Robust Lasso Regression Using Tukey's Biweight Criterion

The adaptive lasso is a method for performing simultaneous parameter estimation and variable selection. The adaptive weights used in its penalty term mean that the adaptive lasso achieves the oracle property. In this work, we propose an extension of the adaptive lasso named the Tukey-lasso. By using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technometrics Jg. 60; H. 1; S. 36 - 47
Hauptverfasser: Chang, Le, Roberts, Steven, Welsh, Alan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Alexandria Taylor & Francis 02.01.2018
American Society for Quality and the American Statistical Association
American Society for Quality
Schlagworte:
ISSN:0040-1706, 1537-2723
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The adaptive lasso is a method for performing simultaneous parameter estimation and variable selection. The adaptive weights used in its penalty term mean that the adaptive lasso achieves the oracle property. In this work, we propose an extension of the adaptive lasso named the Tukey-lasso. By using Tukey's biweight criterion, instead of squared loss, the Tukey-lasso is resistant to outliers in both the response and covariates. Importantly, we demonstrate that the Tukey-lasso also enjoys the oracle property. A fast accelerated proximal gradient (APG) algorithm is proposed and implemented for computing the Tukey-lasso. Our extensive simulations show that the Tukey-lasso, implemented with the APG algorithm, achieves very reliable results, including for high-dimensional data where p > n. In the presence of outliers, the Tukey-lasso is shown to offer substantial improvements in performance compared to the adaptive lasso and other robust implementations of the lasso. Real-data examples further demonstrate the utility of the Tukey-lasso. Supplementary materials for this article are available online.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0040-1706
1537-2723
DOI:10.1080/00401706.2017.1305299