Robust Lasso Regression Using Tukey's Biweight Criterion

The adaptive lasso is a method for performing simultaneous parameter estimation and variable selection. The adaptive weights used in its penalty term mean that the adaptive lasso achieves the oracle property. In this work, we propose an extension of the adaptive lasso named the Tukey-lasso. By using...

Full description

Saved in:
Bibliographic Details
Published in:Technometrics Vol. 60; no. 1; pp. 36 - 47
Main Authors: Chang, Le, Roberts, Steven, Welsh, Alan
Format: Journal Article
Language:English
Published: Alexandria Taylor & Francis 02.01.2018
American Society for Quality and the American Statistical Association
American Society for Quality
Subjects:
ISSN:0040-1706, 1537-2723
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The adaptive lasso is a method for performing simultaneous parameter estimation and variable selection. The adaptive weights used in its penalty term mean that the adaptive lasso achieves the oracle property. In this work, we propose an extension of the adaptive lasso named the Tukey-lasso. By using Tukey's biweight criterion, instead of squared loss, the Tukey-lasso is resistant to outliers in both the response and covariates. Importantly, we demonstrate that the Tukey-lasso also enjoys the oracle property. A fast accelerated proximal gradient (APG) algorithm is proposed and implemented for computing the Tukey-lasso. Our extensive simulations show that the Tukey-lasso, implemented with the APG algorithm, achieves very reliable results, including for high-dimensional data where p > n. In the presence of outliers, the Tukey-lasso is shown to offer substantial improvements in performance compared to the adaptive lasso and other robust implementations of the lasso. Real-data examples further demonstrate the utility of the Tukey-lasso. Supplementary materials for this article are available online.
AbstractList The adaptive lasso is a method for performing simultaneous parameter estimation and variable selection. The adaptive weights used in its penalty termmean that the adaptive lasso achieves the oracle property. In this work, we propose an extension of the adaptive lasso named the Tukey-lasso. By using Tukey’s biweight criterion, instead of squared loss, the Tukey-lasso is resistant to outliers in both the response and covariates. Importantly, we demonstrate that the Tukey-lasso also enjoys the oracle property. A fast accelerated proximal gradient (APG) algorithm is proposed and implemented for computing the Tukey-lasso. Our extensive simulations show that the Tukey-lasso, implemented with the APG algorithm, achieves very reliable results, including for high-dimensional data where p > n. In the presence of outliers, the Tukey-lasso is shown to offer substantial improvements in performance compared to the adaptive lasso and other robust implementations of the lasso. Real-data examples further demonstrate the utility of the Tukey-lasso. Supplementary materials for this article are available online.
The adaptive lasso is a method for performing simultaneous parameter estimation and variable selection. The adaptive weights used in its penalty term mean that the adaptive lasso achieves the oracle property. In this work, we propose an extension of the adaptive lasso named theTukey-lasso. By using Tukey's biweight criterion, instead of squared loss, the Tukey-lasso is resistant to outliers in both the response and covariates. Importantly, we demonstrate that the Tukey-lasso also enjoys the oracle property. A fast accelerated proximal gradient (APG) algorithm is proposed and implemented for computing the Tukey-lasso. Our extensive simulations show that the Tukey-lasso, implemented with the APG algorithm, achieves very reliable results, including for high-dimensional data where p > n. In the presence of outliers, the Tukey-lasso is shown to offer substantial improvements in performance compared to the adaptive lasso and other robust implementations of the lasso. Real-data examples further demonstrate the utility of the Tukey-lasso. Supplementary materials for this article are available online.
The adaptive lasso is a method for performing simultaneous parameter estimation and variable selection. The adaptive weights used in its penalty term mean that the adaptive lasso achieves the oracle property. In this work, we propose an extension of the adaptive lasso named the Tukey-lasso. By using Tukey's biweight criterion, instead of squared loss, the Tukey-lasso is resistant to outliers in both the response and covariates. Importantly, we demonstrate that the Tukey-lasso also enjoys the oracle property. A fast accelerated proximal gradient (APG) algorithm is proposed and implemented for computing the Tukey-lasso. Our extensive simulations show that the Tukey-lasso, implemented with the APG algorithm, achieves very reliable results, including for high-dimensional data where p > n. In the presence of outliers, the Tukey-lasso is shown to offer substantial improvements in performance compared to the adaptive lasso and other robust implementations of the lasso. Real-data examples further demonstrate the utility of the Tukey-lasso. Supplementary materials for this article are available online.
Author Welsh, Alan
Roberts, Steven
Chang, Le
Author_xml – sequence: 1
  givenname: Le
  surname: Chang
  fullname: Chang, Le
  email: le.chang@anu.edu.au
  organization: The Australian National University
– sequence: 2
  givenname: Steven
  surname: Roberts
  fullname: Roberts, Steven
  organization: The Australian National University
– sequence: 3
  givenname: Alan
  surname: Welsh
  fullname: Welsh, Alan
  organization: The Australian National University
BookMark eNqFkM9LwzAYhoMouE3_hEHBg6fOL0nbpHhRh79gIIztHLI2nZldM5OUsf_elE4PHvT0HvK830ueITptTKMQGmOYYOBwA5AAZpBNSIgJppCSPD9BA5xSFhNG6CkadEzcQedo6NwGAFPC2QDxuVm1zkcz6ZyJ5mptlXPaNNHS6WYdLdoPdbh20YPeK71-99HUaq9sAC7QWSVrpy6POULLp8fF9CWevT2_Tu9ncUEz8HFOs5ImlBKlZEUVTxQJmTLIMSsk4BVnBGSZBICTrMQsq1gCOc9XCkpSSTpCV_3dnTWfrXJebExrmzApSKBJmhGWByrtqcIa56yqxM7qrbQHgUF0ksS3JNFJEkdJoXf7q1doL334n7dS1_-2x31747yxP5NJwrMcgv0RuuvfdVMZu5V7Y-tSeHmoja2sbArtBP174gubEol8
CitedBy_id crossref_primary_10_1016_j_dsp_2021_103077
crossref_primary_10_1016_j_knosys_2023_111309
crossref_primary_10_3233_IDA_194672
crossref_primary_10_1080_02664763_2021_1962259
crossref_primary_10_1016_j_jspi_2024_106162
crossref_primary_10_1016_j_aei_2024_102619
crossref_primary_10_1109_TIM_2019_2904135
crossref_primary_10_1016_j_csda_2021_107415
crossref_primary_10_1002_cjs_11681
crossref_primary_10_1515_ijb_2021_0127
crossref_primary_10_3390_info10100316
crossref_primary_10_1007_s10114_025_3362_8
crossref_primary_10_1080_10618600_2022_2035232
crossref_primary_10_1007_s10463_021_00792_5
crossref_primary_10_1080_00224065_2021_1983491
crossref_primary_10_1177_01655515241261056
crossref_primary_10_1007_s10994_023_06384_z
crossref_primary_10_1016_j_ejor_2021_05_049
crossref_primary_10_1002_wics_1524
crossref_primary_10_1080_00949655_2022_2096886
crossref_primary_10_1080_00949655_2023_2286316
crossref_primary_10_1016_j_csda_2024_107971
crossref_primary_10_1080_00949655_2023_2262669
crossref_primary_10_1080_24725854_2023_2290110
crossref_primary_10_1162_neco_a_01384
crossref_primary_10_1007_s11222_024_10526_1
crossref_primary_10_1016_j_iref_2022_03_003
crossref_primary_10_1016_j_inffus_2024_102463
crossref_primary_10_1007_s10255_020_0939_y
crossref_primary_10_1111_anzs_70010
crossref_primary_10_55525_tjst_1244925
crossref_primary_10_1111_sjos_12638
crossref_primary_10_2166_wst_2023_396
crossref_primary_10_1080_00401706_2018_1470037
crossref_primary_10_1080_10942912_2025_2558009
crossref_primary_10_1080_00401706_2025_2540970
crossref_primary_10_1080_10618600_2022_2118752
crossref_primary_10_1002_sim_9213
crossref_primary_10_1111_biom_13553
crossref_primary_10_1007_s13571_024_00342_y
crossref_primary_10_1016_j_sigpro_2023_109063
crossref_primary_10_1016_j_jfds_2018_04_001
crossref_primary_10_3390_land13081129
crossref_primary_10_2478_amns_2023_2_01295
crossref_primary_10_1111_rssb_12553
crossref_primary_10_3390_math10162985
crossref_primary_10_1109_ACCESS_2023_3281895
crossref_primary_10_1186_s12859_025_06112_5
Cites_doi 10.1198/016214507000000950
10.1214/009053607000000127
10.1214/11-EJS635
10.1080/01621459.1993.10476408
10.1198/016214506000000735
10.1198/073500106000000251
10.1017/S0266466600007775
10.1214/aos/1176344136
10.1111/j.2517-6161.1996.tb02080.x
10.1214/aoms/1177703732
10.1214/aos/1176350366
10.1073/pnas.0608396103
10.1007/978-1-4615-7821-5_15
10.1214/009053604000000067
10.1093/biomet/81.3.425
10.1093/biomet/83.4.875
10.1198/TECH.2010.09114
10.1090/conm/443/08555
10.1002/cpa.20042
10.1214/10-AOAS377
10.1214/12-AOAS575
ContentType Journal Article
Copyright 2018 American Statistical Association and the American Society for Quality 2018
2018 American Statistical Association and the American Society for Quality
Copyright American Society for Quality 2018
Copyright_xml – notice: 2018 American Statistical Association and the American Society for Quality 2018
– notice: 2018 American Statistical Association and the American Society for Quality
– notice: Copyright American Society for Quality 2018
DBID AAYXX
CITATION
DOI 10.1080/00401706.2017.1305299
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1537-2723
EndPage 47
ExternalDocumentID 10_1080_00401706_2017_1305299
44869015
1305299
Genre Article
GroupedDBID -ET
-~X
..I
.7F
.DC
.QJ
07G
0BK
0R~
123
29Q
2AX
30N
4.4
5RE
7WY
85S
8FL
96U
AAAVZ
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABPPZ
ABQDR
ABTAI
ABXSQ
ABXUL
ABXYU
ABYWD
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADODI
AEGXH
AEISY
AELLO
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFAZI
AFRVT
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AIYEW
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMVHM
AMXXU
AQRUH
AQTUD
AVBZW
AWYRJ
BCCOT
BLEHA
BPLKW
C06
CCCUG
CS3
DGEBU
DKSSO
DQDLB
DSRWC
DU5
DWIFK
EBS
ECEWR
EJD
E~A
E~B
F5P
GTTXZ
H13
HFX
HF~
HQ6
HZ~
H~P
I-F
IHF
IPNFZ
IPSME
J.P
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
M4Z
MS~
MW2
NA5
NY~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
S-T
SA0
SNACF
TAE
TAQ
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UB9
UT5
UU3
WH7
WZA
YNT
ZGOLN
~02
~S~
ADYSH
ALIPV
AMPGV
AAYXX
CITATION
ID FETCH-LOGICAL-c360t-936d34332eeaf3e84e2af3570917ca01b8720ad432e826d176f740989be0d2fa3
IEDL.DBID TFW
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426114600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0040-1706
IngestDate Mon Nov 10 02:55:00 EST 2025
Sat Nov 29 03:42:50 EST 2025
Tue Nov 18 22:04:49 EST 2025
Thu May 29 09:01:30 EDT 2025
Mon Oct 20 23:47:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-936d34332eeaf3e84e2af3570917ca01b8720ad432e826d176f740989be0d2fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2176256279
PQPubID 24108
PageCount 12
ParticipantIDs informaworld_taylorfrancis_310_1080_00401706_2017_1305299
crossref_primary_10_1080_00401706_2017_1305299
crossref_citationtrail_10_1080_00401706_2017_1305299
proquest_journals_2176256279
jstor_primary_44869015
PublicationCentury 2000
PublicationDate 2018-01-02
PublicationDateYYYYMMDD 2018-01-02
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-02
  day: 02
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Technometrics
PublicationYear 2018
Publisher Taylor & Francis
American Society for Quality and the American Statistical Association
American Society for Quality
Publisher_xml – name: Taylor & Francis
– name: American Society for Quality and the American Statistical Association
– name: American Society for Quality
References cit0011
cit0033
cit0012
Li G. (cit0017) 2011; 21
cit0031
cit0010
cit0030
Tibshirani R. (cit0027) 1996; 58
Alfons A. (cit0001) 2014
Tukey J. W. (cit0028) 1960; 2
Beck A. (cit0003) 2009
cit0019
cit0018
cit0015
cit0016
cit0013
cit0035
Ronchetti E. (cit0021) 1985
cit0022
cit0020
Smucler E. (cit0026) 2015
Knight K. (cit0014) 2000
Friedman J. (cit0008) 2009
Zhao P. (cit0032) 2006; 7
cit0006
(cit0009) 2010; 33
cit0029
cit0004
cit0005
cit0002
cit0024
cit0025
References_xml – ident: cit0013
  doi: 10.1198/016214507000000950
– ident: cit0035
  doi: 10.1214/009053607000000127
– ident: cit0016
  doi: 10.1214/11-EJS635
– year: 2014
  ident: cit0001
  publication-title: R package version 0.5. 0
– ident: cit0024
  doi: 10.1080/01621459.1993.10476408
– start-page: 1
  year: 2009
  ident: cit0008
  publication-title: R package version
– ident: cit0033
  doi: 10.1198/016214506000000735
– ident: cit0029
  doi: 10.1198/073500106000000251
– ident: cit0018
  doi: 10.1017/S0266466600007775
– ident: cit0025
  doi: 10.1214/aos/1176344136
– volume: 58
  start-page: 267
  year: 1996
  ident: cit0027
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: cit0012
  doi: 10.1214/aoms/1177703732
– ident: cit0031
  doi: 10.1214/aos/1176350366
– start-page: 2009
  year: 2009
  ident: cit0003
  publication-title: SIAM Journal on Imaging Sciences
– ident: cit0011
  doi: 10.1073/pnas.0608396103
– volume: 21
  start-page: 391
  year: 2011
  ident: cit0017
  publication-title: Statistica Sinica
– ident: cit0022
  doi: 10.1007/978-1-4615-7821-5_15
– start-page: 1985
  year: 1985
  ident: cit0021
  publication-title: Statistics & Probability Letters
– ident: cit0006
  doi: 10.1214/009053604000000067
– start-page: 1356
  year: 2000
  ident: cit0014
  publication-title: Annals of Statistics
– ident: cit0005
  doi: 10.1093/biomet/81.3.425
– ident: cit0015
  doi: 10.1093/biomet/83.4.875
– ident: cit0019
  doi: 10.1198/TECH.2010.09114
– ident: cit0020
  doi: 10.1090/conm/443/08555
– ident: cit0004
  doi: 10.1002/cpa.20042
– volume: 33
  start-page: 1
  year: 2010
  ident: cit0009
  publication-title: Journal of Statistical Software
– ident: cit0010
– year: 2015
  ident: cit0026
  publication-title: arXiv:1508.01967
– volume: 2
  start-page: 448
  year: 1960
  ident: cit0028
  publication-title: Contributions to Probability and Statistics
– ident: cit0030
  doi: 10.1214/10-AOAS377
– volume: 7
  start-page: 2541
  year: 2006
  ident: cit0032
  publication-title: The Journal of Machine Learning Research
– ident: cit0002
  doi: 10.1214/12-AOAS575
SSID ssj0013287
Score 2.4280317
Snippet The adaptive lasso is a method for performing simultaneous parameter estimation and variable selection. The adaptive weights used in its penalty term mean that...
The adaptive lasso is a method for performing simultaneous parameter estimation and variable selection. The adaptive weights used in its penalty termmean that...
SourceID proquest
crossref
jstor
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 36
SubjectTerms Accelerated proximal gradient algorithm
Adaptive lasso
Algorithms
Computer simulation
Criteria
Estimating techniques
Oracle property
Outliers (statistics)
Parameter estimation
Regression analysis
Robust estimation
Robustness (mathematics)
Title Robust Lasso Regression Using Tukey's Biweight Criterion
URI https://www.tandfonline.com/doi/abs/10.1080/00401706.2017.1305299
https://www.jstor.org/stable/44869015
https://www.proquest.com/docview/2176256279
Volume 60
WOSCitedRecordID wos000426114600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1537-2723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013287
  issn: 0040-1706
  databaseCode: TFW
  dateStart: 19590201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH_I8DAPfkyH0yk9CJ4qadM26VHF4WEOGRN3C2mbiCCdrJ3--76kH2yIeNBTCeQl9OX15b3k198DuAjSTHo0jNyUJ8oNMGB1pce1y6jGDSWjEVWWMn_MJhM-n8ePNZqwqGGVJofWFVGE9dXm45ZJ0SDiDB-PZX0xwCxmyhmH6FPRC2Nkb2x8Nnpeu0fgrMHNGZHmH56fRtnYnTa4Sxu84jefbTei0d4_vMI-7NZRqHNdmc0BbKm8Bztr3ITYemgJXYsedE1QWnE6HwKfLpJVUTpjDLwXzlS9VFja3LH4A2e2QsdwWTg3r5_23NUx5RRw1EV-BE-ju9ntvVtXYHBTGpHSjWmUUcNwppTUVPFA-fgMGQYZLJXESzjzicwC7IBpSuaxSDNMGHmcKJL5WtI-dPJFro7BYUQSX1NCVEqDJMT-CUZCVIYBi5hP5QCCRvMirenJTZWMN-G1LKaVzoTRmah1NoCrVuy94uf4TSBeX1ZR2oMRXVUxEfQX2b61gXYmzG1NQa9wAMPGKETtAwqByR4ml5HP4pM_zHkKXWxye-rjD6FTLlfqDLbTD1z05bm19i_5aPV0
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4NAEJ5oNbEefFQbq1U5mHjCAAvsclRjU2PbQ1Njb5sFFmNiwLRU_76zyyNtjOlBT4Sws4RhmJ0Zvv0G4MqNYmETzzcjFkrTxYDVFDZLTEoSXFBi4hOpKfMHdDRi02mwvBdGwSpVDp0URBHaV6uPWxWjK0icIuTRtC8KmUVVP2MPneombHm41ipY36T3svQngdEKOadkql08v02zsj6tsJdWiMUfXlsvRb39_3iIA9grA1HjtrCcQ9iQaQt2l-gJ8WxYc7rOW9BUcWlB63wEbJyFi3luDDD2zoyxfC3gtKmhIQjGZIG-4Xpu3L196dKroToq4KxZegzPvYfJfd8smzCYEfGt3AyIHxNFcialSIhkrnTw6FGMM2gkLDtk1LFE7OIAzFRim_oJxZyRBaG0YicRpA2NNEvlCRjUEpaTEMuSEXFDD8eHGAwR4bnUpw4RHXAr1fOoZChXjTLeuV0TmRY640pnvNRZB25qsY-ComOdQLD8XnmuayNJ0ciEkzWybW0E9Z0wvVU9vbwOdCur4KUbmHPM9zC_9B0anP7hnpew058MB3zwOHo6gyZeYroI5HShkc8W8hy2o080gNmFNv1vhDL5lQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50FVkPvsX12YPgqdI2bZMefS2K6yKy4t5C2iYiSCvbXf37TtIHu4jsQU-lNJOQyXQyk379BuDUT1LhkiC0ExZL28eA1RYuUzYlCjeUlIREGsr8Hu332XAYPVZowqKCVeocWpVEEcZX65f7I1U1Ik7z8RjWFw3MorqccYA-dRGWDDkWmvSg-zL1IYHRGjinZeqfeH7rZmZ7miEvrQGLP5y22Ym66_8whw1Yq8JQ66K0m01YkNkWrE6RE-LdQ8PoWmxBW0elJanzNrCnPJ4UY6uHkXduPcnXEkybWQaAYA0m6BnOCuvy7cscvFq6ngL2mmc78Ny9GVzd2lUJBjshoTO2IxKmRFOcSSkUkcyXHl4DilEGTYTjxox6jkh9bIB5SurSUFHMGFkUSyf1lCC70MryTO6BRR3heIo4jkyIHwfYPsZQiIjApyH1iOiAX2ueJxU_uS6T8c7dhsa01BnXOuOVzjpw3oh9lAQd8wSi6WXlY3MyosoyJpzMkd01NtCMhMmtrugVdOCwNgpeOYGCY7aH2WXo0Wj_D2OewMrjdZf37vr3B9DGJ8ycAHmH0BqPJvIIlpNPXP_RsTH8b1qx-Dk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Lasso+Regression+Using+Tukey%27s+Biweight+Criterion&rft.jtitle=Technometrics&rft.au=Le+Chang&rft.au=Roberts%2C+Steven&rft.au=Welsh%2C+Alan&rft.date=2018-01-02&rft.pub=American+Society+for+Quality+and+the+American+Statistical+Association&rft.issn=0040-1706&rft.eissn=1537-2723&rft.volume=60&rft.issue=1&rft.spage=36&rft.epage=47&rft_id=info:doi/10.1080%2F00401706.2017.1305299&rft.externalDocID=44869015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-1706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-1706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-1706&client=summon