Tobacco yield estimation via multi-source data fusion and recurrent neural networks
In China, tobacco production must strictly follow the yield plan set by the higher authorities. In this context, accurate and stable yield estimation is meaningful for effective production management. In this paper, we adopted a multi-source data fusion strategy to develop the yield estimation model...
Saved in:
| Published in: | International journal of applied earth observation and geoinformation Vol. 144; p. 104925 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.11.2025
Elsevier |
| Subjects: | |
| ISSN: | 1569-8432 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In China, tobacco production must strictly follow the yield plan set by the higher authorities. In this context, accurate and stable yield estimation is meaningful for effective production management. In this paper, we adopted a multi-source data fusion strategy to develop the yield estimation models for tobacco. The data used include unmanned aerial vehicle (UAV)-borne hyperspectral features (HF), biophysical parameters (BPP) collected in the field, and biochemical parameters (BCP) measured in the laboratory. Since the crop state at different growth stages both affect the final yield, we employed two typical recurrent neural network (RNN) algorithms, long short-term memory (LSTM) and gated recurrent unit (GRU), for modeling. The random forest (RF) algorithm was selected as the baseline scheme. In addition, we designed a one-dimensional convolutional autoencoder (AEC1D) to unify the input dimensions of raw data from different years. It was found that yield estimation performance from multi-source data was more accurate than using any single feature. The GRU model with the HF+BCP+BPP combination achieved the highest estimation accuracy, with an Rv2 of 0.705. The overall performance of LSTM and GRU models was also better than that of RF. We also quantified the contribution of each feature to the model, with HF, BPP, and BCP accounting for approximately 45%, 32%, and 23%, respectively. This study demonstrated the benefits of multi-source data fusion and RNN algorithms in estimating tobacco yields, which can be used to assist in site-specific crop management.
•Construct tobacco yield estimation models using multi-source data integration strategy and RNN algorithms.•Design a one-dimensional autoencoder to unify the temporal dimensions of raw data from different years.•The GRU model achieved promising results, with an R2 of 0.802 on the training set and 0.705 on the test set |
|---|---|
| AbstractList | In China, tobacco production must strictly follow the yield plan set by the higher authorities. In this context, accurate and stable yield estimation is meaningful for effective production management. In this paper, we adopted a multi-source data fusion strategy to develop the yield estimation models for tobacco. The data used include unmanned aerial vehicle (UAV)-borne hyperspectral features (HF), biophysical parameters (BPP) collected in the field, and biochemical parameters (BCP) measured in the laboratory. Since the crop state at different growth stages both affect the final yield, we employed two typical recurrent neural network (RNN) algorithms, long short-term memory (LSTM) and gated recurrent unit (GRU), for modeling. The random forest (RF) algorithm was selected as the baseline scheme. In addition, we designed a one-dimensional convolutional autoencoder (AEC1D) to unify the input dimensions of raw data from different years. It was found that yield estimation performance from multi-source data was more accurate than using any single feature. The GRU model with the HF+BCP+BPP combination achieved the highest estimation accuracy, with an Rv2 of 0.705. The overall performance of LSTM and GRU models was also better than that of RF. We also quantified the contribution of each feature to the model, with HF, BPP, and BCP accounting for approximately 45%, 32%, and 23%, respectively. This study demonstrated the benefits of multi-source data fusion and RNN algorithms in estimating tobacco yields, which can be used to assist in site-specific crop management. In China, tobacco production must strictly follow the yield plan set by the higher authorities. In this context, accurate and stable yield estimation is meaningful for effective production management. In this paper, we adopted a multi-source data fusion strategy to develop the yield estimation models for tobacco. The data used include unmanned aerial vehicle (UAV)-borne hyperspectral features (HF), biophysical parameters (BPP) collected in the field, and biochemical parameters (BCP) measured in the laboratory. Since the crop state at different growth stages both affect the final yield, we employed two typical recurrent neural network (RNN) algorithms, long short-term memory (LSTM) and gated recurrent unit (GRU), for modeling. The random forest (RF) algorithm was selected as the baseline scheme. In addition, we designed a one-dimensional convolutional autoencoder (AEC1D) to unify the input dimensions of raw data from different years. It was found that yield estimation performance from multi-source data was more accurate than using any single feature. The GRU model with the HF+BCP+BPP combination achieved the highest estimation accuracy, with an Rv2 of 0.705. The overall performance of LSTM and GRU models was also better than that of RF. We also quantified the contribution of each feature to the model, with HF, BPP, and BCP accounting for approximately 45%, 32%, and 23%, respectively. This study demonstrated the benefits of multi-source data fusion and RNN algorithms in estimating tobacco yields, which can be used to assist in site-specific crop management. •Construct tobacco yield estimation models using multi-source data integration strategy and RNN algorithms.•Design a one-dimensional autoencoder to unify the temporal dimensions of raw data from different years.•The GRU model achieved promising results, with an R2 of 0.802 on the training set and 0.705 on the test set |
| ArticleNumber | 104925 |
| Author | Wang, Cong Zhao, Chunjiang Chen, Dong Jiang, Shuwen Zhu, Qingzhen Wang, Zhiyong Zhang, Mingzheng Zhang, Baoyuan Kuai, Yan Chen, Liping Gu, Xiaohe Chen, Tian’en |
| Author_xml | – sequence: 1 givenname: Mingzheng orcidid: 0000-0002-0440-0939 surname: Zhang fullname: Zhang, Mingzheng organization: Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100000, China – sequence: 2 givenname: Baoyuan surname: Zhang fullname: Zhang, Baoyuan organization: College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 211512, China – sequence: 3 givenname: Chunjiang orcidid: 0000-0002-1448-5091 surname: Zhao fullname: Zhao, Chunjiang organization: Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100000, China – sequence: 4 givenname: Liping surname: Chen fullname: Chen, Liping organization: School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China – sequence: 5 givenname: Yan surname: Kuai fullname: Kuai, Yan organization: Tobacco Company of Dali Prefecture, Yunnan Tobacco Company, Dali, Yunnan Province, 671003, China – sequence: 6 givenname: Cong surname: Wang fullname: Wang, Cong organization: Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100000, China – sequence: 7 givenname: Shuwen surname: Jiang fullname: Jiang, Shuwen organization: Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100000, China – sequence: 8 givenname: Dong surname: Chen fullname: Chen, Dong organization: Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100000, China – sequence: 9 givenname: Qingzhen surname: Zhu fullname: Zhu, Qingzhen organization: School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China – sequence: 10 givenname: Zhiyong surname: Wang fullname: Wang, Zhiyong organization: Anhui Wannan Tobacco Company, Xuancheng, Anhui Province, 242000, China – sequence: 11 givenname: Xiaohe surname: Gu fullname: Gu, Xiaohe email: guxh@nercita.org.cn organization: Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100000, China – sequence: 12 givenname: Tian’en surname: Chen fullname: Chen, Tian’en email: chente@nercita.org.cn organization: Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100000, China |
| BookMark | eNp9kMtOwzAQRb0oEi3wAezyAyl2HnYsVqjiUakSC8ramtiTyiGNke0U9e9xKWLJal66V3fOgsxGNyIht4wuGWX8rl_2sFsWtKjTXMminpE5q7nMm6osLskihJ5SJgRv5uRt61rQ2mVHi4PJMES7h2jdmB0sZPtpiDYPbvIaMwMRsm4KpyOMJvOoJ-9xjNmIk4chlfjl_Ee4JhcdDAFvfusVeX963K5e8s3r83r1sMl1yWnMuWlK2nWSl4WEuhRcGy3ausISq7ahrWiNABAFVKkrWUtrSY1oqZCaNYbp8oqsz77GQa8-fUruj8qBVT8L53cKfLR6QGU6AC4r2nKJVSNlQ5kRlWm4plrUBU9e7OylvQvBY_fnx6g6UVW9SlTViao6U02a-7MG05MHi14FbXHUaGxiE1MK-4_6G7zbhBs |
| Cites_doi | 10.3390/agriculture12091447 10.1016/j.compag.2023.108514 10.1016/j.compag.2023.107705 10.1016/j.compag.2014.09.019 10.1016/j.fcr.2021.108260 10.1016/j.isprsjprs.2014.08.005 10.3390/rs12122028 10.1016/j.compag.2024.109724 10.3389/fpls.2022.1090970 10.1016/j.agrformet.2022.109237 10.1080/17538947.2019.1698664 10.3390/agriculture12060892 10.1016/j.tplants.2023.08.012 10.1109/TGRS.2019.2951433 10.1016/j.asoc.2023.110176 10.1016/j.compag.2023.108047 10.1016/j.neucom.2021.02.046 10.3390/rs14133052 10.3390/rs14122927 10.1016/j.rse.2018.02.030 10.1016/j.rse.2019.111402 10.3390/rs14091990 10.1016/j.tplants.2018.11.007 10.3390/rs10060930 10.1186/s13007-019-0399-7 10.1109/CVPRW.2014.79 10.1016/j.agrformet.2021.108629 10.3390/rs10122015 10.1016/j.compag.2019.03.017 10.1007/s00271-021-00745-z 10.3389/fpls.2019.00453 10.3390/rs15143483 10.1016/j.fcr.2023.109042 10.1109/JSTARS.2021.3089203 10.1016/j.indcrop.2021.113534 10.3389/fpls.2020.624273 10.1016/j.compag.2021.106033 10.1016/j.eja.2021.126405 10.1016/j.rse.2022.113141 10.1016/j.compag.2020.105731 10.1016/j.isprsjprs.2020.02.013 10.1016/j.compag.2021.106461 10.1126/science.1127647 10.1016/j.compag.2023.108008 10.1016/j.cj.2022.06.005 10.1016/j.compag.2022.107390 10.1016/j.compag.2023.108034 10.1016/j.compag.2019.105066 10.1038/s41598-021-90624-6 10.3390/agronomy12020489 10.1007/s11119-021-09804-z 10.1038/s41598-021-89779-z 10.1016/j.compag.2023.108011 10.1016/j.fcr.2013.06.009 10.1186/s13007-016-0154-2 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s) |
| Copyright_xml | – notice: 2025 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.jag.2025.104925 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| ExternalDocumentID | oai_doaj_org_article_dfaa6940b69e4899801d74d86c0c7526 10_1016_j_jag_2025_104925 S1569843225005722 |
| GroupedDBID | 29J 4.4 5GY 6I. AAFTH AAHBH AALRI AAQXK AATTM AAXKI AAXUO AAYWO ABFYP ABJNI ABLST ABQEM ABQYD ABWVN ACLOT ACLVX ACRPL ACSBN ADBBV ADMUD ADNMO ADVLN AEIPS AFJKZ AFXIZ AGQPQ AGYEJ AHEUO AIIUN AIKHN AITUG AKIFW ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EFJIC EFKBS EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY M41 O-L P-8 P-9 P2P R2- ROL SES SPC SSJ ~02 AAYXX CITATION |
| ID | FETCH-LOGICAL-c360t-6d830ff96329a5376cdc7b54e3e4b80b7bd7aa72a47bd31b0590d7b079c18d1c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001610713300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1569-8432 |
| IngestDate | Mon Nov 24 19:21:14 EST 2025 Thu Nov 27 00:58:31 EST 2025 Sat Nov 29 17:03:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | RNN Yield estimation HF+BCP+BPP AEC1D Multi-source data fusion |
| Language | English |
| License | This is an open access article under the CC BY-NC license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c360t-6d830ff96329a5376cdc7b54e3e4b80b7bd7aa72a47bd31b0590d7b079c18d1c3 |
| ORCID | 0000-0002-1448-5091 0000-0002-0440-0939 |
| OpenAccessLink | https://doaj.org/article/dfaa6940b69e4899801d74d86c0c7526 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dfaa6940b69e4899801d74d86c0c7526 crossref_primary_10_1016_j_jag_2025_104925 elsevier_sciencedirect_doi_10_1016_j_jag_2025_104925 |
| PublicationCentury | 2000 |
| PublicationDate | November 2025 2025-11-00 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of applied earth observation and geoinformation |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Luo, Jiang, Jiao, Yang, Li, Fang (b33) 2022; 12 Montesinos-López, Montesinos-López, Crossa, de Los Campos, Alvarado, Suchismita, Rutkoski, González-Pérez, Burgueño (b36) 2017; 13 Li, Jin, Zang, Wang, Sun, Li, Xu, Ma, Su, Guo (b26) 2022; 10 Wang, W., Huang, Y., Wang, Y., Wang, L., 2014. Generalized autoencoder: a neural network framework for dimensionality reduction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 490–497. Muruganantham, Wibowo, Grandhi, Samrat, Islam (b37) 2022; 14 Cai, Liu, Cai (b3) 2019; 58 Li, Xu, Han, Zhang, Bian, Jin, Liu (b28) 2019; 15 Carrera, Savin, Slafer (b5) 2024; 29 Weiss, Jacob, Duveiller (b53) 2020; 236 Xie, Yang (b54) 2020; 178 Zhou, Song, Liu, Fu, An, Wang, Sun, Wen, Tang, Wang (b63) 2023; 15 Li, Pei, Li (b27) 2023; 138 Wang, Crawford, Tuinstra (b46) 2023; 14 Guo, Zhang, Xiong, Zhang, Wei, Zhang, Feng, Ma (b20) 2021; 22 Zhang, Qin, Ren, Sun, Li, Zhang, Ren (b62) 2018; 10 Cheng, Zhang, Peng, Zhong, Yu, Liu, Xiao, Li, Li, Chen (b9) 2022; 13 Yu, Fan, Lu, Wen, Shao, Liang, Yang, Guo, Zhao (b57) 2023; 211 Rodrigues, Blasch, Defourny, Ortiz-Monasterio, Schulthess, Zarco-Tejada, Taylor, Gérard (b40) 2018; 10 Blekanov, Molin, Zhang, Mitrofanov, Mitrofanova, Li (b2) 2023; 212 Van Cleemput, Vanierschot, Fernández-Castilla, Honnay, Somers (b45) 2018; 209 Yang, Hu, Wu, Ren, Qiao, Li, Fan (b55) 2021; 14 Sun, Gu, Chen, Qu, Zhang, Zhou, Pan (b43) 2023; 302 Chiozza, Parmley, Higgins, Singh, Miguez (b10) 2021; 271 Impollonia, Croci, Ferrarini, Brook, Martani, Blandinières, Marcone, Awty-Carroll, Ashman, Kam (b23) 2022; 14 Wang, Wang, Tian, Tansey, Liu, Quan (b50) 2023; 206 Fan, Zhou, Wang, de Leon, Kaeppler, Lima, Zhang (b12) 2022; 14 Hossen, Diwakar, Ragi (b22) 2021; 11 Qiu (b39) 2020 Chang, Zhang, Zhu, Ge, Li, Liu (b6) 2014; 109 Liu, Fan, Meng, Nie, Liu, Cheng, Song, Jin (b32) 2025; 229 Wang, Wang, Zhang, Hu, Huang, Xie (b51) 2019; 10 Chen, Li, He, Jiao, Xu, Hu, Jin, Zou (b7) 2021; 167 Fei, Xiao, Zhu, Xiao, Ma (b14) 2024; 216 Yu, Lenz-Wiedemann, Chen, Bareth (b58) 2014; 97 Zhang, Chen, Gu, Kuai, Wang, Chen, Zhao (b60) 2023; 211 Cao, Wang, Gao, Li, Li, Zhang (b4) 2021; 190 Wang, Wang, Liang, Qi, Li, Xu (b49) 2019; 160 Maes, Steppe (b34) 2019; 24 Weerakody, Wong, Wang, Ela (b52) 2021; 441 Sellami, Albrizio, Čolović, Hamze, Cantore, Todorovic, Piscitelli, Stellacci (b41) 2022; 12 Khaki, Pham, Wang (b25) 2021; 11 Fei, Chen, Li, Ma, Xiao (b13) 2023; 328 Wang, Suárez, Poblete, González-Dugo, Ryu, Zarco-Tejada (b48) 2022; 279 Feng, Zhang, Ma, Du, Williams, Drewry, Luck (b16) 2020; 12 Fu, Yu, Zhang, Xi, Gao, Lu, Zheng, Zhu, Cao, Liu (b17) 2022; 132 Hinton, Salakhutdinov (b21) 2006; 313 Yoosefzadeh-Najafabadi, Earl, Tulpan, Sulik, Eskandari (b56) 2021; 11 Cheng, Wang, Peng, Zhang, Zhao, Zhang, Hu, Lou, Yang, Zhang (b8) 2024; 62 Dey, Salem (b11) 2017 Shen, Mercatoris, Cao, Kwan, Guo, Yao, Cheng (b42) 2022; 12 Guo, Xiao, Hao, Zhang, Chen, de Beurs, He, Fu (b19) 2023; 124 Meshesha, Abeje (b35) 2018; 11 Zhang, Chen, Gu, Zhang, Kuai, Jiang, Chen, Zhu, Zhao (b61) 2024; 62 An, Xing, Han, Bai, Peng, Zhang, Wei, Wu (b1) 2021; 39 Jia, Liu, Liu, Zhang, Fan, Xing (b24) 2013; 150 Li, Xu, Zhang, Han, Bian, Li, Liu, Jin (b29) 2020; 162 Tian, Wang, Tansey, Zhang, Zhang, Li (b44) 2021; 310 Feng, Chen, Zhang, Zhang, He (b15) 2021; 182 Yue, Yang, Feng, Han, Zhou, Fu, Guo, Ma, Qiao, Yang (b59) 2023; 211 Liao, Yue, Liu, Luo, Luo, Lu, Ryan, Ye (b30) 2020; 13 Qiao, Mei, Yang, Yong, Zhang, Hua (b38) 2011 Gu, Sheng, Zhang, Lu, Zhang, Zheng, Hu, Zhou (b18) 2019; 167 Lin, Chen, Pan, Cao, Cai, Yu, Chi, Cernava, Zhang, Chen (b31) 2022; 202 Chiozza (10.1016/j.jag.2025.104925_b10) 2021; 271 Zhang (10.1016/j.jag.2025.104925_b60) 2023; 211 Rodrigues (10.1016/j.jag.2025.104925_b40) 2018; 10 Weiss (10.1016/j.jag.2025.104925_b53) 2020; 236 Guo (10.1016/j.jag.2025.104925_b19) 2023; 124 Yu (10.1016/j.jag.2025.104925_b57) 2023; 211 Cao (10.1016/j.jag.2025.104925_b4) 2021; 190 Fu (10.1016/j.jag.2025.104925_b17) 2022; 132 Hossen (10.1016/j.jag.2025.104925_b22) 2021; 11 An (10.1016/j.jag.2025.104925_b1) 2021; 39 Feng (10.1016/j.jag.2025.104925_b16) 2020; 12 Van Cleemput (10.1016/j.jag.2025.104925_b45) 2018; 209 Yu (10.1016/j.jag.2025.104925_b58) 2014; 97 Qiu (10.1016/j.jag.2025.104925_b39) 2020 Cheng (10.1016/j.jag.2025.104925_b9) 2022; 13 Feng (10.1016/j.jag.2025.104925_b15) 2021; 182 Maes (10.1016/j.jag.2025.104925_b34) 2019; 24 Qiao (10.1016/j.jag.2025.104925_b38) 2011 Blekanov (10.1016/j.jag.2025.104925_b2) 2023; 212 Meshesha (10.1016/j.jag.2025.104925_b35) 2018; 11 Lin (10.1016/j.jag.2025.104925_b31) 2022; 202 Fei (10.1016/j.jag.2025.104925_b13) 2023; 328 Fei (10.1016/j.jag.2025.104925_b14) 2024; 216 Montesinos-López (10.1016/j.jag.2025.104925_b36) 2017; 13 Wang (10.1016/j.jag.2025.104925_b49) 2019; 160 Liao (10.1016/j.jag.2025.104925_b30) 2020; 13 Fan (10.1016/j.jag.2025.104925_b12) 2022; 14 Zhang (10.1016/j.jag.2025.104925_b61) 2024; 62 Zhang (10.1016/j.jag.2025.104925_b62) 2018; 10 Liu (10.1016/j.jag.2025.104925_b32) 2025; 229 Yang (10.1016/j.jag.2025.104925_b55) 2021; 14 Chang (10.1016/j.jag.2025.104925_b6) 2014; 109 Wang (10.1016/j.jag.2025.104925_b48) 2022; 279 Chen (10.1016/j.jag.2025.104925_b7) 2021; 167 Zhou (10.1016/j.jag.2025.104925_b63) 2023; 15 Li (10.1016/j.jag.2025.104925_b27) 2023; 138 Jia (10.1016/j.jag.2025.104925_b24) 2013; 150 Yoosefzadeh-Najafabadi (10.1016/j.jag.2025.104925_b56) 2021; 11 Guo (10.1016/j.jag.2025.104925_b20) 2021; 22 Cai (10.1016/j.jag.2025.104925_b3) 2019; 58 10.1016/j.jag.2025.104925_b47 Sellami (10.1016/j.jag.2025.104925_b41) 2022; 12 Wang (10.1016/j.jag.2025.104925_b51) 2019; 10 Sun (10.1016/j.jag.2025.104925_b43) 2023; 302 Weerakody (10.1016/j.jag.2025.104925_b52) 2021; 441 Shen (10.1016/j.jag.2025.104925_b42) 2022; 12 Tian (10.1016/j.jag.2025.104925_b44) 2021; 310 Li (10.1016/j.jag.2025.104925_b28) 2019; 15 Muruganantham (10.1016/j.jag.2025.104925_b37) 2022; 14 Hinton (10.1016/j.jag.2025.104925_b21) 2006; 313 Gu (10.1016/j.jag.2025.104925_b18) 2019; 167 Impollonia (10.1016/j.jag.2025.104925_b23) 2022; 14 Li (10.1016/j.jag.2025.104925_b29) 2020; 162 Carrera (10.1016/j.jag.2025.104925_b5) 2024; 29 Xie (10.1016/j.jag.2025.104925_b54) 2020; 178 Wang (10.1016/j.jag.2025.104925_b46) 2023; 14 Yue (10.1016/j.jag.2025.104925_b59) 2023; 211 Khaki (10.1016/j.jag.2025.104925_b25) 2021; 11 Wang (10.1016/j.jag.2025.104925_b50) 2023; 206 Cheng (10.1016/j.jag.2025.104925_b8) 2024; 62 Luo (10.1016/j.jag.2025.104925_b33) 2022; 12 Dey (10.1016/j.jag.2025.104925_b11) 2017 Li (10.1016/j.jag.2025.104925_b26) 2022; 10 |
| References_xml | – volume: 15 start-page: 1 year: 2019 end-page: 13 ident: b28 article-title: The estimation of crop emergence in potatoes by UAV RGB imagery publication-title: Plant Methods – volume: 160 start-page: 82 year: 2019 end-page: 90 ident: b49 article-title: Monitoring maize growth conditions by training a BP neural network with remotely sensed vegetation temperature condition index and leaf area index publication-title: Comput. Electron. Agric. – volume: 216 year: 2024 ident: b14 article-title: Dual sampling linear regression ensemble to predict wheat yield across growing seasons with hyperspectral sensing publication-title: Comput. Electron. Agric. – volume: 13 start-page: 1172 year: 2020 end-page: 1185 ident: b30 article-title: Launching an unmanned aerial vehicle remote sensing data carrier: concept, key components and prospects publication-title: Int. J. Digit. Earth – volume: 236 year: 2020 ident: b53 article-title: Remote sensing for agricultural applications: a meta-review publication-title: Remote Sens. Environ. – volume: 271 year: 2021 ident: b10 article-title: Comparative prediction accuracy of hyperspectral bands for different soybean crop variables: from leaf area to seed composition publication-title: Field Crop. Res. – volume: 22 start-page: 1634 year: 2021 end-page: 1658 ident: b20 article-title: Hyperspectral assessment of leaf nitrogen accumulation for winter wheat using different regression modeling publication-title: Precis. Agric. – volume: 11 start-page: 83 year: 2018 end-page: 93 ident: b35 article-title: Developing crop yield forecasting models for four major ethiopian agricultural commodities publication-title: Remote. Sens. Appl.: Soc. Environ. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b21 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 109 start-page: 172 year: 2014 end-page: 178 ident: b6 article-title: Delineation of management zones using an active canopy sensor for a tobacco field publication-title: Comput. Electron. Agric. – volume: 211 year: 2023 ident: b59 article-title: Hyperspectral-to-image transform and CNN transfer learning enhancing soybean LCC estimation publication-title: Comput. Electron. Agric. – volume: 182 year: 2021 ident: b15 article-title: A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping publication-title: Comput. Electron. Agric. – volume: 209 start-page: 747 year: 2018 end-page: 763 ident: b45 article-title: The functional characterization of grass-and shrubland ecosystems using hyperspectral remote sensing: trends, accuracy and moderating variables publication-title: Remote Sens. Environ. – volume: 97 start-page: 58 year: 2014 end-page: 77 ident: b58 article-title: Estimating leaf chlorophyll of barley at different growth stages using spectral indices to reduce soil background and canopy structure effects publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 167 year: 2019 ident: b18 article-title: Early detection of tomato spotted wilt virus infection in tobacco using the hyperspectral imaging technique and machine learning algorithms publication-title: Comput. Electron. Agric. – volume: 10 start-page: 453 year: 2019 ident: b51 article-title: Rice yield estimation using parcel-level relative spectral variables from UAV-based hyperspectral imagery publication-title: Front. Plant Sci. – volume: 29 start-page: 329 year: 2024 end-page: 342 ident: b5 article-title: Critical period for yield determination across grain crops publication-title: Trends Plant Sci. – volume: 441 start-page: 161 year: 2021 end-page: 178 ident: b52 article-title: A review of irregular time series data handling with gated recurrent neural networks publication-title: Neurocomputing – volume: 212 year: 2023 ident: b2 article-title: Monitoring of grain crops nitrogen status from uav multispectral images coupled with deep learning approaches publication-title: Comput. Electron. Agric. – volume: 11 start-page: 11132 year: 2021 ident: b25 article-title: Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning publication-title: Sci. Rep. – volume: 10 start-page: 930 year: 2018 ident: b40 article-title: Multi-temporal and spectral analysis of high-resolution hyperspectral airborne imagery for precision agriculture: assessment of wheat grain yield and grain protein content publication-title: Remote. Sens. – volume: 12 start-page: 489 year: 2022 ident: b41 article-title: Selection of hyperspectral vegetation indices for monitoring yield and physiological response in sweet maize under different water and nitrogen availability publication-title: Agronomy – volume: 178 year: 2020 ident: b54 article-title: A review on plant high-throughput phenotyping traits using UAV-based sensors publication-title: Comput. Electron. Agric. – volume: 190 year: 2021 ident: b4 article-title: Hyperspectral inversion of nitrogen content in maize leaves based on different dimensionality reduction algorithms publication-title: Comput. Electron. Agric. – volume: 62 start-page: 1 year: 2024 end-page: 18 ident: b8 article-title: A GT-LSTM spatio-temporal approach for winter wheat yield prediction: from the field scale to county scale publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 62 year: 2024 ident: b61 article-title: A novel feature construction method for tobacco chlorophyll estimation based on integral of UAV-borne hyperspectral reflectance curve publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 162 start-page: 161 year: 2020 end-page: 172 ident: b29 article-title: Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 138 year: 2023 ident: b27 article-title: A comprehensive survey on design and application of autoencoder in deep learning publication-title: Appl. Soft Comput. – volume: 24 start-page: 152 year: 2019 end-page: 164 ident: b34 article-title: Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture publication-title: Trends Plant Sci. – volume: 124 year: 2023 ident: b19 article-title: Comparison of different machine learning algorithms for predicting maize grain yield using UAV-based hyperspectral images publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 310 year: 2021 ident: b44 article-title: An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong Plain, PR China publication-title: Agricult. Forest. Meterol. – reference: Wang, W., Huang, Y., Wang, Y., Wang, L., 2014. Generalized autoencoder: a neural network framework for dimensionality reduction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 490–497. – volume: 279 year: 2022 ident: b48 article-title: Evaluating the role of solar-induced fluorescence (SIF) and plant physiological traits for leaf nitrogen assessment in almond using airborne hyperspectral imagery publication-title: Remote Sens. Environ. – volume: 13 year: 2022 ident: b9 article-title: Wheat yield estimation using remote sensing data based on machine learning approaches publication-title: Front. Plant Sci. – volume: 167 year: 2021 ident: b7 article-title: Influences of different curing methods on chemical compositions in different types of tobaccos publication-title: Ind. Crop. Prod. – start-page: 1597 year: 2017 end-page: 1600 ident: b11 article-title: Gate-variants of gated recurrent unit (GRU) neural networks publication-title: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems – volume: 14 start-page: 2927 year: 2022 ident: b23 article-title: UAV remote sensing for high-throughput phenotyping and for yield prediction of miscanthus by machine learning techniques publication-title: Remote. Sens. – volume: 10 start-page: 1334 year: 2022 end-page: 1345 ident: b26 article-title: Deciphering the contributions of spectral and structural data to wheat yield estimation from proximal sensing publication-title: Crop. J. – volume: 11 start-page: 12693 year: 2021 ident: b22 article-title: Total nitrogen estimation in agricultural soils via aerial multispectral imaging and LIBS publication-title: Sci. Rep. – volume: 12 start-page: 892 year: 2022 ident: b42 article-title: Improving wheat yield prediction accuracy using LSTM-RF framework based on UAV thermal infrared and multispectral imagery publication-title: Agriculture – volume: 302 year: 2023 ident: b43 article-title: Hyperspectral estimation of maize (Zea mays L.) yield loss under lodging stress publication-title: Field Crop. Res. – volume: 11 year: 2021 ident: b56 article-title: Application of machine learning algorithms in plant breeding: predicting yield from hyperspectral reflectance in soybean publication-title: Front. Plant Sci. – volume: 14 start-page: 3052 year: 2022 ident: b12 article-title: Estimation of maize yield and flowering time using multi-temporal UAV-based hyperspectral data publication-title: Remote. Sens. – volume: 150 start-page: 108 year: 2013 end-page: 114 ident: b24 article-title: Comparison of different methods for estimating nitrogen concentration in flue-cured tobacco leaves based on hyperspectral reflectance publication-title: Field Crop. Res. – volume: 211 year: 2023 ident: b57 article-title: Deep learning models based on hyperspectral data and time-series phenotypes for predicting quality attributes in lettuces under water stress publication-title: Comput. Electron. Agric. – volume: 14 start-page: 1990 year: 2022 ident: b37 article-title: A systematic literature review on crop yield prediction with deep learning and remote sensing publication-title: Remote. Sens. – volume: 10 start-page: 2015 year: 2018 ident: b62 article-title: Optimal hyperspectral characteristics determination for winter wheat yield prediction publication-title: Remote. Sens. – volume: 13 start-page: 1 year: 2017 end-page: 23 ident: b36 article-title: Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data publication-title: Plant Methods – start-page: 650 year: 2011 end-page: 657 ident: b38 article-title: Study on relationship between tobacco canopy spectra and LAI publication-title: Computer and Computing Technologies in Agriculture IV: 4th IFIP TC 12 Conference, CCTA 2010, Nanchang, China, October 22-25, 2010, Selected Papers, Part II 4 – volume: 202 year: 2022 ident: b31 article-title: CAMFFNet: a novel convolutional neural network model for tobacco disease image recognition publication-title: Comput. Electron. Agric. – volume: 328 year: 2023 ident: b13 article-title: Bayesian model averaging to improve the yield prediction in wheat breeding trials publication-title: Agricult. Forest. Meterol. – volume: 39 start-page: 687 year: 2021 end-page: 701 ident: b1 article-title: The optimal soil water content models based on crop-LAI and hyperspectral data of winter wheat publication-title: Irrig. Sci. – volume: 15 start-page: 3483 year: 2023 ident: b63 article-title: A prediction model of maize field yield based on the fusion of multitemporal and multimodal UAV data: a case study in northeast China publication-title: Remote. Sens. – volume: 12 start-page: 2028 year: 2020 ident: b16 article-title: Alfalfa yield prediction using UAV-based hyperspectral imagery and ensemble learning publication-title: Remote. Sens. – volume: 211 year: 2023 ident: b60 article-title: UAV-borne hyperspectral estimation of nitrogen content in tobacco leaves based on ensemble learning methods publication-title: Comput. Electron. Agric. – volume: 14 year: 2023 ident: b46 article-title: A novel transfer learning framework for sorghum biomass prediction using UAV-based remote sensing data and genetic markers publication-title: Front. Plant Sci. – volume: 206 year: 2023 ident: b50 article-title: A deep learning framework combining CNN and GRU for improving wheat yield estimates using time series remotely sensed multi-variables publication-title: Comput. Electron. Agric. – volume: 14 start-page: 6253 year: 2021 end-page: 6269 ident: b55 article-title: Integration of crop growth model and random forest for winter wheat yield estimation from UAV hyperspectral imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. – volume: 58 start-page: 1969 year: 2019 end-page: 1984 ident: b3 article-title: BS-Nets: an end-to-end framework for band selection of hyperspectral image publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 229 year: 2025 ident: b32 article-title: Synergistic use of stay-green traits and UAV multispectral information in improving maize yield estimation with the random forest regression algorithm publication-title: Comput. Electron. Agric. – volume: 12 start-page: 1447 year: 2022 ident: b33 article-title: Remotely sensed prediction of rice yield at different growth durations using UAV multispectral imagery publication-title: Agriculture – year: 2020 ident: b39 article-title: Neural Networks and Deep Learning – volume: 132 year: 2022 ident: b17 article-title: Combining UAV multispectral imagery and ecological factors to estimate leaf nitrogen and grain protein content of wheat publication-title: Eur. J. Agron. – volume: 62 start-page: 1 year: 2024 ident: 10.1016/j.jag.2025.104925_b8 article-title: A GT-LSTM spatio-temporal approach for winter wheat yield prediction: from the field scale to county scale publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 12 start-page: 1447 issue: 9 year: 2022 ident: 10.1016/j.jag.2025.104925_b33 article-title: Remotely sensed prediction of rice yield at different growth durations using UAV multispectral imagery publication-title: Agriculture doi: 10.3390/agriculture12091447 – volume: 216 year: 2024 ident: 10.1016/j.jag.2025.104925_b14 article-title: Dual sampling linear regression ensemble to predict wheat yield across growing seasons with hyperspectral sensing publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.108514 – volume: 206 year: 2023 ident: 10.1016/j.jag.2025.104925_b50 article-title: A deep learning framework combining CNN and GRU for improving wheat yield estimates using time series remotely sensed multi-variables publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.107705 – volume: 109 start-page: 172 year: 2014 ident: 10.1016/j.jag.2025.104925_b6 article-title: Delineation of management zones using an active canopy sensor for a tobacco field publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2014.09.019 – volume: 271 year: 2021 ident: 10.1016/j.jag.2025.104925_b10 article-title: Comparative prediction accuracy of hyperspectral bands for different soybean crop variables: from leaf area to seed composition publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2021.108260 – volume: 97 start-page: 58 year: 2014 ident: 10.1016/j.jag.2025.104925_b58 article-title: Estimating leaf chlorophyll of barley at different growth stages using spectral indices to reduce soil background and canopy structure effects publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.08.005 – volume: 12 start-page: 2028 issue: 12 year: 2020 ident: 10.1016/j.jag.2025.104925_b16 article-title: Alfalfa yield prediction using UAV-based hyperspectral imagery and ensemble learning publication-title: Remote. Sens. doi: 10.3390/rs12122028 – volume: 229 year: 2025 ident: 10.1016/j.jag.2025.104925_b32 article-title: Synergistic use of stay-green traits and UAV multispectral information in improving maize yield estimation with the random forest regression algorithm publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.109724 – volume: 13 year: 2022 ident: 10.1016/j.jag.2025.104925_b9 article-title: Wheat yield estimation using remote sensing data based on machine learning approaches publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.1090970 – volume: 62 year: 2024 ident: 10.1016/j.jag.2025.104925_b61 article-title: A novel feature construction method for tobacco chlorophyll estimation based on integral of UAV-borne hyperspectral reflectance curve publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 328 year: 2023 ident: 10.1016/j.jag.2025.104925_b13 article-title: Bayesian model averaging to improve the yield prediction in wheat breeding trials publication-title: Agricult. Forest. Meterol. doi: 10.1016/j.agrformet.2022.109237 – volume: 13 start-page: 1172 issue: 10 year: 2020 ident: 10.1016/j.jag.2025.104925_b30 article-title: Launching an unmanned aerial vehicle remote sensing data carrier: concept, key components and prospects publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2019.1698664 – volume: 12 start-page: 892 issue: 6 year: 2022 ident: 10.1016/j.jag.2025.104925_b42 article-title: Improving wheat yield prediction accuracy using LSTM-RF framework based on UAV thermal infrared and multispectral imagery publication-title: Agriculture doi: 10.3390/agriculture12060892 – volume: 29 start-page: 329 issue: 3 year: 2024 ident: 10.1016/j.jag.2025.104925_b5 article-title: Critical period for yield determination across grain crops publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2023.08.012 – volume: 58 start-page: 1969 issue: 3 year: 2019 ident: 10.1016/j.jag.2025.104925_b3 article-title: BS-Nets: an end-to-end framework for band selection of hyperspectral image publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2951433 – volume: 138 year: 2023 ident: 10.1016/j.jag.2025.104925_b27 article-title: A comprehensive survey on design and application of autoencoder in deep learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110176 – volume: 212 year: 2023 ident: 10.1016/j.jag.2025.104925_b2 article-title: Monitoring of grain crops nitrogen status from uav multispectral images coupled with deep learning approaches publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.108047 – volume: 441 start-page: 161 year: 2021 ident: 10.1016/j.jag.2025.104925_b52 article-title: A review of irregular time series data handling with gated recurrent neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.02.046 – volume: 14 start-page: 3052 issue: 13 year: 2022 ident: 10.1016/j.jag.2025.104925_b12 article-title: Estimation of maize yield and flowering time using multi-temporal UAV-based hyperspectral data publication-title: Remote. Sens. doi: 10.3390/rs14133052 – volume: 14 start-page: 2927 issue: 12 year: 2022 ident: 10.1016/j.jag.2025.104925_b23 article-title: UAV remote sensing for high-throughput phenotyping and for yield prediction of miscanthus by machine learning techniques publication-title: Remote. Sens. doi: 10.3390/rs14122927 – volume: 209 start-page: 747 year: 2018 ident: 10.1016/j.jag.2025.104925_b45 article-title: The functional characterization of grass-and shrubland ecosystems using hyperspectral remote sensing: trends, accuracy and moderating variables publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.030 – volume: 236 year: 2020 ident: 10.1016/j.jag.2025.104925_b53 article-title: Remote sensing for agricultural applications: a meta-review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111402 – volume: 14 start-page: 1990 issue: 9 year: 2022 ident: 10.1016/j.jag.2025.104925_b37 article-title: A systematic literature review on crop yield prediction with deep learning and remote sensing publication-title: Remote. Sens. doi: 10.3390/rs14091990 – volume: 24 start-page: 152 issue: 2 year: 2019 ident: 10.1016/j.jag.2025.104925_b34 article-title: Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2018.11.007 – volume: 10 start-page: 930 issue: 6 year: 2018 ident: 10.1016/j.jag.2025.104925_b40 article-title: Multi-temporal and spectral analysis of high-resolution hyperspectral airborne imagery for precision agriculture: assessment of wheat grain yield and grain protein content publication-title: Remote. Sens. doi: 10.3390/rs10060930 – volume: 15 start-page: 1 year: 2019 ident: 10.1016/j.jag.2025.104925_b28 article-title: The estimation of crop emergence in potatoes by UAV RGB imagery publication-title: Plant Methods doi: 10.1186/s13007-019-0399-7 – volume: 11 start-page: 83 year: 2018 ident: 10.1016/j.jag.2025.104925_b35 article-title: Developing crop yield forecasting models for four major ethiopian agricultural commodities publication-title: Remote. Sens. Appl.: Soc. Environ. – ident: 10.1016/j.jag.2025.104925_b47 doi: 10.1109/CVPRW.2014.79 – volume: 310 year: 2021 ident: 10.1016/j.jag.2025.104925_b44 article-title: An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong Plain, PR China publication-title: Agricult. Forest. Meterol. doi: 10.1016/j.agrformet.2021.108629 – volume: 10 start-page: 2015 issue: 12 year: 2018 ident: 10.1016/j.jag.2025.104925_b62 article-title: Optimal hyperspectral characteristics determination for winter wheat yield prediction publication-title: Remote. Sens. doi: 10.3390/rs10122015 – volume: 160 start-page: 82 year: 2019 ident: 10.1016/j.jag.2025.104925_b49 article-title: Monitoring maize growth conditions by training a BP neural network with remotely sensed vegetation temperature condition index and leaf area index publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.03.017 – volume: 39 start-page: 687 year: 2021 ident: 10.1016/j.jag.2025.104925_b1 article-title: The optimal soil water content models based on crop-LAI and hyperspectral data of winter wheat publication-title: Irrig. Sci. doi: 10.1007/s00271-021-00745-z – volume: 10 start-page: 453 year: 2019 ident: 10.1016/j.jag.2025.104925_b51 article-title: Rice yield estimation using parcel-level relative spectral variables from UAV-based hyperspectral imagery publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00453 – volume: 15 start-page: 3483 issue: 14 year: 2023 ident: 10.1016/j.jag.2025.104925_b63 article-title: A prediction model of maize field yield based on the fusion of multitemporal and multimodal UAV data: a case study in northeast China publication-title: Remote. Sens. doi: 10.3390/rs15143483 – volume: 302 year: 2023 ident: 10.1016/j.jag.2025.104925_b43 article-title: Hyperspectral estimation of maize (Zea mays L.) yield loss under lodging stress publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2023.109042 – volume: 14 start-page: 6253 year: 2021 ident: 10.1016/j.jag.2025.104925_b55 article-title: Integration of crop growth model and random forest for winter wheat yield estimation from UAV hyperspectral imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. doi: 10.1109/JSTARS.2021.3089203 – volume: 167 year: 2021 ident: 10.1016/j.jag.2025.104925_b7 article-title: Influences of different curing methods on chemical compositions in different types of tobaccos publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2021.113534 – volume: 124 year: 2023 ident: 10.1016/j.jag.2025.104925_b19 article-title: Comparison of different machine learning algorithms for predicting maize grain yield using UAV-based hyperspectral images publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 11 year: 2021 ident: 10.1016/j.jag.2025.104925_b56 article-title: Application of machine learning algorithms in plant breeding: predicting yield from hyperspectral reflectance in soybean publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.624273 – volume: 14 year: 2023 ident: 10.1016/j.jag.2025.104925_b46 article-title: A novel transfer learning framework for sorghum biomass prediction using UAV-based remote sensing data and genetic markers publication-title: Front. Plant Sci. – start-page: 1597 year: 2017 ident: 10.1016/j.jag.2025.104925_b11 article-title: Gate-variants of gated recurrent unit (GRU) neural networks – volume: 182 year: 2021 ident: 10.1016/j.jag.2025.104925_b15 article-title: A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106033 – volume: 132 year: 2022 ident: 10.1016/j.jag.2025.104925_b17 article-title: Combining UAV multispectral imagery and ecological factors to estimate leaf nitrogen and grain protein content of wheat publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2021.126405 – volume: 279 year: 2022 ident: 10.1016/j.jag.2025.104925_b48 article-title: Evaluating the role of solar-induced fluorescence (SIF) and plant physiological traits for leaf nitrogen assessment in almond using airborne hyperspectral imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113141 – volume: 178 year: 2020 ident: 10.1016/j.jag.2025.104925_b54 article-title: A review on plant high-throughput phenotyping traits using UAV-based sensors publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105731 – volume: 162 start-page: 161 year: 2020 ident: 10.1016/j.jag.2025.104925_b29 article-title: Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.02.013 – volume: 190 year: 2021 ident: 10.1016/j.jag.2025.104925_b4 article-title: Hyperspectral inversion of nitrogen content in maize leaves based on different dimensionality reduction algorithms publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106461 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.jag.2025.104925_b21 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – start-page: 650 year: 2011 ident: 10.1016/j.jag.2025.104925_b38 article-title: Study on relationship between tobacco canopy spectra and LAI – volume: 211 year: 2023 ident: 10.1016/j.jag.2025.104925_b60 article-title: UAV-borne hyperspectral estimation of nitrogen content in tobacco leaves based on ensemble learning methods publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.108008 – volume: 10 start-page: 1334 issue: 5 year: 2022 ident: 10.1016/j.jag.2025.104925_b26 article-title: Deciphering the contributions of spectral and structural data to wheat yield estimation from proximal sensing publication-title: Crop. J. doi: 10.1016/j.cj.2022.06.005 – volume: 202 year: 2022 ident: 10.1016/j.jag.2025.104925_b31 article-title: CAMFFNet: a novel convolutional neural network model for tobacco disease image recognition publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107390 – volume: 211 year: 2023 ident: 10.1016/j.jag.2025.104925_b57 article-title: Deep learning models based on hyperspectral data and time-series phenotypes for predicting quality attributes in lettuces under water stress publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.108034 – year: 2020 ident: 10.1016/j.jag.2025.104925_b39 – volume: 167 year: 2019 ident: 10.1016/j.jag.2025.104925_b18 article-title: Early detection of tomato spotted wilt virus infection in tobacco using the hyperspectral imaging technique and machine learning algorithms publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105066 – volume: 11 start-page: 12693 issue: 1 year: 2021 ident: 10.1016/j.jag.2025.104925_b22 article-title: Total nitrogen estimation in agricultural soils via aerial multispectral imaging and LIBS publication-title: Sci. Rep. doi: 10.1038/s41598-021-90624-6 – volume: 12 start-page: 489 issue: 2 year: 2022 ident: 10.1016/j.jag.2025.104925_b41 article-title: Selection of hyperspectral vegetation indices for monitoring yield and physiological response in sweet maize under different water and nitrogen availability publication-title: Agronomy doi: 10.3390/agronomy12020489 – volume: 22 start-page: 1634 year: 2021 ident: 10.1016/j.jag.2025.104925_b20 article-title: Hyperspectral assessment of leaf nitrogen accumulation for winter wheat using different regression modeling publication-title: Precis. Agric. doi: 10.1007/s11119-021-09804-z – volume: 11 start-page: 11132 issue: 1 year: 2021 ident: 10.1016/j.jag.2025.104925_b25 article-title: Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning publication-title: Sci. Rep. doi: 10.1038/s41598-021-89779-z – volume: 211 year: 2023 ident: 10.1016/j.jag.2025.104925_b59 article-title: Hyperspectral-to-image transform and CNN transfer learning enhancing soybean LCC estimation publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.108011 – volume: 150 start-page: 108 year: 2013 ident: 10.1016/j.jag.2025.104925_b24 article-title: Comparison of different methods for estimating nitrogen concentration in flue-cured tobacco leaves based on hyperspectral reflectance publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2013.06.009 – volume: 13 start-page: 1 year: 2017 ident: 10.1016/j.jag.2025.104925_b36 article-title: Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data publication-title: Plant Methods doi: 10.1186/s13007-016-0154-2 |
| SSID | ssj0017768 |
| Score | 2.4167752 |
| Snippet | In China, tobacco production must strictly follow the yield plan set by the higher authorities. In this context, accurate and stable yield estimation is... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Index Database Publisher |
| StartPage | 104925 |
| SubjectTerms | AEC1D HF+BCP+BPP Multi-source data fusion RNN Yield estimation |
| Title | Tobacco yield estimation via multi-source data fusion and recurrent neural networks |
| URI | https://dx.doi.org/10.1016/j.jag.2025.104925 https://doaj.org/article/dfaa6940b69e4899801d74d86c0c7526 |
| Volume | 144 |
| WOSCitedRecordID | wos001610713300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1569-8432 databaseCode: DOA dateStart: 20200101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0017768 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOhBdDqcX-TgSShmSZo0R5UNDzIEp-wW8tHKduhkX-B_b17Tai_ixVspISnvNbyv3_s9hK6t4tQr4pPMBveNe8YSI3ObsDQEY84Kyar5KW9PcjzOplP13Br1BZiwSA8cBXfrC2OE4sQKlXMIDsjAS-4z4YiTKa3ItoPX0wRTdf1AytgElwqVZJzRpp5ZIbvm5j0EhjSF-qaCGdkti1QR97cMU8vYjA7RQe0l4rv4dUdoJy-7aL_FHdhFveFPi1pYWt_R1TF6mYQr6twCfwI4DQOLRmxPxNuZwRWAMIkpewzwUFxsIGGGTenxEpLvQNeEgeYy7FpGkPjqBL2OhpOHx6QenZA4Jsg6ET5jpCjC7aLKAGOL807alOcs5zYjVlovjZHU8PDEBhZaUL20RCo3yPzAsR7qlIsyP0WYeMEKWhDqOefAdUN5qgpFmOJGpI730U0jPv0RGTJ0Ax2b6yBrDbLWUdZ9dA8C_l4I5NbVi6ByXatc_6XyPuKNenTtJ0T7H7aa_X722X-cfY72YMvYjXiBOuvlJr9Eu267nq2WV9VP-AXngN5g |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tobacco+yield+estimation+via+multi-source+data+fusion+and+recurrent+neural+networks&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Zhang%2C+Mingzheng&rft.au=Zhang%2C+Baoyuan&rft.au=Zhao%2C+Chunjiang&rft.au=Chen%2C+Liping&rft.date=2025-11-01&rft.issn=1569-8432&rft.volume=144&rft.spage=104925&rft_id=info:doi/10.1016%2Fj.jag.2025.104925&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jag_2025_104925 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |