Approximation algorithms for stochastic online matching with reusable resources
We consider a class of stochastic online matching problems, where a set of sequentially arriving jobs are to be matched to a group of workers. The objective is to maximize the total expected reward, defined as the sum of the rewards of each matched worker-job pair. Each worker can be matched to mult...
Uložené v:
| Vydané v: | Mathematical methods of operations research (Heidelberg, Germany) Ročník 98; číslo 1; s. 43 - 56 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1432-2994, 1432-5217 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We consider a class of stochastic online matching problems, where a set of sequentially arriving jobs are to be matched to a group of workers. The objective is to maximize the total expected reward, defined as the sum of the rewards of each matched worker-job pair. Each worker can be matched to multiple jobs subject to the constraint that previously matched jobs are completed. We provide constant approximation algorithms for different variations of this problem with equal-length jobs. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1432-2994 1432-5217 |
| DOI: | 10.1007/s00186-023-00822-3 |