Tobacco yield estimation via multi-source data fusion and recurrent neural networks

In China, tobacco production must strictly follow the yield plan set by the higher authorities. In this context, accurate and stable yield estimation is meaningful for effective production management. In this paper, we adopted a multi-source data fusion strategy to develop the yield estimation model...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied earth observation and geoinformation Vol. 144; p. 104925
Main Authors: Zhang, Mingzheng, Zhang, Baoyuan, Zhao, Chunjiang, Chen, Liping, Kuai, Yan, Wang, Cong, Jiang, Shuwen, Chen, Dong, Zhu, Qingzhen, Wang, Zhiyong, Gu, Xiaohe, Chen, Tian’en
Format: Journal Article
Language:English
Published: Elsevier B.V 01.11.2025
Elsevier
Subjects:
ISSN:1569-8432
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In China, tobacco production must strictly follow the yield plan set by the higher authorities. In this context, accurate and stable yield estimation is meaningful for effective production management. In this paper, we adopted a multi-source data fusion strategy to develop the yield estimation models for tobacco. The data used include unmanned aerial vehicle (UAV)-borne hyperspectral features (HF), biophysical parameters (BPP) collected in the field, and biochemical parameters (BCP) measured in the laboratory. Since the crop state at different growth stages both affect the final yield, we employed two typical recurrent neural network (RNN) algorithms, long short-term memory (LSTM) and gated recurrent unit (GRU), for modeling. The random forest (RF) algorithm was selected as the baseline scheme. In addition, we designed a one-dimensional convolutional autoencoder (AEC1D) to unify the input dimensions of raw data from different years. It was found that yield estimation performance from multi-source data was more accurate than using any single feature. The GRU model with the HF+BCP+BPP combination achieved the highest estimation accuracy, with an Rv2 of 0.705. The overall performance of LSTM and GRU models was also better than that of RF. We also quantified the contribution of each feature to the model, with HF, BPP, and BCP accounting for approximately 45%, 32%, and 23%, respectively. This study demonstrated the benefits of multi-source data fusion and RNN algorithms in estimating tobacco yields, which can be used to assist in site-specific crop management. •Construct tobacco yield estimation models using multi-source data integration strategy and RNN algorithms.•Design a one-dimensional autoencoder to unify the temporal dimensions of raw data from different years.•The GRU model achieved promising results, with an R2 of 0.802 on the training set and 0.705 on the test set
AbstractList In China, tobacco production must strictly follow the yield plan set by the higher authorities. In this context, accurate and stable yield estimation is meaningful for effective production management. In this paper, we adopted a multi-source data fusion strategy to develop the yield estimation models for tobacco. The data used include unmanned aerial vehicle (UAV)-borne hyperspectral features (HF), biophysical parameters (BPP) collected in the field, and biochemical parameters (BCP) measured in the laboratory. Since the crop state at different growth stages both affect the final yield, we employed two typical recurrent neural network (RNN) algorithms, long short-term memory (LSTM) and gated recurrent unit (GRU), for modeling. The random forest (RF) algorithm was selected as the baseline scheme. In addition, we designed a one-dimensional convolutional autoencoder (AEC1D) to unify the input dimensions of raw data from different years. It was found that yield estimation performance from multi-source data was more accurate than using any single feature. The GRU model with the HF+BCP+BPP combination achieved the highest estimation accuracy, with an Rv2 of 0.705. The overall performance of LSTM and GRU models was also better than that of RF. We also quantified the contribution of each feature to the model, with HF, BPP, and BCP accounting for approximately 45%, 32%, and 23%, respectively. This study demonstrated the benefits of multi-source data fusion and RNN algorithms in estimating tobacco yields, which can be used to assist in site-specific crop management.
In China, tobacco production must strictly follow the yield plan set by the higher authorities. In this context, accurate and stable yield estimation is meaningful for effective production management. In this paper, we adopted a multi-source data fusion strategy to develop the yield estimation models for tobacco. The data used include unmanned aerial vehicle (UAV)-borne hyperspectral features (HF), biophysical parameters (BPP) collected in the field, and biochemical parameters (BCP) measured in the laboratory. Since the crop state at different growth stages both affect the final yield, we employed two typical recurrent neural network (RNN) algorithms, long short-term memory (LSTM) and gated recurrent unit (GRU), for modeling. The random forest (RF) algorithm was selected as the baseline scheme. In addition, we designed a one-dimensional convolutional autoencoder (AEC1D) to unify the input dimensions of raw data from different years. It was found that yield estimation performance from multi-source data was more accurate than using any single feature. The GRU model with the HF+BCP+BPP combination achieved the highest estimation accuracy, with an Rv2 of 0.705. The overall performance of LSTM and GRU models was also better than that of RF. We also quantified the contribution of each feature to the model, with HF, BPP, and BCP accounting for approximately 45%, 32%, and 23%, respectively. This study demonstrated the benefits of multi-source data fusion and RNN algorithms in estimating tobacco yields, which can be used to assist in site-specific crop management. •Construct tobacco yield estimation models using multi-source data integration strategy and RNN algorithms.•Design a one-dimensional autoencoder to unify the temporal dimensions of raw data from different years.•The GRU model achieved promising results, with an R2 of 0.802 on the training set and 0.705 on the test set
ArticleNumber 104925
Author Wang, Cong
Zhao, Chunjiang
Chen, Dong
Jiang, Shuwen
Zhu, Qingzhen
Wang, Zhiyong
Zhang, Mingzheng
Zhang, Baoyuan
Kuai, Yan
Chen, Liping
Gu, Xiaohe
Chen, Tian’en
Author_xml – sequence: 1
  givenname: Mingzheng
  orcidid: 0000-0002-0440-0939
  surname: Zhang
  fullname: Zhang, Mingzheng
  organization: Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100000, China
– sequence: 2
  givenname: Baoyuan
  surname: Zhang
  fullname: Zhang, Baoyuan
  organization: College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 211512, China
– sequence: 3
  givenname: Chunjiang
  orcidid: 0000-0002-1448-5091
  surname: Zhao
  fullname: Zhao, Chunjiang
  organization: Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100000, China
– sequence: 4
  givenname: Liping
  surname: Chen
  fullname: Chen, Liping
  organization: School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
– sequence: 5
  givenname: Yan
  surname: Kuai
  fullname: Kuai, Yan
  organization: Tobacco Company of Dali Prefecture, Yunnan Tobacco Company, Dali, Yunnan Province, 671003, China
– sequence: 6
  givenname: Cong
  surname: Wang
  fullname: Wang, Cong
  organization: Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100000, China
– sequence: 7
  givenname: Shuwen
  surname: Jiang
  fullname: Jiang, Shuwen
  organization: Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100000, China
– sequence: 8
  givenname: Dong
  surname: Chen
  fullname: Chen, Dong
  organization: Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100000, China
– sequence: 9
  givenname: Qingzhen
  surname: Zhu
  fullname: Zhu, Qingzhen
  organization: School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
– sequence: 10
  givenname: Zhiyong
  surname: Wang
  fullname: Wang, Zhiyong
  organization: Anhui Wannan Tobacco Company, Xuancheng, Anhui Province, 242000, China
– sequence: 11
  givenname: Xiaohe
  surname: Gu
  fullname: Gu, Xiaohe
  email: guxh@nercita.org.cn
  organization: Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100000, China
– sequence: 12
  givenname: Tian’en
  surname: Chen
  fullname: Chen, Tian’en
  email: chente@nercita.org.cn
  organization: Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100000, China
BookMark eNp9kMtOwzAQRb0oEi3wAezyAyl2HnYsVqjiUakSC8ramtiTyiGNke0U9e9xKWLJal66V3fOgsxGNyIht4wuGWX8rl_2sFsWtKjTXMminpE5q7nMm6osLskihJ5SJgRv5uRt61rQ2mVHi4PJMES7h2jdmB0sZPtpiDYPbvIaMwMRsm4KpyOMJvOoJ-9xjNmIk4chlfjl_Ee4JhcdDAFvfusVeX963K5e8s3r83r1sMl1yWnMuWlK2nWSl4WEuhRcGy3ausISq7ahrWiNABAFVKkrWUtrSY1oqZCaNYbp8oqsz77GQa8-fUruj8qBVT8L53cKfLR6QGU6AC4r2nKJVSNlQ5kRlWm4plrUBU9e7OylvQvBY_fnx6g6UVW9SlTViao6U02a-7MG05MHi14FbXHUaGxiE1MK-4_6G7zbhBs
Cites_doi 10.3390/agriculture12091447
10.1016/j.compag.2023.108514
10.1016/j.compag.2023.107705
10.1016/j.compag.2014.09.019
10.1016/j.fcr.2021.108260
10.1016/j.isprsjprs.2014.08.005
10.3390/rs12122028
10.1016/j.compag.2024.109724
10.3389/fpls.2022.1090970
10.1016/j.agrformet.2022.109237
10.1080/17538947.2019.1698664
10.3390/agriculture12060892
10.1016/j.tplants.2023.08.012
10.1109/TGRS.2019.2951433
10.1016/j.asoc.2023.110176
10.1016/j.compag.2023.108047
10.1016/j.neucom.2021.02.046
10.3390/rs14133052
10.3390/rs14122927
10.1016/j.rse.2018.02.030
10.1016/j.rse.2019.111402
10.3390/rs14091990
10.1016/j.tplants.2018.11.007
10.3390/rs10060930
10.1186/s13007-019-0399-7
10.1109/CVPRW.2014.79
10.1016/j.agrformet.2021.108629
10.3390/rs10122015
10.1016/j.compag.2019.03.017
10.1007/s00271-021-00745-z
10.3389/fpls.2019.00453
10.3390/rs15143483
10.1016/j.fcr.2023.109042
10.1109/JSTARS.2021.3089203
10.1016/j.indcrop.2021.113534
10.3389/fpls.2020.624273
10.1016/j.compag.2021.106033
10.1016/j.eja.2021.126405
10.1016/j.rse.2022.113141
10.1016/j.compag.2020.105731
10.1016/j.isprsjprs.2020.02.013
10.1016/j.compag.2021.106461
10.1126/science.1127647
10.1016/j.compag.2023.108008
10.1016/j.cj.2022.06.005
10.1016/j.compag.2022.107390
10.1016/j.compag.2023.108034
10.1016/j.compag.2019.105066
10.1038/s41598-021-90624-6
10.3390/agronomy12020489
10.1007/s11119-021-09804-z
10.1038/s41598-021-89779-z
10.1016/j.compag.2023.108011
10.1016/j.fcr.2013.06.009
10.1186/s13007-016-0154-2
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jag.2025.104925
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID oai_doaj_org_article_dfaa6940b69e4899801d74d86c0c7526
10_1016_j_jag_2025_104925
S1569843225005722
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAHBH
AALRI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABQEM
ABQYD
ABWVN
ACLOT
ACLVX
ACRPL
ACSBN
ADBBV
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFXIZ
AGQPQ
AGYEJ
AHEUO
AIIUN
AIKHN
AITUG
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EFJIC
EFKBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
M41
O-L
P-8
P-9
P2P
R2-
ROL
SES
SPC
SSJ
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c360t-6d830ff96329a5376cdc7b54e3e4b80b7bd7aa72a47bd31b0590d7b079c18d1c3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001610713300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1569-8432
IngestDate Mon Nov 24 19:21:14 EST 2025
Thu Nov 27 00:58:31 EST 2025
Sat Nov 29 17:03:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords RNN
Yield estimation
HF+BCP+BPP
AEC1D
Multi-source data fusion
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-6d830ff96329a5376cdc7b54e3e4b80b7bd7aa72a47bd31b0590d7b079c18d1c3
ORCID 0000-0002-1448-5091
0000-0002-0440-0939
OpenAccessLink https://doaj.org/article/dfaa6940b69e4899801d74d86c0c7526
ParticipantIDs doaj_primary_oai_doaj_org_article_dfaa6940b69e4899801d74d86c0c7526
crossref_primary_10_1016_j_jag_2025_104925
elsevier_sciencedirect_doi_10_1016_j_jag_2025_104925
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Luo, Jiang, Jiao, Yang, Li, Fang (b33) 2022; 12
Montesinos-López, Montesinos-López, Crossa, de Los Campos, Alvarado, Suchismita, Rutkoski, González-Pérez, Burgueño (b36) 2017; 13
Li, Jin, Zang, Wang, Sun, Li, Xu, Ma, Su, Guo (b26) 2022; 10
Wang, W., Huang, Y., Wang, Y., Wang, L., 2014. Generalized autoencoder: a neural network framework for dimensionality reduction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 490–497.
Muruganantham, Wibowo, Grandhi, Samrat, Islam (b37) 2022; 14
Cai, Liu, Cai (b3) 2019; 58
Li, Xu, Han, Zhang, Bian, Jin, Liu (b28) 2019; 15
Carrera, Savin, Slafer (b5) 2024; 29
Weiss, Jacob, Duveiller (b53) 2020; 236
Xie, Yang (b54) 2020; 178
Zhou, Song, Liu, Fu, An, Wang, Sun, Wen, Tang, Wang (b63) 2023; 15
Li, Pei, Li (b27) 2023; 138
Wang, Crawford, Tuinstra (b46) 2023; 14
Guo, Zhang, Xiong, Zhang, Wei, Zhang, Feng, Ma (b20) 2021; 22
Zhang, Qin, Ren, Sun, Li, Zhang, Ren (b62) 2018; 10
Cheng, Zhang, Peng, Zhong, Yu, Liu, Xiao, Li, Li, Chen (b9) 2022; 13
Yu, Fan, Lu, Wen, Shao, Liang, Yang, Guo, Zhao (b57) 2023; 211
Rodrigues, Blasch, Defourny, Ortiz-Monasterio, Schulthess, Zarco-Tejada, Taylor, Gérard (b40) 2018; 10
Blekanov, Molin, Zhang, Mitrofanov, Mitrofanova, Li (b2) 2023; 212
Van Cleemput, Vanierschot, Fernández-Castilla, Honnay, Somers (b45) 2018; 209
Yang, Hu, Wu, Ren, Qiao, Li, Fan (b55) 2021; 14
Sun, Gu, Chen, Qu, Zhang, Zhou, Pan (b43) 2023; 302
Chiozza, Parmley, Higgins, Singh, Miguez (b10) 2021; 271
Impollonia, Croci, Ferrarini, Brook, Martani, Blandinières, Marcone, Awty-Carroll, Ashman, Kam (b23) 2022; 14
Wang, Wang, Tian, Tansey, Liu, Quan (b50) 2023; 206
Fan, Zhou, Wang, de Leon, Kaeppler, Lima, Zhang (b12) 2022; 14
Hossen, Diwakar, Ragi (b22) 2021; 11
Qiu (b39) 2020
Chang, Zhang, Zhu, Ge, Li, Liu (b6) 2014; 109
Liu, Fan, Meng, Nie, Liu, Cheng, Song, Jin (b32) 2025; 229
Wang, Wang, Zhang, Hu, Huang, Xie (b51) 2019; 10
Chen, Li, He, Jiao, Xu, Hu, Jin, Zou (b7) 2021; 167
Fei, Xiao, Zhu, Xiao, Ma (b14) 2024; 216
Yu, Lenz-Wiedemann, Chen, Bareth (b58) 2014; 97
Zhang, Chen, Gu, Kuai, Wang, Chen, Zhao (b60) 2023; 211
Cao, Wang, Gao, Li, Li, Zhang (b4) 2021; 190
Wang, Wang, Liang, Qi, Li, Xu (b49) 2019; 160
Maes, Steppe (b34) 2019; 24
Weerakody, Wong, Wang, Ela (b52) 2021; 441
Sellami, Albrizio, Čolović, Hamze, Cantore, Todorovic, Piscitelli, Stellacci (b41) 2022; 12
Khaki, Pham, Wang (b25) 2021; 11
Fei, Chen, Li, Ma, Xiao (b13) 2023; 328
Wang, Suárez, Poblete, González-Dugo, Ryu, Zarco-Tejada (b48) 2022; 279
Feng, Zhang, Ma, Du, Williams, Drewry, Luck (b16) 2020; 12
Fu, Yu, Zhang, Xi, Gao, Lu, Zheng, Zhu, Cao, Liu (b17) 2022; 132
Hinton, Salakhutdinov (b21) 2006; 313
Yoosefzadeh-Najafabadi, Earl, Tulpan, Sulik, Eskandari (b56) 2021; 11
Cheng, Wang, Peng, Zhang, Zhao, Zhang, Hu, Lou, Yang, Zhang (b8) 2024; 62
Dey, Salem (b11) 2017
Shen, Mercatoris, Cao, Kwan, Guo, Yao, Cheng (b42) 2022; 12
Guo, Xiao, Hao, Zhang, Chen, de Beurs, He, Fu (b19) 2023; 124
Meshesha, Abeje (b35) 2018; 11
Zhang, Chen, Gu, Zhang, Kuai, Jiang, Chen, Zhu, Zhao (b61) 2024; 62
An, Xing, Han, Bai, Peng, Zhang, Wei, Wu (b1) 2021; 39
Jia, Liu, Liu, Zhang, Fan, Xing (b24) 2013; 150
Li, Xu, Zhang, Han, Bian, Li, Liu, Jin (b29) 2020; 162
Tian, Wang, Tansey, Zhang, Zhang, Li (b44) 2021; 310
Feng, Chen, Zhang, Zhang, He (b15) 2021; 182
Yue, Yang, Feng, Han, Zhou, Fu, Guo, Ma, Qiao, Yang (b59) 2023; 211
Liao, Yue, Liu, Luo, Luo, Lu, Ryan, Ye (b30) 2020; 13
Qiao, Mei, Yang, Yong, Zhang, Hua (b38) 2011
Gu, Sheng, Zhang, Lu, Zhang, Zheng, Hu, Zhou (b18) 2019; 167
Lin, Chen, Pan, Cao, Cai, Yu, Chi, Cernava, Zhang, Chen (b31) 2022; 202
Chiozza (10.1016/j.jag.2025.104925_b10) 2021; 271
Zhang (10.1016/j.jag.2025.104925_b60) 2023; 211
Rodrigues (10.1016/j.jag.2025.104925_b40) 2018; 10
Weiss (10.1016/j.jag.2025.104925_b53) 2020; 236
Guo (10.1016/j.jag.2025.104925_b19) 2023; 124
Yu (10.1016/j.jag.2025.104925_b57) 2023; 211
Cao (10.1016/j.jag.2025.104925_b4) 2021; 190
Fu (10.1016/j.jag.2025.104925_b17) 2022; 132
Hossen (10.1016/j.jag.2025.104925_b22) 2021; 11
An (10.1016/j.jag.2025.104925_b1) 2021; 39
Feng (10.1016/j.jag.2025.104925_b16) 2020; 12
Van Cleemput (10.1016/j.jag.2025.104925_b45) 2018; 209
Yu (10.1016/j.jag.2025.104925_b58) 2014; 97
Qiu (10.1016/j.jag.2025.104925_b39) 2020
Cheng (10.1016/j.jag.2025.104925_b9) 2022; 13
Feng (10.1016/j.jag.2025.104925_b15) 2021; 182
Maes (10.1016/j.jag.2025.104925_b34) 2019; 24
Qiao (10.1016/j.jag.2025.104925_b38) 2011
Blekanov (10.1016/j.jag.2025.104925_b2) 2023; 212
Meshesha (10.1016/j.jag.2025.104925_b35) 2018; 11
Lin (10.1016/j.jag.2025.104925_b31) 2022; 202
Fei (10.1016/j.jag.2025.104925_b13) 2023; 328
Fei (10.1016/j.jag.2025.104925_b14) 2024; 216
Montesinos-López (10.1016/j.jag.2025.104925_b36) 2017; 13
Wang (10.1016/j.jag.2025.104925_b49) 2019; 160
Liao (10.1016/j.jag.2025.104925_b30) 2020; 13
Fan (10.1016/j.jag.2025.104925_b12) 2022; 14
Zhang (10.1016/j.jag.2025.104925_b61) 2024; 62
Zhang (10.1016/j.jag.2025.104925_b62) 2018; 10
Liu (10.1016/j.jag.2025.104925_b32) 2025; 229
Yang (10.1016/j.jag.2025.104925_b55) 2021; 14
Chang (10.1016/j.jag.2025.104925_b6) 2014; 109
Wang (10.1016/j.jag.2025.104925_b48) 2022; 279
Chen (10.1016/j.jag.2025.104925_b7) 2021; 167
Zhou (10.1016/j.jag.2025.104925_b63) 2023; 15
Li (10.1016/j.jag.2025.104925_b27) 2023; 138
Jia (10.1016/j.jag.2025.104925_b24) 2013; 150
Yoosefzadeh-Najafabadi (10.1016/j.jag.2025.104925_b56) 2021; 11
Guo (10.1016/j.jag.2025.104925_b20) 2021; 22
Cai (10.1016/j.jag.2025.104925_b3) 2019; 58
10.1016/j.jag.2025.104925_b47
Sellami (10.1016/j.jag.2025.104925_b41) 2022; 12
Wang (10.1016/j.jag.2025.104925_b51) 2019; 10
Sun (10.1016/j.jag.2025.104925_b43) 2023; 302
Weerakody (10.1016/j.jag.2025.104925_b52) 2021; 441
Shen (10.1016/j.jag.2025.104925_b42) 2022; 12
Tian (10.1016/j.jag.2025.104925_b44) 2021; 310
Li (10.1016/j.jag.2025.104925_b28) 2019; 15
Muruganantham (10.1016/j.jag.2025.104925_b37) 2022; 14
Hinton (10.1016/j.jag.2025.104925_b21) 2006; 313
Gu (10.1016/j.jag.2025.104925_b18) 2019; 167
Impollonia (10.1016/j.jag.2025.104925_b23) 2022; 14
Li (10.1016/j.jag.2025.104925_b29) 2020; 162
Carrera (10.1016/j.jag.2025.104925_b5) 2024; 29
Xie (10.1016/j.jag.2025.104925_b54) 2020; 178
Wang (10.1016/j.jag.2025.104925_b46) 2023; 14
Yue (10.1016/j.jag.2025.104925_b59) 2023; 211
Khaki (10.1016/j.jag.2025.104925_b25) 2021; 11
Wang (10.1016/j.jag.2025.104925_b50) 2023; 206
Cheng (10.1016/j.jag.2025.104925_b8) 2024; 62
Luo (10.1016/j.jag.2025.104925_b33) 2022; 12
Dey (10.1016/j.jag.2025.104925_b11) 2017
Li (10.1016/j.jag.2025.104925_b26) 2022; 10
References_xml – volume: 15
  start-page: 1
  year: 2019
  end-page: 13
  ident: b28
  article-title: The estimation of crop emergence in potatoes by UAV RGB imagery
  publication-title: Plant Methods
– volume: 160
  start-page: 82
  year: 2019
  end-page: 90
  ident: b49
  article-title: Monitoring maize growth conditions by training a BP neural network with remotely sensed vegetation temperature condition index and leaf area index
  publication-title: Comput. Electron. Agric.
– volume: 216
  year: 2024
  ident: b14
  article-title: Dual sampling linear regression ensemble to predict wheat yield across growing seasons with hyperspectral sensing
  publication-title: Comput. Electron. Agric.
– volume: 13
  start-page: 1172
  year: 2020
  end-page: 1185
  ident: b30
  article-title: Launching an unmanned aerial vehicle remote sensing data carrier: concept, key components and prospects
  publication-title: Int. J. Digit. Earth
– volume: 236
  year: 2020
  ident: b53
  article-title: Remote sensing for agricultural applications: a meta-review
  publication-title: Remote Sens. Environ.
– volume: 271
  year: 2021
  ident: b10
  article-title: Comparative prediction accuracy of hyperspectral bands for different soybean crop variables: from leaf area to seed composition
  publication-title: Field Crop. Res.
– volume: 22
  start-page: 1634
  year: 2021
  end-page: 1658
  ident: b20
  article-title: Hyperspectral assessment of leaf nitrogen accumulation for winter wheat using different regression modeling
  publication-title: Precis. Agric.
– volume: 11
  start-page: 83
  year: 2018
  end-page: 93
  ident: b35
  article-title: Developing crop yield forecasting models for four major ethiopian agricultural commodities
  publication-title: Remote. Sens. Appl.: Soc. Environ.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b21
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 109
  start-page: 172
  year: 2014
  end-page: 178
  ident: b6
  article-title: Delineation of management zones using an active canopy sensor for a tobacco field
  publication-title: Comput. Electron. Agric.
– volume: 211
  year: 2023
  ident: b59
  article-title: Hyperspectral-to-image transform and CNN transfer learning enhancing soybean LCC estimation
  publication-title: Comput. Electron. Agric.
– volume: 182
  year: 2021
  ident: b15
  article-title: A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping
  publication-title: Comput. Electron. Agric.
– volume: 209
  start-page: 747
  year: 2018
  end-page: 763
  ident: b45
  article-title: The functional characterization of grass-and shrubland ecosystems using hyperspectral remote sensing: trends, accuracy and moderating variables
  publication-title: Remote Sens. Environ.
– volume: 97
  start-page: 58
  year: 2014
  end-page: 77
  ident: b58
  article-title: Estimating leaf chlorophyll of barley at different growth stages using spectral indices to reduce soil background and canopy structure effects
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 167
  year: 2019
  ident: b18
  article-title: Early detection of tomato spotted wilt virus infection in tobacco using the hyperspectral imaging technique and machine learning algorithms
  publication-title: Comput. Electron. Agric.
– volume: 10
  start-page: 453
  year: 2019
  ident: b51
  article-title: Rice yield estimation using parcel-level relative spectral variables from UAV-based hyperspectral imagery
  publication-title: Front. Plant Sci.
– volume: 29
  start-page: 329
  year: 2024
  end-page: 342
  ident: b5
  article-title: Critical period for yield determination across grain crops
  publication-title: Trends Plant Sci.
– volume: 441
  start-page: 161
  year: 2021
  end-page: 178
  ident: b52
  article-title: A review of irregular time series data handling with gated recurrent neural networks
  publication-title: Neurocomputing
– volume: 212
  year: 2023
  ident: b2
  article-title: Monitoring of grain crops nitrogen status from uav multispectral images coupled with deep learning approaches
  publication-title: Comput. Electron. Agric.
– volume: 11
  start-page: 11132
  year: 2021
  ident: b25
  article-title: Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning
  publication-title: Sci. Rep.
– volume: 10
  start-page: 930
  year: 2018
  ident: b40
  article-title: Multi-temporal and spectral analysis of high-resolution hyperspectral airborne imagery for precision agriculture: assessment of wheat grain yield and grain protein content
  publication-title: Remote. Sens.
– volume: 12
  start-page: 489
  year: 2022
  ident: b41
  article-title: Selection of hyperspectral vegetation indices for monitoring yield and physiological response in sweet maize under different water and nitrogen availability
  publication-title: Agronomy
– volume: 178
  year: 2020
  ident: b54
  article-title: A review on plant high-throughput phenotyping traits using UAV-based sensors
  publication-title: Comput. Electron. Agric.
– volume: 190
  year: 2021
  ident: b4
  article-title: Hyperspectral inversion of nitrogen content in maize leaves based on different dimensionality reduction algorithms
  publication-title: Comput. Electron. Agric.
– volume: 62
  start-page: 1
  year: 2024
  end-page: 18
  ident: b8
  article-title: A GT-LSTM spatio-temporal approach for winter wheat yield prediction: from the field scale to county scale
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 62
  year: 2024
  ident: b61
  article-title: A novel feature construction method for tobacco chlorophyll estimation based on integral of UAV-borne hyperspectral reflectance curve
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 162
  start-page: 161
  year: 2020
  end-page: 172
  ident: b29
  article-title: Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 138
  year: 2023
  ident: b27
  article-title: A comprehensive survey on design and application of autoencoder in deep learning
  publication-title: Appl. Soft Comput.
– volume: 24
  start-page: 152
  year: 2019
  end-page: 164
  ident: b34
  article-title: Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture
  publication-title: Trends Plant Sci.
– volume: 124
  year: 2023
  ident: b19
  article-title: Comparison of different machine learning algorithms for predicting maize grain yield using UAV-based hyperspectral images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 310
  year: 2021
  ident: b44
  article-title: An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong Plain, PR China
  publication-title: Agricult. Forest. Meterol.
– reference: Wang, W., Huang, Y., Wang, Y., Wang, L., 2014. Generalized autoencoder: a neural network framework for dimensionality reduction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 490–497.
– volume: 279
  year: 2022
  ident: b48
  article-title: Evaluating the role of solar-induced fluorescence (SIF) and plant physiological traits for leaf nitrogen assessment in almond using airborne hyperspectral imagery
  publication-title: Remote Sens. Environ.
– volume: 13
  year: 2022
  ident: b9
  article-title: Wheat yield estimation using remote sensing data based on machine learning approaches
  publication-title: Front. Plant Sci.
– volume: 167
  year: 2021
  ident: b7
  article-title: Influences of different curing methods on chemical compositions in different types of tobaccos
  publication-title: Ind. Crop. Prod.
– start-page: 1597
  year: 2017
  end-page: 1600
  ident: b11
  article-title: Gate-variants of gated recurrent unit (GRU) neural networks
  publication-title: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems
– volume: 14
  start-page: 2927
  year: 2022
  ident: b23
  article-title: UAV remote sensing for high-throughput phenotyping and for yield prediction of miscanthus by machine learning techniques
  publication-title: Remote. Sens.
– volume: 10
  start-page: 1334
  year: 2022
  end-page: 1345
  ident: b26
  article-title: Deciphering the contributions of spectral and structural data to wheat yield estimation from proximal sensing
  publication-title: Crop. J.
– volume: 11
  start-page: 12693
  year: 2021
  ident: b22
  article-title: Total nitrogen estimation in agricultural soils via aerial multispectral imaging and LIBS
  publication-title: Sci. Rep.
– volume: 12
  start-page: 892
  year: 2022
  ident: b42
  article-title: Improving wheat yield prediction accuracy using LSTM-RF framework based on UAV thermal infrared and multispectral imagery
  publication-title: Agriculture
– volume: 302
  year: 2023
  ident: b43
  article-title: Hyperspectral estimation of maize (Zea mays L.) yield loss under lodging stress
  publication-title: Field Crop. Res.
– volume: 11
  year: 2021
  ident: b56
  article-title: Application of machine learning algorithms in plant breeding: predicting yield from hyperspectral reflectance in soybean
  publication-title: Front. Plant Sci.
– volume: 14
  start-page: 3052
  year: 2022
  ident: b12
  article-title: Estimation of maize yield and flowering time using multi-temporal UAV-based hyperspectral data
  publication-title: Remote. Sens.
– volume: 150
  start-page: 108
  year: 2013
  end-page: 114
  ident: b24
  article-title: Comparison of different methods for estimating nitrogen concentration in flue-cured tobacco leaves based on hyperspectral reflectance
  publication-title: Field Crop. Res.
– volume: 211
  year: 2023
  ident: b57
  article-title: Deep learning models based on hyperspectral data and time-series phenotypes for predicting quality attributes in lettuces under water stress
  publication-title: Comput. Electron. Agric.
– volume: 14
  start-page: 1990
  year: 2022
  ident: b37
  article-title: A systematic literature review on crop yield prediction with deep learning and remote sensing
  publication-title: Remote. Sens.
– volume: 10
  start-page: 2015
  year: 2018
  ident: b62
  article-title: Optimal hyperspectral characteristics determination for winter wheat yield prediction
  publication-title: Remote. Sens.
– volume: 13
  start-page: 1
  year: 2017
  end-page: 23
  ident: b36
  article-title: Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data
  publication-title: Plant Methods
– start-page: 650
  year: 2011
  end-page: 657
  ident: b38
  article-title: Study on relationship between tobacco canopy spectra and LAI
  publication-title: Computer and Computing Technologies in Agriculture IV: 4th IFIP TC 12 Conference, CCTA 2010, Nanchang, China, October 22-25, 2010, Selected Papers, Part II 4
– volume: 202
  year: 2022
  ident: b31
  article-title: CAMFFNet: a novel convolutional neural network model for tobacco disease image recognition
  publication-title: Comput. Electron. Agric.
– volume: 328
  year: 2023
  ident: b13
  article-title: Bayesian model averaging to improve the yield prediction in wheat breeding trials
  publication-title: Agricult. Forest. Meterol.
– volume: 39
  start-page: 687
  year: 2021
  end-page: 701
  ident: b1
  article-title: The optimal soil water content models based on crop-LAI and hyperspectral data of winter wheat
  publication-title: Irrig. Sci.
– volume: 15
  start-page: 3483
  year: 2023
  ident: b63
  article-title: A prediction model of maize field yield based on the fusion of multitemporal and multimodal UAV data: a case study in northeast China
  publication-title: Remote. Sens.
– volume: 12
  start-page: 2028
  year: 2020
  ident: b16
  article-title: Alfalfa yield prediction using UAV-based hyperspectral imagery and ensemble learning
  publication-title: Remote. Sens.
– volume: 211
  year: 2023
  ident: b60
  article-title: UAV-borne hyperspectral estimation of nitrogen content in tobacco leaves based on ensemble learning methods
  publication-title: Comput. Electron. Agric.
– volume: 14
  year: 2023
  ident: b46
  article-title: A novel transfer learning framework for sorghum biomass prediction using UAV-based remote sensing data and genetic markers
  publication-title: Front. Plant Sci.
– volume: 206
  year: 2023
  ident: b50
  article-title: A deep learning framework combining CNN and GRU for improving wheat yield estimates using time series remotely sensed multi-variables
  publication-title: Comput. Electron. Agric.
– volume: 14
  start-page: 6253
  year: 2021
  end-page: 6269
  ident: b55
  article-title: Integration of crop growth model and random forest for winter wheat yield estimation from UAV hyperspectral imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens.
– volume: 58
  start-page: 1969
  year: 2019
  end-page: 1984
  ident: b3
  article-title: BS-Nets: an end-to-end framework for band selection of hyperspectral image
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 229
  year: 2025
  ident: b32
  article-title: Synergistic use of stay-green traits and UAV multispectral information in improving maize yield estimation with the random forest regression algorithm
  publication-title: Comput. Electron. Agric.
– volume: 12
  start-page: 1447
  year: 2022
  ident: b33
  article-title: Remotely sensed prediction of rice yield at different growth durations using UAV multispectral imagery
  publication-title: Agriculture
– year: 2020
  ident: b39
  article-title: Neural Networks and Deep Learning
– volume: 132
  year: 2022
  ident: b17
  article-title: Combining UAV multispectral imagery and ecological factors to estimate leaf nitrogen and grain protein content of wheat
  publication-title: Eur. J. Agron.
– volume: 62
  start-page: 1
  year: 2024
  ident: 10.1016/j.jag.2025.104925_b8
  article-title: A GT-LSTM spatio-temporal approach for winter wheat yield prediction: from the field scale to county scale
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 12
  start-page: 1447
  issue: 9
  year: 2022
  ident: 10.1016/j.jag.2025.104925_b33
  article-title: Remotely sensed prediction of rice yield at different growth durations using UAV multispectral imagery
  publication-title: Agriculture
  doi: 10.3390/agriculture12091447
– volume: 216
  year: 2024
  ident: 10.1016/j.jag.2025.104925_b14
  article-title: Dual sampling linear regression ensemble to predict wheat yield across growing seasons with hyperspectral sensing
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108514
– volume: 206
  year: 2023
  ident: 10.1016/j.jag.2025.104925_b50
  article-title: A deep learning framework combining CNN and GRU for improving wheat yield estimates using time series remotely sensed multi-variables
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107705
– volume: 109
  start-page: 172
  year: 2014
  ident: 10.1016/j.jag.2025.104925_b6
  article-title: Delineation of management zones using an active canopy sensor for a tobacco field
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.09.019
– volume: 271
  year: 2021
  ident: 10.1016/j.jag.2025.104925_b10
  article-title: Comparative prediction accuracy of hyperspectral bands for different soybean crop variables: from leaf area to seed composition
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2021.108260
– volume: 97
  start-page: 58
  year: 2014
  ident: 10.1016/j.jag.2025.104925_b58
  article-title: Estimating leaf chlorophyll of barley at different growth stages using spectral indices to reduce soil background and canopy structure effects
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.08.005
– volume: 12
  start-page: 2028
  issue: 12
  year: 2020
  ident: 10.1016/j.jag.2025.104925_b16
  article-title: Alfalfa yield prediction using UAV-based hyperspectral imagery and ensemble learning
  publication-title: Remote. Sens.
  doi: 10.3390/rs12122028
– volume: 229
  year: 2025
  ident: 10.1016/j.jag.2025.104925_b32
  article-title: Synergistic use of stay-green traits and UAV multispectral information in improving maize yield estimation with the random forest regression algorithm
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.109724
– volume: 13
  year: 2022
  ident: 10.1016/j.jag.2025.104925_b9
  article-title: Wheat yield estimation using remote sensing data based on machine learning approaches
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.1090970
– volume: 62
  year: 2024
  ident: 10.1016/j.jag.2025.104925_b61
  article-title: A novel feature construction method for tobacco chlorophyll estimation based on integral of UAV-borne hyperspectral reflectance curve
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 328
  year: 2023
  ident: 10.1016/j.jag.2025.104925_b13
  article-title: Bayesian model averaging to improve the yield prediction in wheat breeding trials
  publication-title: Agricult. Forest. Meterol.
  doi: 10.1016/j.agrformet.2022.109237
– volume: 13
  start-page: 1172
  issue: 10
  year: 2020
  ident: 10.1016/j.jag.2025.104925_b30
  article-title: Launching an unmanned aerial vehicle remote sensing data carrier: concept, key components and prospects
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2019.1698664
– volume: 12
  start-page: 892
  issue: 6
  year: 2022
  ident: 10.1016/j.jag.2025.104925_b42
  article-title: Improving wheat yield prediction accuracy using LSTM-RF framework based on UAV thermal infrared and multispectral imagery
  publication-title: Agriculture
  doi: 10.3390/agriculture12060892
– volume: 29
  start-page: 329
  issue: 3
  year: 2024
  ident: 10.1016/j.jag.2025.104925_b5
  article-title: Critical period for yield determination across grain crops
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2023.08.012
– volume: 58
  start-page: 1969
  issue: 3
  year: 2019
  ident: 10.1016/j.jag.2025.104925_b3
  article-title: BS-Nets: an end-to-end framework for band selection of hyperspectral image
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2951433
– volume: 138
  year: 2023
  ident: 10.1016/j.jag.2025.104925_b27
  article-title: A comprehensive survey on design and application of autoencoder in deep learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110176
– volume: 212
  year: 2023
  ident: 10.1016/j.jag.2025.104925_b2
  article-title: Monitoring of grain crops nitrogen status from uav multispectral images coupled with deep learning approaches
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108047
– volume: 441
  start-page: 161
  year: 2021
  ident: 10.1016/j.jag.2025.104925_b52
  article-title: A review of irregular time series data handling with gated recurrent neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.02.046
– volume: 14
  start-page: 3052
  issue: 13
  year: 2022
  ident: 10.1016/j.jag.2025.104925_b12
  article-title: Estimation of maize yield and flowering time using multi-temporal UAV-based hyperspectral data
  publication-title: Remote. Sens.
  doi: 10.3390/rs14133052
– volume: 14
  start-page: 2927
  issue: 12
  year: 2022
  ident: 10.1016/j.jag.2025.104925_b23
  article-title: UAV remote sensing for high-throughput phenotyping and for yield prediction of miscanthus by machine learning techniques
  publication-title: Remote. Sens.
  doi: 10.3390/rs14122927
– volume: 209
  start-page: 747
  year: 2018
  ident: 10.1016/j.jag.2025.104925_b45
  article-title: The functional characterization of grass-and shrubland ecosystems using hyperspectral remote sensing: trends, accuracy and moderating variables
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.030
– volume: 236
  year: 2020
  ident: 10.1016/j.jag.2025.104925_b53
  article-title: Remote sensing for agricultural applications: a meta-review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111402
– volume: 14
  start-page: 1990
  issue: 9
  year: 2022
  ident: 10.1016/j.jag.2025.104925_b37
  article-title: A systematic literature review on crop yield prediction with deep learning and remote sensing
  publication-title: Remote. Sens.
  doi: 10.3390/rs14091990
– volume: 24
  start-page: 152
  issue: 2
  year: 2019
  ident: 10.1016/j.jag.2025.104925_b34
  article-title: Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2018.11.007
– volume: 10
  start-page: 930
  issue: 6
  year: 2018
  ident: 10.1016/j.jag.2025.104925_b40
  article-title: Multi-temporal and spectral analysis of high-resolution hyperspectral airborne imagery for precision agriculture: assessment of wheat grain yield and grain protein content
  publication-title: Remote. Sens.
  doi: 10.3390/rs10060930
– volume: 15
  start-page: 1
  year: 2019
  ident: 10.1016/j.jag.2025.104925_b28
  article-title: The estimation of crop emergence in potatoes by UAV RGB imagery
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0399-7
– volume: 11
  start-page: 83
  year: 2018
  ident: 10.1016/j.jag.2025.104925_b35
  article-title: Developing crop yield forecasting models for four major ethiopian agricultural commodities
  publication-title: Remote. Sens. Appl.: Soc. Environ.
– ident: 10.1016/j.jag.2025.104925_b47
  doi: 10.1109/CVPRW.2014.79
– volume: 310
  year: 2021
  ident: 10.1016/j.jag.2025.104925_b44
  article-title: An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong Plain, PR China
  publication-title: Agricult. Forest. Meterol.
  doi: 10.1016/j.agrformet.2021.108629
– volume: 10
  start-page: 2015
  issue: 12
  year: 2018
  ident: 10.1016/j.jag.2025.104925_b62
  article-title: Optimal hyperspectral characteristics determination for winter wheat yield prediction
  publication-title: Remote. Sens.
  doi: 10.3390/rs10122015
– volume: 160
  start-page: 82
  year: 2019
  ident: 10.1016/j.jag.2025.104925_b49
  article-title: Monitoring maize growth conditions by training a BP neural network with remotely sensed vegetation temperature condition index and leaf area index
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.03.017
– volume: 39
  start-page: 687
  year: 2021
  ident: 10.1016/j.jag.2025.104925_b1
  article-title: The optimal soil water content models based on crop-LAI and hyperspectral data of winter wheat
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-021-00745-z
– volume: 10
  start-page: 453
  year: 2019
  ident: 10.1016/j.jag.2025.104925_b51
  article-title: Rice yield estimation using parcel-level relative spectral variables from UAV-based hyperspectral imagery
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00453
– volume: 15
  start-page: 3483
  issue: 14
  year: 2023
  ident: 10.1016/j.jag.2025.104925_b63
  article-title: A prediction model of maize field yield based on the fusion of multitemporal and multimodal UAV data: a case study in northeast China
  publication-title: Remote. Sens.
  doi: 10.3390/rs15143483
– volume: 302
  year: 2023
  ident: 10.1016/j.jag.2025.104925_b43
  article-title: Hyperspectral estimation of maize (Zea mays L.) yield loss under lodging stress
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2023.109042
– volume: 14
  start-page: 6253
  year: 2021
  ident: 10.1016/j.jag.2025.104925_b55
  article-title: Integration of crop growth model and random forest for winter wheat yield estimation from UAV hyperspectral imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens.
  doi: 10.1109/JSTARS.2021.3089203
– volume: 167
  year: 2021
  ident: 10.1016/j.jag.2025.104925_b7
  article-title: Influences of different curing methods on chemical compositions in different types of tobaccos
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2021.113534
– volume: 124
  year: 2023
  ident: 10.1016/j.jag.2025.104925_b19
  article-title: Comparison of different machine learning algorithms for predicting maize grain yield using UAV-based hyperspectral images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 11
  year: 2021
  ident: 10.1016/j.jag.2025.104925_b56
  article-title: Application of machine learning algorithms in plant breeding: predicting yield from hyperspectral reflectance in soybean
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.624273
– volume: 14
  year: 2023
  ident: 10.1016/j.jag.2025.104925_b46
  article-title: A novel transfer learning framework for sorghum biomass prediction using UAV-based remote sensing data and genetic markers
  publication-title: Front. Plant Sci.
– start-page: 1597
  year: 2017
  ident: 10.1016/j.jag.2025.104925_b11
  article-title: Gate-variants of gated recurrent unit (GRU) neural networks
– volume: 182
  year: 2021
  ident: 10.1016/j.jag.2025.104925_b15
  article-title: A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106033
– volume: 132
  year: 2022
  ident: 10.1016/j.jag.2025.104925_b17
  article-title: Combining UAV multispectral imagery and ecological factors to estimate leaf nitrogen and grain protein content of wheat
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2021.126405
– volume: 279
  year: 2022
  ident: 10.1016/j.jag.2025.104925_b48
  article-title: Evaluating the role of solar-induced fluorescence (SIF) and plant physiological traits for leaf nitrogen assessment in almond using airborne hyperspectral imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113141
– volume: 178
  year: 2020
  ident: 10.1016/j.jag.2025.104925_b54
  article-title: A review on plant high-throughput phenotyping traits using UAV-based sensors
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105731
– volume: 162
  start-page: 161
  year: 2020
  ident: 10.1016/j.jag.2025.104925_b29
  article-title: Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.02.013
– volume: 190
  year: 2021
  ident: 10.1016/j.jag.2025.104925_b4
  article-title: Hyperspectral inversion of nitrogen content in maize leaves based on different dimensionality reduction algorithms
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106461
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.jag.2025.104925_b21
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– start-page: 650
  year: 2011
  ident: 10.1016/j.jag.2025.104925_b38
  article-title: Study on relationship between tobacco canopy spectra and LAI
– volume: 211
  year: 2023
  ident: 10.1016/j.jag.2025.104925_b60
  article-title: UAV-borne hyperspectral estimation of nitrogen content in tobacco leaves based on ensemble learning methods
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108008
– volume: 10
  start-page: 1334
  issue: 5
  year: 2022
  ident: 10.1016/j.jag.2025.104925_b26
  article-title: Deciphering the contributions of spectral and structural data to wheat yield estimation from proximal sensing
  publication-title: Crop. J.
  doi: 10.1016/j.cj.2022.06.005
– volume: 202
  year: 2022
  ident: 10.1016/j.jag.2025.104925_b31
  article-title: CAMFFNet: a novel convolutional neural network model for tobacco disease image recognition
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107390
– volume: 211
  year: 2023
  ident: 10.1016/j.jag.2025.104925_b57
  article-title: Deep learning models based on hyperspectral data and time-series phenotypes for predicting quality attributes in lettuces under water stress
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108034
– year: 2020
  ident: 10.1016/j.jag.2025.104925_b39
– volume: 167
  year: 2019
  ident: 10.1016/j.jag.2025.104925_b18
  article-title: Early detection of tomato spotted wilt virus infection in tobacco using the hyperspectral imaging technique and machine learning algorithms
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105066
– volume: 11
  start-page: 12693
  issue: 1
  year: 2021
  ident: 10.1016/j.jag.2025.104925_b22
  article-title: Total nitrogen estimation in agricultural soils via aerial multispectral imaging and LIBS
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-90624-6
– volume: 12
  start-page: 489
  issue: 2
  year: 2022
  ident: 10.1016/j.jag.2025.104925_b41
  article-title: Selection of hyperspectral vegetation indices for monitoring yield and physiological response in sweet maize under different water and nitrogen availability
  publication-title: Agronomy
  doi: 10.3390/agronomy12020489
– volume: 22
  start-page: 1634
  year: 2021
  ident: 10.1016/j.jag.2025.104925_b20
  article-title: Hyperspectral assessment of leaf nitrogen accumulation for winter wheat using different regression modeling
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-021-09804-z
– volume: 11
  start-page: 11132
  issue: 1
  year: 2021
  ident: 10.1016/j.jag.2025.104925_b25
  article-title: Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-89779-z
– volume: 211
  year: 2023
  ident: 10.1016/j.jag.2025.104925_b59
  article-title: Hyperspectral-to-image transform and CNN transfer learning enhancing soybean LCC estimation
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108011
– volume: 150
  start-page: 108
  year: 2013
  ident: 10.1016/j.jag.2025.104925_b24
  article-title: Comparison of different methods for estimating nitrogen concentration in flue-cured tobacco leaves based on hyperspectral reflectance
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2013.06.009
– volume: 13
  start-page: 1
  year: 2017
  ident: 10.1016/j.jag.2025.104925_b36
  article-title: Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data
  publication-title: Plant Methods
  doi: 10.1186/s13007-016-0154-2
SSID ssj0017768
Score 2.4167752
Snippet In China, tobacco production must strictly follow the yield plan set by the higher authorities. In this context, accurate and stable yield estimation is...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 104925
SubjectTerms AEC1D
HF+BCP+BPP
Multi-source data fusion
RNN
Yield estimation
Title Tobacco yield estimation via multi-source data fusion and recurrent neural networks
URI https://dx.doi.org/10.1016/j.jag.2025.104925
https://doaj.org/article/dfaa6940b69e4899801d74d86c0c7526
Volume 144
WOSCitedRecordID wos001610713300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1569-8432
  databaseCode: DOA
  dateStart: 20200101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0017768
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOhBdDqcX-TgSShmSZo0R5UNDzIEp-wW8tHKduhkX-B_b17Tai_ixVspISnvNbyv3_s9hK6t4tQr4pPMBveNe8YSI3ObsDQEY84Kyar5KW9PcjzOplP13Br1BZiwSA8cBXfrC2OE4sQKlXMIDsjAS-4z4YiTKa3ItoPX0wRTdf1AytgElwqVZJzRpp5ZIbvm5j0EhjSF-qaCGdkti1QR97cMU8vYjA7RQe0l4rv4dUdoJy-7aL_FHdhFveFPi1pYWt_R1TF6mYQr6twCfwI4DQOLRmxPxNuZwRWAMIkpewzwUFxsIGGGTenxEpLvQNeEgeYy7FpGkPjqBL2OhpOHx6QenZA4Jsg6ET5jpCjC7aLKAGOL807alOcs5zYjVlovjZHU8PDEBhZaUL20RCo3yPzAsR7qlIsyP0WYeMEKWhDqOefAdUN5qgpFmOJGpI730U0jPv0RGTJ0Ax2b6yBrDbLWUdZ9dA8C_l4I5NbVi6ByXatc_6XyPuKNenTtJ0T7H7aa_X722X-cfY72YMvYjXiBOuvlJr9Eu267nq2WV9VP-AXngN5g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tobacco+yield+estimation+via+multi-source+data+fusion+and+recurrent+neural+networks&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Zhang%2C+Mingzheng&rft.au=Zhang%2C+Baoyuan&rft.au=Zhao%2C+Chunjiang&rft.au=Chen%2C+Liping&rft.date=2025-11-01&rft.issn=1569-8432&rft.volume=144&rft.spage=104925&rft_id=info:doi/10.1016%2Fj.jag.2025.104925&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jag_2025_104925
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon