Networked Microgrids Planning Through Chance Constrained Stochastic Conic Programming
This paper presents a chance constrained stochastic conic program model for networked microgrids planning. Under a two-stage optimization framework, we integrate a multi-site microgrids investment problem and two sets of operational problems that correspond to the grid-connected and islanding modes,...
Uložené v:
| Vydané v: | IEEE transactions on smart grid Ročník 10; číslo 6; s. 6619 - 6628 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1949-3053, 1949-3061 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper presents a chance constrained stochastic conic program model for networked microgrids planning. Under a two-stage optimization framework, we integrate a multi-site microgrids investment problem and two sets of operational problems that correspond to the grid-connected and islanding modes, respectively. To handle the uncertain nature of renewable energy generation and load variation, as well as the contingent islanding caused by external disruptions, stochastic scenarios are employed to capture randomness and a joint chance constraint is introduced to control the operational risks. A second-order conic program (SOCP) formulation is also utilized to accurately describe the AC optimal power flow (OPF) in operational problems. As the resulting mixed integer SOCP model is computationally difficult, we customize the bilinear Benders decomposition with non-trivial enhancement techniques to deal with practical instances. Numerical results on 5- and 69-bus networked microgrids demonstrate the effectiveness of the proposed planning model and the superior performance of our solution algorithm. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Electricity (OE) OE0000842 |
| ISSN: | 1949-3053 1949-3061 |
| DOI: | 10.1109/TSG.2019.2908848 |