Robust Lasso Regression Using Tukey's Biweight Criterion
The adaptive lasso is a method for performing simultaneous parameter estimation and variable selection. The adaptive weights used in its penalty term mean that the adaptive lasso achieves the oracle property. In this work, we propose an extension of the adaptive lasso named the Tukey-lasso. By using...
Gespeichert in:
| Veröffentlicht in: | Technometrics Jg. 60; H. 1; S. 36 - 47 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Alexandria
Taylor & Francis
02.01.2018
American Society for Quality and the American Statistical Association American Society for Quality |
| Schlagworte: | |
| ISSN: | 0040-1706, 1537-2723 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The adaptive lasso is a method for performing simultaneous parameter estimation and variable selection. The adaptive weights used in its penalty term mean that the adaptive lasso achieves the oracle property. In this work, we propose an extension of the adaptive lasso named the Tukey-lasso. By using Tukey's biweight criterion, instead of squared loss, the Tukey-lasso is resistant to outliers in both the response and covariates. Importantly, we demonstrate that the Tukey-lasso also enjoys the oracle property. A fast accelerated proximal gradient (APG) algorithm is proposed and implemented for computing the Tukey-lasso. Our extensive simulations show that the Tukey-lasso, implemented with the APG algorithm, achieves very reliable results, including for high-dimensional data where p > n. In the presence of outliers, the Tukey-lasso is shown to offer substantial improvements in performance compared to the adaptive lasso and other robust implementations of the lasso. Real-data examples further demonstrate the utility of the Tukey-lasso. Supplementary materials for this article are available online. |
|---|---|
| AbstractList | The adaptive lasso is a method for performing simultaneous parameter estimation and variable selection. The adaptive weights used in its penalty termmean that the adaptive lasso achieves the oracle property. In this work, we propose an extension of the adaptive lasso named the Tukey-lasso. By using Tukey’s biweight criterion, instead of squared loss, the Tukey-lasso is resistant to outliers in both the response and covariates. Importantly, we demonstrate that the Tukey-lasso also enjoys the oracle property. A fast accelerated proximal gradient (APG) algorithm is proposed and implemented for computing the Tukey-lasso. Our extensive simulations show that the Tukey-lasso, implemented with the APG algorithm, achieves very reliable results, including for high-dimensional data where p > n. In the presence of outliers, the Tukey-lasso is shown to offer substantial improvements in performance compared to the adaptive lasso and other robust implementations of the lasso. Real-data examples further demonstrate the utility of the Tukey-lasso. Supplementary materials for this article are available online. The adaptive lasso is a method for performing simultaneous parameter estimation and variable selection. The adaptive weights used in its penalty term mean that the adaptive lasso achieves the oracle property. In this work, we propose an extension of the adaptive lasso named theTukey-lasso. By using Tukey's biweight criterion, instead of squared loss, the Tukey-lasso is resistant to outliers in both the response and covariates. Importantly, we demonstrate that the Tukey-lasso also enjoys the oracle property. A fast accelerated proximal gradient (APG) algorithm is proposed and implemented for computing the Tukey-lasso. Our extensive simulations show that the Tukey-lasso, implemented with the APG algorithm, achieves very reliable results, including for high-dimensional data where p > n. In the presence of outliers, the Tukey-lasso is shown to offer substantial improvements in performance compared to the adaptive lasso and other robust implementations of the lasso. Real-data examples further demonstrate the utility of the Tukey-lasso. Supplementary materials for this article are available online. The adaptive lasso is a method for performing simultaneous parameter estimation and variable selection. The adaptive weights used in its penalty term mean that the adaptive lasso achieves the oracle property. In this work, we propose an extension of the adaptive lasso named the Tukey-lasso. By using Tukey's biweight criterion, instead of squared loss, the Tukey-lasso is resistant to outliers in both the response and covariates. Importantly, we demonstrate that the Tukey-lasso also enjoys the oracle property. A fast accelerated proximal gradient (APG) algorithm is proposed and implemented for computing the Tukey-lasso. Our extensive simulations show that the Tukey-lasso, implemented with the APG algorithm, achieves very reliable results, including for high-dimensional data where p > n. In the presence of outliers, the Tukey-lasso is shown to offer substantial improvements in performance compared to the adaptive lasso and other robust implementations of the lasso. Real-data examples further demonstrate the utility of the Tukey-lasso. Supplementary materials for this article are available online. |
| Author | Welsh, Alan Roberts, Steven Chang, Le |
| Author_xml | – sequence: 1 givenname: Le surname: Chang fullname: Chang, Le email: le.chang@anu.edu.au organization: The Australian National University – sequence: 2 givenname: Steven surname: Roberts fullname: Roberts, Steven organization: The Australian National University – sequence: 3 givenname: Alan surname: Welsh fullname: Welsh, Alan organization: The Australian National University |
| BookMark | eNqFkM9LwzAYhoMouE3_hEHBg6fOL0nbpHhRh79gIIztHLI2nZldM5OUsf_elE4PHvT0HvK830ueITptTKMQGmOYYOBwA5AAZpBNSIgJppCSPD9BA5xSFhNG6CkadEzcQedo6NwGAFPC2QDxuVm1zkcz6ZyJ5mptlXPaNNHS6WYdLdoPdbh20YPeK71-99HUaq9sAC7QWSVrpy6POULLp8fF9CWevT2_Tu9ncUEz8HFOs5ImlBKlZEUVTxQJmTLIMSsk4BVnBGSZBICTrMQsq1gCOc9XCkpSSTpCV_3dnTWfrXJebExrmzApSKBJmhGWByrtqcIa56yqxM7qrbQHgUF0ksS3JNFJEkdJoXf7q1doL334n7dS1_-2x31747yxP5NJwrMcgv0RuuvfdVMZu5V7Y-tSeHmoja2sbArtBP174gubEol8 |
| CitedBy_id | crossref_primary_10_1016_j_dsp_2021_103077 crossref_primary_10_1016_j_knosys_2023_111309 crossref_primary_10_3233_IDA_194672 crossref_primary_10_1080_02664763_2021_1962259 crossref_primary_10_1016_j_jspi_2024_106162 crossref_primary_10_1016_j_aei_2024_102619 crossref_primary_10_1109_TIM_2019_2904135 crossref_primary_10_1016_j_csda_2021_107415 crossref_primary_10_1002_cjs_11681 crossref_primary_10_1515_ijb_2021_0127 crossref_primary_10_3390_info10100316 crossref_primary_10_1007_s10114_025_3362_8 crossref_primary_10_1080_10618600_2022_2035232 crossref_primary_10_1007_s10463_021_00792_5 crossref_primary_10_1080_00224065_2021_1983491 crossref_primary_10_1177_01655515241261056 crossref_primary_10_1007_s10994_023_06384_z crossref_primary_10_1016_j_ejor_2021_05_049 crossref_primary_10_1002_wics_1524 crossref_primary_10_1080_00949655_2022_2096886 crossref_primary_10_1080_00949655_2023_2286316 crossref_primary_10_1016_j_csda_2024_107971 crossref_primary_10_1080_00949655_2023_2262669 crossref_primary_10_1080_24725854_2023_2290110 crossref_primary_10_1162_neco_a_01384 crossref_primary_10_1007_s11222_024_10526_1 crossref_primary_10_1016_j_iref_2022_03_003 crossref_primary_10_1016_j_inffus_2024_102463 crossref_primary_10_1007_s10255_020_0939_y crossref_primary_10_1111_anzs_70010 crossref_primary_10_55525_tjst_1244925 crossref_primary_10_1111_sjos_12638 crossref_primary_10_2166_wst_2023_396 crossref_primary_10_1080_00401706_2018_1470037 crossref_primary_10_1080_10942912_2025_2558009 crossref_primary_10_1080_00401706_2025_2540970 crossref_primary_10_1080_10618600_2022_2118752 crossref_primary_10_1002_sim_9213 crossref_primary_10_1111_biom_13553 crossref_primary_10_1007_s13571_024_00342_y crossref_primary_10_1016_j_sigpro_2023_109063 crossref_primary_10_1016_j_jfds_2018_04_001 crossref_primary_10_3390_land13081129 crossref_primary_10_2478_amns_2023_2_01295 crossref_primary_10_1111_rssb_12553 crossref_primary_10_3390_math10162985 crossref_primary_10_1109_ACCESS_2023_3281895 crossref_primary_10_1186_s12859_025_06112_5 |
| Cites_doi | 10.1198/016214507000000950 10.1214/009053607000000127 10.1214/11-EJS635 10.1080/01621459.1993.10476408 10.1198/016214506000000735 10.1198/073500106000000251 10.1017/S0266466600007775 10.1214/aos/1176344136 10.1111/j.2517-6161.1996.tb02080.x 10.1214/aoms/1177703732 10.1214/aos/1176350366 10.1073/pnas.0608396103 10.1007/978-1-4615-7821-5_15 10.1214/009053604000000067 10.1093/biomet/81.3.425 10.1093/biomet/83.4.875 10.1198/TECH.2010.09114 10.1090/conm/443/08555 10.1002/cpa.20042 10.1214/10-AOAS377 10.1214/12-AOAS575 |
| ContentType | Journal Article |
| Copyright | 2018 American Statistical Association and the American Society for Quality 2018 2018 American Statistical Association and the American Society for Quality Copyright American Society for Quality 2018 |
| Copyright_xml | – notice: 2018 American Statistical Association and the American Society for Quality 2018 – notice: 2018 American Statistical Association and the American Society for Quality – notice: Copyright American Society for Quality 2018 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/00401706.2017.1305299 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Mathematics |
| EISSN | 1537-2723 |
| EndPage | 47 |
| ExternalDocumentID | 10_1080_00401706_2017_1305299 44869015 1305299 |
| Genre | Article |
| GroupedDBID | -ET -~X ..I .7F .DC .QJ 07G 0BK 0R~ 123 29Q 2AX 30N 4.4 5RE 7WY 85S 8FL 96U AAAVZ AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABPAQ ABPEM ABPPZ ABQDR ABTAI ABXSQ ABXUL ABXYU ABYWD ACBEA ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ADCVX ADGTB ADODI AEGXH AEISY AELLO AENEX AEOZL AEPSL AEUPB AEYOC AFAZI AFRVT AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AIYEW AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMVHM AMXXU AQRUH AQTUD AVBZW AWYRJ BCCOT BLEHA BPLKW C06 CCCUG CS3 DGEBU DKSSO DQDLB DSRWC DU5 DWIFK EBS ECEWR EJD E~A E~B F5P GTTXZ H13 HFX HF~ HQ6 HZ~ H~P I-F IHF IPNFZ IPSME J.P JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ KYCEM M4Z MS~ MW2 NA5 NY~ O9- P2P RIG RNANH ROSJB RTWRZ RWL S-T SA0 SNACF TAE TAQ TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UB9 UT5 UU3 WH7 WZA YNT ZGOLN ~02 ~S~ ADYSH ALIPV AMPGV AAYXX CITATION |
| ID | FETCH-LOGICAL-c360t-936d34332eeaf3e84e2af3570917ca01b8720ad432e826d176f740989be0d2fa3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426114600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0040-1706 |
| IngestDate | Mon Nov 10 02:55:00 EST 2025 Sat Nov 29 03:42:50 EST 2025 Tue Nov 18 22:04:49 EST 2025 Thu May 29 09:01:30 EDT 2025 Mon Oct 20 23:47:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c360t-936d34332eeaf3e84e2af3570917ca01b8720ad432e826d176f740989be0d2fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2176256279 |
| PQPubID | 24108 |
| PageCount | 12 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_00401706_2017_1305299 crossref_primary_10_1080_00401706_2017_1305299 crossref_citationtrail_10_1080_00401706_2017_1305299 proquest_journals_2176256279 jstor_primary_44869015 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-02 |
| PublicationDateYYYYMMDD | 2018-01-02 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Technometrics |
| PublicationYear | 2018 |
| Publisher | Taylor & Francis American Society for Quality and the American Statistical Association American Society for Quality |
| Publisher_xml | – name: Taylor & Francis – name: American Society for Quality and the American Statistical Association – name: American Society for Quality |
| References | cit0011 cit0033 cit0012 Li G. (cit0017) 2011; 21 cit0031 cit0010 cit0030 Tibshirani R. (cit0027) 1996; 58 Alfons A. (cit0001) 2014 Tukey J. W. (cit0028) 1960; 2 Beck A. (cit0003) 2009 cit0019 cit0018 cit0015 cit0016 cit0013 cit0035 Ronchetti E. (cit0021) 1985 cit0022 cit0020 Smucler E. (cit0026) 2015 Knight K. (cit0014) 2000 Friedman J. (cit0008) 2009 Zhao P. (cit0032) 2006; 7 cit0006 (cit0009) 2010; 33 cit0029 cit0004 cit0005 cit0002 cit0024 cit0025 |
| References_xml | – ident: cit0013 doi: 10.1198/016214507000000950 – ident: cit0035 doi: 10.1214/009053607000000127 – ident: cit0016 doi: 10.1214/11-EJS635 – year: 2014 ident: cit0001 publication-title: R package version 0.5. 0 – ident: cit0024 doi: 10.1080/01621459.1993.10476408 – start-page: 1 year: 2009 ident: cit0008 publication-title: R package version – ident: cit0033 doi: 10.1198/016214506000000735 – ident: cit0029 doi: 10.1198/073500106000000251 – ident: cit0018 doi: 10.1017/S0266466600007775 – ident: cit0025 doi: 10.1214/aos/1176344136 – volume: 58 start-page: 267 year: 1996 ident: cit0027 publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: cit0012 doi: 10.1214/aoms/1177703732 – ident: cit0031 doi: 10.1214/aos/1176350366 – start-page: 2009 year: 2009 ident: cit0003 publication-title: SIAM Journal on Imaging Sciences – ident: cit0011 doi: 10.1073/pnas.0608396103 – volume: 21 start-page: 391 year: 2011 ident: cit0017 publication-title: Statistica Sinica – ident: cit0022 doi: 10.1007/978-1-4615-7821-5_15 – start-page: 1985 year: 1985 ident: cit0021 publication-title: Statistics & Probability Letters – ident: cit0006 doi: 10.1214/009053604000000067 – start-page: 1356 year: 2000 ident: cit0014 publication-title: Annals of Statistics – ident: cit0005 doi: 10.1093/biomet/81.3.425 – ident: cit0015 doi: 10.1093/biomet/83.4.875 – ident: cit0019 doi: 10.1198/TECH.2010.09114 – ident: cit0020 doi: 10.1090/conm/443/08555 – ident: cit0004 doi: 10.1002/cpa.20042 – volume: 33 start-page: 1 year: 2010 ident: cit0009 publication-title: Journal of Statistical Software – ident: cit0010 – year: 2015 ident: cit0026 publication-title: arXiv:1508.01967 – volume: 2 start-page: 448 year: 1960 ident: cit0028 publication-title: Contributions to Probability and Statistics – ident: cit0030 doi: 10.1214/10-AOAS377 – volume: 7 start-page: 2541 year: 2006 ident: cit0032 publication-title: The Journal of Machine Learning Research – ident: cit0002 doi: 10.1214/12-AOAS575 |
| SSID | ssj0013287 |
| Score | 2.4280317 |
| Snippet | The adaptive lasso is a method for performing simultaneous parameter estimation and variable selection. The adaptive weights used in its penalty term mean that... The adaptive lasso is a method for performing simultaneous parameter estimation and variable selection. The adaptive weights used in its penalty termmean that... |
| SourceID | proquest crossref jstor informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 36 |
| SubjectTerms | Accelerated proximal gradient algorithm Adaptive lasso Algorithms Computer simulation Criteria Estimating techniques Oracle property Outliers (statistics) Parameter estimation Regression analysis Robust estimation Robustness (mathematics) |
| Title | Robust Lasso Regression Using Tukey's Biweight Criterion |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00401706.2017.1305299 https://www.jstor.org/stable/44869015 https://www.proquest.com/docview/2176256279 |
| Volume | 60 |
| WOSCitedRecordID | wos000426114600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1537-2723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013287 issn: 0040-1706 databaseCode: TFW dateStart: 19590201 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPMyDH9PhdEoOgqdK26xNclRxeJhDxsTdQpomIkgra6f_vi_pBxsiHvRUAn0pfe_l5b30199D6EJzIgMllRfF1HgjDkvKUqx4UIj5jDM_DZWz9IROp2yx4I81mrCoYZW2hjYVUYSL1XZxy6RoEHGWj8exvlhgFrXtjCOIqRCFIbO3Pj4fP699R2C0wc1ZkeYfnp9m2didNrhLG7zit5jtNqLx3j-8wj7arbNQfF25zQHa0lkP7axxE8LooSV0LXqoa5PSitP5ELFZnqyKEk8g8c7xTL9UWNoMO_wBnq8gMFwW-Ob10527YttOAWbNsyP0NL6b3957dQcGT5HYLz1O4pRYhjOtpSGajXQI14hCkkGV9IOE0dCX6QhugDIlDWhsKBSMjCcarGwk6aNOlmf6GGHCFYfUKVBppCEFU8z2S4XVL5kxMvD1AI0azQtV05PbLhlvImhZTCudCaszUetsgK5asfeKn-M3Ab5uVlG6gxFTdTER5BfZvvOB9klQ29qGXtEADRunEHUMKAQUe1BcxiHlJ3945inqwpC5U59wiDrlcqXP0Lb6AKMvz523fwEXa_Wa |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90Cs4HP6bD6dQ-CD5V-rE2yaOKY-K2hzFxb6FLUxGkk63Tf9-7tB0bInvQp1LaJPRyudxdf_kdwJUWfuSqSNlByBK7JXBJEcWKjYGYwwV3Yk-Zme6yfp-PRmL5LAzBKimGTnKiCGOraXFTMrqExBEhj6F9IWQWo3rGARrVTdgKcK8lWN-w_bL0J4GzEjlHbcpTPL91s7I_rbCXlojFH1bbbEXt_f_4iAPYKxxR6zbXnEPY0GkNdpfoCfGut-B0ndWgSn5pTut8BHwwGc9nmdVF33tiDfRrDqdNLQNBsIZztA3XM-vu7cukXi2qqIC9TtJjeG4_DO87dlGEwVZ-6GS28MPYJ5IzraPE17ylPbwGDP0MpiLHHXPmOVHcwhcwUoldFiYMY0YuxhonOon8OlTSSapPwPKFEug9uSoONHphilPJVDQAEU-SyHV0A1ql6KUqGMqpUMa7dBdEprnMJMlMFjJrwM2i2UdO0bGugVieV5mZ3EiSFzKR_pq2daMEi5EwvKWaXkEDmqVWyMIMzCTGexhfhh4Tp38Y8xJ2OsNeV3Yf-09nUMVH3CSBvCZUsulcn8O2-kQFmF4Y1f8GomX5uw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60itSDj2qxWjUHwVMkjya7e_RVFGsppWJvS7rZFUHS0qT6953dJKVFpAc9hZDMhszMzs5svnwDcCGZH7kiEnYQEmW3GE4pTbFiYyHmUEad2BPG0h3S7dLhkPUKNGFawCp1Da1yoggTq_XknsSqRMRpPh7D-qKBWUS3Mw4wpq7DhiHHQpcetF8XPiRQUgLntEz5E89vwywtT0vkpSVg8UfQNitRe_cf3mEPdoo01LrO_WYf1mRSg-0FckI8e54zuqY1qOqsNCd1PgDaH49maWZ1MPMeW335loNpE8sAEKzBDCPDZWrdvH-ZjVdL91PAUcfJIby07we3D3bRgsEWfuhkNvPD2NcUZ1JGype0JT08BgSzDCIixx1R4jlR3MIbsE6JXRIqghUjZSOJZlaRX4dKMk7kEVg-EwxzJ1fEgcQcTFDdMBWnf0SVilxHNqBVap6Lgp9ct8n44O6cxjTXGdc644XOGnA1F5vkBB2rBNiiWXlmdkZU3saE-ytk68YH5k_C4lZ39Aoa0CydghdBIOVY7WF1GXqEHf_hmeew1btr885j9-kEqniFmh0grwmVbDqTp7ApPtH-0zPj-N95xPhf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Lasso+Regression+Using+Tukey%27s+Biweight+Criterion&rft.jtitle=Technometrics&rft.au=Le+Chang&rft.au=Roberts%2C+Steven&rft.au=Welsh%2C+Alan&rft.date=2018-01-02&rft.pub=American+Society+for+Quality+and+the+American+Statistical+Association&rft.issn=0040-1706&rft.eissn=1537-2723&rft.volume=60&rft.issue=1&rft.spage=36&rft.epage=47&rft_id=info:doi/10.1080%2F00401706.2017.1305299&rft.externalDocID=44869015 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-1706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-1706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-1706&client=summon |