Approximation algorithms for stochastic online matching with reusable resources

We consider a class of stochastic online matching problems, where a set of sequentially arriving jobs are to be matched to a group of workers. The objective is to maximize the total expected reward, defined as the sum of the rewards of each matched worker-job pair. Each worker can be matched to mult...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical methods of operations research (Heidelberg, Germany) Ročník 98; číslo 1; s. 43 - 56
Hlavní autoři: Shanks, Meghan, Yu, Ge, Jacobson, Sheldon H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2023
Springer Nature B.V
Témata:
ISSN:1432-2994, 1432-5217
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider a class of stochastic online matching problems, where a set of sequentially arriving jobs are to be matched to a group of workers. The objective is to maximize the total expected reward, defined as the sum of the rewards of each matched worker-job pair. Each worker can be matched to multiple jobs subject to the constraint that previously matched jobs are completed. We provide constant approximation algorithms for different variations of this problem with equal-length jobs.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1432-2994
1432-5217
DOI:10.1007/s00186-023-00822-3