviors; and we also show that the decoherence can lead to confinement.
ArticleNumber 030317
Author Lee, Jong Yeon
Xu, Cenke
Jian, Chao-Ming
Author_xml – sequence: 1
  givenname: Jong Yeon
  orcidid: 0000-0002-7387-3326
  surname: Lee
  fullname: Lee, Jong Yeon
– sequence: 2
  givenname: Chao-Ming
  surname: Jian
  fullname: Jian, Chao-Ming
– sequence: 3
  givenname: Cenke
  surname: Xu
  fullname: Xu, Cenke
BookMark eNp9kMtOwzAQRS0EEqX0C9jkB1rGjzjxEpVXpSIeooKdNXEmkJLGyHEX_XsCLQKxYDVXI52jq3vE9lvfEmMnHCacgzy9e3i-X2Mb16uJmoAEybM9NhDa8LGUxuz_yods1HVLABApl1yZATM7NJmGOtYOmzpukkVbUkjOyflXCtQ6SnxIngjfkhvCbh1oRW08ZgcVNh2NdnfIFpcXj9Pr8fz2ajY9m4-d1BDHxplUplSUhCbLpDagUeZpSXleOMUzBYR5oSQ44CkXlRA5SSAlyhSrAkEO2WzrLT0u7XuoVxg21mNtvx4-vFgMffWGrFAEmUu5FkWqoBIGtc6N641QCnC6d5mtywXfdYEq6-qIsfZtDFg3loP9nNT-TGqV3U7as_IP-93lP-oDHXN-IA
CitedBy_id crossref_primary_10_1103_l4b7_h5cd
crossref_primary_10_1007_JHEP12_2023_157
crossref_primary_10_1103_fy9r_hpcw
crossref_primary_10_1103_PhysRevB_111_155143
crossref_primary_10_1103_PRXQuantum_5_030311
crossref_primary_10_1103_PRXQuantum_5_030310
crossref_primary_10_1103_66pk_1byg
crossref_primary_10_1103_nn2m_w4vk
crossref_primary_10_1103_PhysRevX_15_011068
crossref_primary_10_22331_q_2025_06_17_1771
crossref_primary_10_1103_PhysRevX_15_011069
crossref_primary_10_1103_PhysRevX_15_021062
crossref_primary_10_1103_PhysRevX_15_021060
crossref_primary_10_1103_PRXQuantum_6_010347
crossref_primary_10_1103_PRXQuantum_6_010348
crossref_primary_10_1103_PhysRevB_111_115123
crossref_primary_10_1093_nsr_nwae287
crossref_primary_10_1103_Physics_18_9
crossref_primary_10_1103_PhysRevResearch_6_L042063
crossref_primary_10_1103_PRXQuantum_5_040313
crossref_primary_10_1103_PhysRevB_111_L060304
crossref_primary_10_1007_JHEP12_2023_004
crossref_primary_10_1038_s42005_025_02199_7
crossref_primary_10_1103_PhysRevResearch_6_L042014
crossref_primary_10_1103_PRXQuantum_5_030307
crossref_primary_10_1103_PhysRevLett_133_210601
crossref_primary_10_1103_PhysRevB_111_125106
crossref_primary_10_1103_PhysRevB_111_L201108
crossref_primary_10_1103_PRXQuantum_6_020333
crossref_primary_10_1103_PhysRevB_111_174110
crossref_primary_10_1103_hchr_rqq9
crossref_primary_10_1103_PhysRevLett_134_070403
crossref_primary_10_1103_PhysRevB_111_125147
crossref_primary_10_1103_PhysRevB_111_054106
crossref_primary_10_1103_PRXQuantum_6_010329
crossref_primary_10_1103_PhysRevB_111_224301
crossref_primary_10_1103_PhysRevB_111_115142
crossref_primary_10_1016_j_ceramint_2024_06_241
crossref_primary_10_1103_PhysRevX_14_031044
crossref_primary_10_1103_7p5x_7yqb
crossref_primary_10_1103_PhysRevLett_134_096503
crossref_primary_10_1103_PhysRevB_111_064111
crossref_primary_10_1103_PRXQuantum_5_040336
crossref_primary_10_1103_PhysRevResearch_7_013263
crossref_primary_10_1103_PhysRevResearch_6_043258
crossref_primary_10_1103_5ywn_6d3q
crossref_primary_10_1103_hlfh_86yz
crossref_primary_10_1103_PhysRevResearch_7_023166
crossref_primary_10_1103_PhysRevB_111_115137
crossref_primary_10_1103_PhysRevX_13_041042
crossref_primary_10_1103_PRXQuantum_6_010313
crossref_primary_10_1007_JHEP05_2024_059
crossref_primary_10_1103_PRXQuantum_6_010314
crossref_primary_10_1103_PRXQuantum_6_010358
crossref_primary_10_1103_PRXQuantum_6_010315
crossref_primary_10_1103_PhysRevA_111_032402
crossref_primary_10_1103_PhysRevB_111_125128
crossref_primary_10_1103_PhysRevLett_134_150405
crossref_primary_10_1103_PhysRevResearch_7_023052
crossref_primary_10_1007_JHEP10_2024_134
crossref_primary_10_1103_PRXQuantum_6_020353
crossref_primary_10_1103_pjs3_14cc
crossref_primary_10_1016_j_ssc_2025_115848
Cites_doi 10.1103/PhysRevLett.62.2056
10.1016/0003-4916(78)90252-X
10.1073/pnas.1807840116
10.1103/PhysRevLett.112.247203
10.1103/PhysRevLett.112.247202
10.1103/PhysRevB.90.115157
10.1103/PhysRevB.93.115150
10.1103/PhysRevX.7.041048
10.1103/PhysRevB.87.174412
10.1103/PhysRevLett.64.88
10.1103/PhysRevB.98.140403
10.1126/science.1091806
10.21468/SciPostPhys.13.6.123
10.1103/PhysRevLett.61.625
10.1143/PTP.70.1226
10.1103/PhysRevLett.121.177203
10.1016/0034-4877(72)90011-0
10.1017/CBO9780511973765
10.1103/PhysRevB.101.184419
10.1103/PhysRevB.103.174309
10.1063/1.1499754
10.1103/PhysRevLett.47.1556
10.1103/PhysRevB.77.224509
10.1038/s41467-021-27727-1
10.22331/q-2022-11-10-856
10.1103/PhysRevResearch.3.033024
10.1103/PhysRevLett.124.120601
10.1103/PhysRevB.91.195117
10.1103/PhysRevLett.121.030502
10.22331/q-2021-12-28-612
10.1103/PhysRevLett.120.235701
10.1103/PhysRevB.93.155163
10.1103/PhysRevResearch.2.033417
10.1038/s41586-019-1070-1
10.1103/PhysRevLett.118.087201
10.1103/RevModPhys.75.715
10.1103/PhysRevB.70.144407
10.21468/SciPostPhys.12.4.131
10.1103/PhysRevB.40.546
10.1103/PhysRevLett.120.156601
10.1103/PhysRevLett.70.1501
10.1103/PhysRevLett.126.135701
10.1103/PhysRevX.7.031051
10.1016/j.aop.2004.01.004
10.1103/PhysRevB.93.115105
10.1103/PhysRevB.46.15233
10.1103/PhysRevB.93.195164
10.1103/PhysRevB.104.104201
10.1103/PhysRevB.100.054437
10.1126/science.abi8794
10.21468/SciPostPhys.12.6.190
10.1103/PhysRevB.78.020501
10.1038/nphys2887
10.22331/q-2021-09-09-539
10.1126/science.abi8378
10.1103/PhysRevLett.106.157205
10.1140/epjb/e2017-80102-0
10.1103/PhysRevB.101.104301
10.1103/PhysRevB.93.245141
10.1088/1742-5468/ac08fe
10.21468/SciPostPhys.12.6.196
10.1103/PhysRevB.92.165123
10.1142/S0217984914300178
10.1126/science.aav9105
10.1143/PTP.66.1169
10.1088/1367-2630/aa7144
10.22331/q-2018-08-06-79
10.1016/0024-3795(75)90075-0
10.1143/JPSJ.55.3305
10.21468/SciPostPhys.10.2.033
10.21468/SciPostPhys.11.2.033
10.1103/PhysRevB.39.2756
10.1103/PhysRevLett.101.076401
10.1103/PhysRevLett.128.215701
10.1103/PhysRevB.3.3918
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PRXQuantum.4.030317
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2691-3399
ExternalDocumentID oai_doaj_org_article_24e07c5162b540f29a6689c28e0d20c6
10_1103_PRXQuantum_4_030317
GroupedDBID 3MX
AAFWJ
AAYXX
AECSF
AFGMR
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
GROUPED_DOAJ
M~E
OK1
ROL
ID FETCH-LOGICAL-c360t-9c9535ebdea97736906a385de88bc41740ea8b430c01512f228e30e42d5afba03
IEDL.DBID DOA
ISICitedReferencesCount 89
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001048527800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2691-3399
IngestDate Sat Oct 25 03:40:43 EDT 2025
Tue Nov 18 20:54:00 EST 2025
Sat Nov 29 05:13:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-9c9535ebdea97736906a385de88bc41740ea8b430c01512f228e30e42d5afba03
ORCID 0000-0002-7387-3326
OpenAccessLink https://doaj.org/article/24e07c5162b540f29a6689c28e0d20c6
ParticipantIDs doaj_primary_oai_doaj_org_article_24e07c5162b540f29a6689c28e0d20c6
crossref_citationtrail_10_1103_PRXQuantum_4_030317
crossref_primary_10_1103_PRXQuantum_4_030317
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationTitle PRX quantum
PublicationYear 2023
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PRXQuantum.4.030317Cc3R1
PRXQuantum.4.030317Cc1R1
PRXQuantum.4.030317Cc7R1
PRXQuantum.4.030317Cc5R1
PRXQuantum.4.030317Cc25R1
PRXQuantum.4.030317Cc46R1
PRXQuantum.4.030317Cc27R1
PRXQuantum.4.030317Cc48R1
PRXQuantum.4.030317Cc29R1
PRXQuantum.4.030317Cc84R1
PRXQuantum.4.030317Cc63R1
PRXQuantum.4.030317Cc82R1
PRXQuantum.4.030317Cc40R1
PRXQuantum.4.030317Cc88R1
PRXQuantum.4.030317Cc21R1
PRXQuantum.4.030317Cc42R1
PRXQuantum.4.030317Cc67R1
PRXQuantum.4.030317Cc86R1
PRXQuantum.4.030317Cc23R1
PRXQuantum.4.030317Cc65R1
PRXQuantum.4.030317Cc80R1
PRXQuantum.4.030317Cc16R1
PRXQuantum.4.030317Cc58R1
PRXQuantum.4.030317Cc79R1
PRXQuantum.4.030317Cc39R1
PRXQuantum.4.030317Cc50R1
PRXQuantum.4.030317Cc73R1
PRXQuantum.4.030317Cc71R1
PRXQuantum.4.030317Cc31R1
PRXQuantum.4.030317Cc54R1
PRXQuantum.4.030317Cc77R1
PRXQuantum.4.030317Cc33R1
PRXQuantum.4.030317Cc56R1
PRXQuantum.4.030317Cc75R1
PRXQuantum.4.030317Cc10R1
PRXQuantum.4.030317Cc92R1
PRXQuantum.4.030317Cc2R1
PRXQuantum.4.030317Cc6R1
PRXQuantum.4.030317Cc4R1
PRXQuantum.4.030317Cc24R1
PRXQuantum.4.030317Cc26R1
PRXQuantum.4.030317Cc49R1
PRXQuantum.4.030317Cc68R1
PRXQuantum.4.030317Cc28R1
PRXQuantum.4.030317Cc85R1
PRXQuantum.4.030317Cc41R1
PRXQuantum.4.030317Cc62R1
PRXQuantum.4.030317Cc83R1
PRXQuantum.4.030317Cc20R1
PRXQuantum.4.030317Cc43R1
PRXQuantum.4.030317Cc66R1
PRXQuantum.4.030317Cc64R1
PRXQuantum.4.030317Cc89R1
PRXQuantum.4.030317Cc22R1
PRXQuantum.4.030317Cc45R1
S. Sachdev (PRXQuantum.4.030317Cc69R1) 2011
PRXQuantum.4.030317Cc81R1
PRXQuantum.4.030317Cc19R1
PRXQuantum.4.030317Cc17R1
PRXQuantum.4.030317Cc15R1
PRXQuantum.4.030317Cc57R1
PRXQuantum.4.030317Cc38R1
H. Jeffreys (PRXQuantum.4.030317Cc44R1) 1948
PRXQuantum.4.030317Cc74R1
PRXQuantum.4.030317Cc30R1
PRXQuantum.4.030317Cc51R1
PRXQuantum.4.030317Cc72R1
PRXQuantum.4.030317Cc93R1
PRXQuantum.4.030317Cc32R1
PRXQuantum.4.030317Cc53R1
PRXQuantum.4.030317Cc78R1
PRXQuantum.4.030317Cc34R1
PRXQuantum.4.030317Cc55R1
PRXQuantum.4.030317Cc76R1
PRXQuantum.4.030317Cc70R1
PRXQuantum.4.030317Cc91R1
References_xml – ident: PRXQuantum.4.030317Cc39R1
  doi: 10.1103/PhysRevLett.62.2056
– ident: PRXQuantum.4.030317Cc62R1
  doi: 10.1016/0003-4916(78)90252-X
– ident: PRXQuantum.4.030317Cc68R1
  doi: 10.1073/pnas.1807840116
– ident: PRXQuantum.4.030317Cc75R1
  doi: 10.1103/PhysRevLett.112.247203
– ident: PRXQuantum.4.030317Cc17R1
  doi: 10.1103/PhysRevLett.112.247202
– ident: PRXQuantum.4.030317Cc76R1
  doi: 10.1103/PhysRevB.90.115157
– ident: PRXQuantum.4.030317Cc81R1
  doi: 10.1103/PhysRevB.93.115150
– ident: PRXQuantum.4.030317Cc86R1
  doi: 10.1103/PhysRevX.7.041048
– ident: PRXQuantum.4.030317Cc16R1
  doi: 10.1103/PhysRevB.87.174412
– ident: PRXQuantum.4.030317Cc40R1
  doi: 10.1103/PhysRevLett.64.88
– ident: PRXQuantum.4.030317Cc21R1
  doi: 10.1103/PhysRevB.98.140403
– ident: PRXQuantum.4.030317Cc71R1
  doi: 10.1126/science.1091806
– ident: PRXQuantum.4.030317Cc58R1
  doi: 10.21468/SciPostPhys.13.6.123
– ident: PRXQuantum.4.030317Cc51R1
  doi: 10.1103/PhysRevLett.61.625
– ident: PRXQuantum.4.030317Cc38R1
  doi: 10.1143/PTP.70.1226
– ident: PRXQuantum.4.030317Cc88R1
  doi: 10.1103/PhysRevLett.121.177203
– ident: PRXQuantum.4.030317Cc33R1
  doi: 10.1016/0034-4877(72)90011-0
– volume-title: Quantum Phase Transitions
  year: 2011
  ident: PRXQuantum.4.030317Cc69R1
  doi: 10.1017/CBO9780511973765
– ident: PRXQuantum.4.030317Cc23R1
  doi: 10.1103/PhysRevB.101.184419
– ident: PRXQuantum.4.030317Cc93R1
  doi: 10.1103/PhysRevB.103.174309
– ident: PRXQuantum.4.030317Cc31R1
  doi: 10.1063/1.1499754
– ident: PRXQuantum.4.030317Cc63R1
  doi: 10.1103/PhysRevLett.47.1556
– ident: PRXQuantum.4.030317Cc42R1
  doi: 10.1103/PhysRevB.77.224509
– ident: PRXQuantum.4.030317Cc65R1
  doi: 10.1038/s41467-021-27727-1
– ident: PRXQuantum.4.030317Cc10R1
  doi: 10.22331/q-2022-11-10-856
– ident: PRXQuantum.4.030317Cc56R1
  doi: 10.1103/PhysRevResearch.3.033024
– ident: PRXQuantum.4.030317Cc91R1
  doi: 10.1103/PhysRevLett.124.120601
– ident: PRXQuantum.4.030317Cc78R1
  doi: 10.1103/PhysRevB.91.195117
– ident: PRXQuantum.4.030317Cc3R1
  doi: 10.1103/PhysRevLett.121.030502
– ident: PRXQuantum.4.030317Cc92R1
  doi: 10.22331/q-2021-12-28-612
– ident: PRXQuantum.4.030317Cc20R1
  doi: 10.1103/PhysRevLett.120.235701
– ident: PRXQuantum.4.030317Cc82R1
  doi: 10.1103/PhysRevB.93.155163
– ident: PRXQuantum.4.030317Cc54R1
  doi: 10.1103/PhysRevResearch.2.033417
– ident: PRXQuantum.4.030317Cc6R1
  doi: 10.1038/s41586-019-1070-1
– ident: PRXQuantum.4.030317Cc19R1
  doi: 10.1103/PhysRevLett.118.087201
– ident: PRXQuantum.4.030317Cc1R1
  doi: 10.1103/RevModPhys.75.715
– ident: PRXQuantum.4.030317Cc72R1
  doi: 10.1103/PhysRevB.70.144407
– ident: PRXQuantum.4.030317Cc25R1
  doi: 10.21468/SciPostPhys.12.4.131
– ident: PRXQuantum.4.030317Cc70R1
  doi: 10.1103/PhysRevB.40.546
– ident: PRXQuantum.4.030317Cc89R1
  doi: 10.1103/PhysRevLett.120.156601
– ident: PRXQuantum.4.030317Cc74R1
  doi: 10.1103/PhysRevLett.70.1501
– volume-title: Theory of Probability
  year: 1948
  ident: PRXQuantum.4.030317Cc44R1
– ident: PRXQuantum.4.030317Cc28R1
  doi: 10.1103/PhysRevLett.126.135701
– ident: PRXQuantum.4.030317Cc73R1
  doi: 10.1103/PhysRevX.7.031051
– ident: PRXQuantum.4.030317Cc32R1
  doi: 10.1016/j.aop.2004.01.004
– ident: PRXQuantum.4.030317Cc80R1
  doi: 10.1103/PhysRevB.93.115105
– ident: PRXQuantum.4.030317Cc15R1
  doi: 10.1103/PhysRevB.46.15233
– ident: PRXQuantum.4.030317Cc83R1
  doi: 10.1103/PhysRevB.93.195164
– ident: PRXQuantum.4.030317Cc27R1
  doi: 10.1103/PhysRevB.104.104201
– ident: PRXQuantum.4.030317Cc22R1
  doi: 10.1103/PhysRevB.100.054437
– ident: PRXQuantum.4.030317Cc7R1
  doi: 10.1126/science.abi8794
– ident: PRXQuantum.4.030317Cc26R1
  doi: 10.21468/SciPostPhys.12.6.190
– ident: PRXQuantum.4.030317Cc43R1
  doi: 10.1103/PhysRevB.78.020501
– ident: PRXQuantum.4.030317Cc67R1
  doi: 10.1038/nphys2887
– ident: PRXQuantum.4.030317Cc45R1
  doi: 10.22331/q-2021-09-09-539
– ident: PRXQuantum.4.030317Cc4R1
  doi: 10.1126/science.abi8378
– ident: PRXQuantum.4.030317Cc66R1
  doi: 10.1103/PhysRevLett.106.157205
– ident: PRXQuantum.4.030317Cc85R1
  doi: 10.1140/epjb/e2017-80102-0
– ident: PRXQuantum.4.030317Cc46R1
  doi: 10.1103/PhysRevB.101.104301
– ident: PRXQuantum.4.030317Cc84R1
  doi: 10.1103/PhysRevB.93.245141
– ident: PRXQuantum.4.030317Cc55R1
  doi: 10.1088/1742-5468/ac08fe
– ident: PRXQuantum.4.030317Cc30R1
  doi: 10.21468/SciPostPhys.12.6.196
– ident: PRXQuantum.4.030317Cc79R1
  doi: 10.1103/PhysRevB.92.165123
– ident: PRXQuantum.4.030317Cc77R1
  doi: 10.1142/S0217984914300178
– ident: PRXQuantum.4.030317Cc5R1
  doi: 10.1126/science.aav9105
– ident: PRXQuantum.4.030317Cc49R1
  doi: 10.1143/PTP.66.1169
– ident: PRXQuantum.4.030317Cc48R1
  doi: 10.1088/1367-2630/aa7144
– ident: PRXQuantum.4.030317Cc2R1
  doi: 10.22331/q-2018-08-06-79
– ident: PRXQuantum.4.030317Cc34R1
  doi: 10.1016/0024-3795(75)90075-0
– ident: PRXQuantum.4.030317Cc50R1
  doi: 10.1143/JPSJ.55.3305
– ident: PRXQuantum.4.030317Cc24R1
  doi: 10.21468/SciPostPhys.10.2.033
– ident: PRXQuantum.4.030317Cc57R1
  doi: 10.21468/SciPostPhys.11.2.033
– ident: PRXQuantum.4.030317Cc64R1
  doi: 10.1103/PhysRevB.39.2756
– ident: PRXQuantum.4.030317Cc41R1
  doi: 10.1103/PhysRevLett.101.076401
– ident: PRXQuantum.4.030317Cc29R1
  doi: 10.1103/PhysRevLett.128.215701
– ident: PRXQuantum.4.030317Cc53R1
  doi: 10.1103/PhysRevB.3.3918
SSID ssj0002513149
Score 2.6064963
Snippet Decoherence inevitably happens when a quantum state is exposed to its environment, which can affect quantum critical points (QCPs) in a nontrivial way. As was...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 030317
Title Quantum Criticality Under Decoherence or Weak Measurement
URI https://doaj.org/article/24e07c5162b540f29a6689c28e0d20c6
Volume 4
WOSCitedRecordID wos001048527800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2691-3399
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513149
  issn: 2691-3399
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2691-3399
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513149
  issn: 2691-3399
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLYQAokFcYpyyQMjaV0fiT1ytGKgVUEc3SJfEQhoUQ9GfjvPTnpMsLBkiBzL-Z6V973o-fsQOsscF4xbnzhhioRrLhNDuE4ssZklihgdvQGfbrNuV_b7qrdk9RV6wkp54BK4BuWeZFY0U2qAXBRU6TSVylLpiaPERrFtYD1LxVT4BkPWZsD9K5mhJmGN3n3_bgqLnX7UeR12NosWZYtUtKTYH1NLewttVpwQX5Rr2UYrfrCD1mNvph3vIlXNiGe2BECccfQrwtdQPL6UB_bwcISfvX7DncVfvz302G49XN0kleNBYllKJomySjDhjfMaeBkLIsKaSeG8lMZyKB6I19JwRiwJmbqgAAMjnlMndGE0YftodTAc-AOEKSucg3rOQMUSWl-Ml8oV0noFYBrhaojOXj63lRx4cKV4z2NZQFi-QCzneYlYDZ3PH_os1TB-H34ZUJ0PDVLW8QYEOK8CnP8V4MP_mOQIbQSf-LJz7xitTkZTf4LW7NfkdTw6jXsHrp3v1g-wY8kv
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Criticality+Under+Decoherence+or+Weak+Measurement&rft.jtitle=PRX+quantum&rft.au=Jong+Yeon+Lee&rft.au=Chao-Ming+Jian&rft.au=Cenke+Xu&rft.date=2023-08-01&rft.pub=American+Physical+Society&rft.eissn=2691-3399&rft.volume=4&rft.issue=3&rft.spage=030317&rft_id=info:doi/10.1103%2FPRXQuantum.4.030317&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_24e07c5162b540f29a6689c28e0d20c6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3399&client=summon