MATSFT: User query-based multilingual abstractive text summarization for low resource Indian languages by fine-tuning mT5

User query-based summarization is a challenging research area of natural language processing. However, the existing approaches struggle to effectively manage the intricate long-distance semantic relationships between user queries and input documents. This paper introduces a user query-based multilin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Alexandria engineering journal Ročník 127; s. 129 - 142
Hlavní autori: Phani, Siginamsetty, Abdul, Ashu, Prasad, M. Krishna Siva, Reddy, V. Dinesh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.08.2025
Elsevier
Predmet:
ISSN:1110-0168
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract User query-based summarization is a challenging research area of natural language processing. However, the existing approaches struggle to effectively manage the intricate long-distance semantic relationships between user queries and input documents. This paper introduces a user query-based multilingual abstractive text summarization approach for the Indian low-resource languages by fine-tuning the multilingual pre-trained text-to-text (mT5) transformer model (MATSFT). The MATSFT employs a co-attention mechanism within a shared encoder–decoder architecture alongside the mT5 model to transfer knowledge across multiple low-resource languages. The Co-attention captures cross-lingual dependencies, which allows the model to understand the relationships and nuances between the different languages. Most multilingual summarization datasets focus on major global languages like English, French, and Spanish. To address the challenges in the LRLs, we created an Indian language dataset, comprising seven LRLs and the English language, by extracting data from the BBC news website. We evaluate the performance of the MATSFT using the ROUGE metric and a language-agnostic target summary evaluation metric. Experimental results show that MATSFT outperforms the monolingual transformer model, pre-trained MTM, mT5 model, NLI model, IndicBART, mBART25, and mBART50 on the IL dataset. The statistical paired t-test indicates that the MATSFT achieves a significant improvement with a p-value of ≤ 0.05 compared to other models. [Display omitted] •Query-focused summarization enabling concise, relevant results across complex, distant contexts.•Proposed a MATSFT unified framework for multilingual text summarization.•Proposed the Indian Language (IL) dataset with 7 Indian and English languages.•Proposed LaTSEM metric to evaluate MATSFT model performance.•We fine-tune mT5 for concise, coherent summaries based on user queries.
AbstractList User query-based summarization is a challenging research area of natural language processing. However, the existing approaches struggle to effectively manage the intricate long-distance semantic relationships between user queries and input documents. This paper introduces a user query-based multilingual abstractive text summarization approach for the Indian low-resource languages by fine-tuning the multilingual pre-trained text-to-text (mT5) transformer model (MATSFT). The MATSFT employs a co-attention mechanism within a shared encoder–decoder architecture alongside the mT5 model to transfer knowledge across multiple low-resource languages. The Co-attention captures cross-lingual dependencies, which allows the model to understand the relationships and nuances between the different languages. Most multilingual summarization datasets focus on major global languages like English, French, and Spanish. To address the challenges in the LRLs, we created an Indian language dataset, comprising seven LRLs and the English language, by extracting data from the BBC news website. We evaluate the performance of the MATSFT using the ROUGE metric and a language-agnostic target summary evaluation metric. Experimental results show that MATSFT outperforms the monolingual transformer model, pre-trained MTM, mT5 model, NLI model, IndicBART, mBART25, and mBART50 on the IL dataset. The statistical paired t-test indicates that the MATSFT achieves a significant improvement with a p-value of ≤ 0.05 compared to other models.
User query-based summarization is a challenging research area of natural language processing. However, the existing approaches struggle to effectively manage the intricate long-distance semantic relationships between user queries and input documents. This paper introduces a user query-based multilingual abstractive text summarization approach for the Indian low-resource languages by fine-tuning the multilingual pre-trained text-to-text (mT5) transformer model (MATSFT). The MATSFT employs a co-attention mechanism within a shared encoder–decoder architecture alongside the mT5 model to transfer knowledge across multiple low-resource languages. The Co-attention captures cross-lingual dependencies, which allows the model to understand the relationships and nuances between the different languages. Most multilingual summarization datasets focus on major global languages like English, French, and Spanish. To address the challenges in the LRLs, we created an Indian language dataset, comprising seven LRLs and the English language, by extracting data from the BBC news website. We evaluate the performance of the MATSFT using the ROUGE metric and a language-agnostic target summary evaluation metric. Experimental results show that MATSFT outperforms the monolingual transformer model, pre-trained MTM, mT5 model, NLI model, IndicBART, mBART25, and mBART50 on the IL dataset. The statistical paired t-test indicates that the MATSFT achieves a significant improvement with a p-value of ≤ 0.05 compared to other models. [Display omitted] •Query-focused summarization enabling concise, relevant results across complex, distant contexts.•Proposed a MATSFT unified framework for multilingual text summarization.•Proposed the Indian Language (IL) dataset with 7 Indian and English languages.•Proposed LaTSEM metric to evaluate MATSFT model performance.•We fine-tune mT5 for concise, coherent summaries based on user queries.
Author Abdul, Ashu
Reddy, V. Dinesh
Prasad, M. Krishna Siva
Phani, Siginamsetty
Author_xml – sequence: 1
  givenname: Siginamsetty
  orcidid: 0000-0002-9402-8332
  surname: Phani
  fullname: Phani, Siginamsetty
  email: siginamsettyphani@gmail.com
  organization: Department of Computer Science and Engineering, SRM University AP, Neerukonda, Managalagiri, 522502, Andhra Pradesh, India
– sequence: 2
  givenname: Ashu
  orcidid: 0000-0003-0221-8225
  surname: Abdul
  fullname: Abdul, Ashu
  email: ashu.a507@gmail.com
  organization: Department of Computer Science and Engineering, SRM University AP, Neerukonda, Managalagiri, 522502, Andhra Pradesh, India
– sequence: 3
  givenname: M. Krishna Siva
  orcidid: 0000-0002-9782-6401
  surname: Prasad
  fullname: Prasad, M. Krishna Siva
  email: krishnasivaprasad536@gmail.com
  organization: Department of Computer Science and Engineering, SRM University AP, Neerukonda, Managalagiri, 522502, Andhra Pradesh, India
– sequence: 4
  givenname: V. Dinesh
  orcidid: 0000-0003-3945-6171
  surname: Reddy
  fullname: Reddy, V. Dinesh
  email: dineshvemula@gmail.com
  organization: Department of Computer Science and Engineering, SRM University AP, Neerukonda, Managalagiri, 522502, Andhra Pradesh, India
BookMark eNp9kMFO3DAQhn2gEhR4AG5-gaS24zjZ9oRQKSuBOLCcrYk9WTnK2q3tANunx8tWHDuXkWbm__TP_5Wc-OCRkCvOas64-jbVgFMtmGhrJmvW8BNyxjlnVVn2p-QypYmVaruVXKkzsn-43jzdbr7T54SR_lkw7qsBElq6W-bsZue3C8wUhpQjmOxekGZ8yzQtux1E9xeyC56OIdI5vNKIKSzRIF1768DTGQ7yLSY67OnoPFZ58QVJd5v2gnwZYU54-a-fk-fbn5ubu-r-8df65vq-Mo1iuZLWGCOQGSGU6a2VCi2CANvJxti2aaC35UapoVess1ypru9Ew9Gg7Uw7NOdkfeTaAJP-HV3xvdcBnP4YhLjVELMzM-p2bAc0CoUUKHnXr_jApTLMclB2aLCw-JFlYkgp4vjJ40wf4teTLvHrQ_yaSV3iL5ofRw2WJ18cRp2MQ1_suYgmFxfuP-p3lfeThg
Cites_doi 10.1016/j.eswa.2023.120302
10.3390/app11219872
10.1016/j.procs.2022.01.182
10.1162/coli_a_00434
10.1016/j.jksuci.2021.04.004
10.1016/j.eswa.2020.113679
10.1109/ACCESS.2021.3129786
10.1109/ACCESS.2021.3052783
10.1016/j.csl.2021.101276
10.18653/v1/D16-1264
10.1016/j.eswa.2024.124567
10.1145/3611306
10.1016/j.knosys.2022.108636
10.1145/3419106
10.1016/j.asoc.2023.110994
10.1016/j.knosys.2024.111447
10.18653/v1/2023.acl-long.843
10.18653/v1/E17-2007
10.1162/coli_a_00425
10.1111/lang.12407
10.1016/j.eswa.2023.123045
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.aej.2025.04.031
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 142
ExternalDocumentID oai_doaj_org_article_5f5bec6e242e417891b146c0d1a6db3e
10_1016_j_aej_2025_04_031
S1110016825005162
GroupedDBID --K
0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
XH2
AAYXX
CITATION
ID FETCH-LOGICAL-c360t-4dccc2e0c226c8dd46edea2ad743cd533a8d4dc66b8607d166787231eced7c5b3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001490918100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1110-0168
IngestDate Fri Oct 03 12:51:23 EDT 2025
Sat Nov 29 07:40:23 EST 2025
Sat Sep 20 17:14:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Co-attention mechanism
Shared encoder–decoder
Fine-tuning mT5
Multilingual text summarization
User query-based summarization
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-4dccc2e0c226c8dd46edea2ad743cd533a8d4dc66b8607d166787231eced7c5b3
ORCID 0000-0002-9402-8332
0000-0002-9782-6401
0000-0003-0221-8225
0000-0003-3945-6171
OpenAccessLink https://doaj.org/article/5f5bec6e242e417891b146c0d1a6db3e
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_5f5bec6e242e417891b146c0d1a6db3e
crossref_primary_10_1016_j_aej_2025_04_031
elsevier_sciencedirect_doi_10_1016_j_aej_2025_04_031
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationTitle Alexandria engineering journal
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References P. Rajpurkar, J. Zhang, K. Lopyrev, P. Liang, Squad: 100, 000+ questions for machine comprehension of text, in: EMNLP, 2016, pp. 2383–2392.
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b33) 2017; vol. 30
Wahab, Hamid, Subramaniam, Latip, Othman (b18) 2024; 151
Vats, Sharma, Sharma (b12) 2023
Alomari, Idris, Sabri, Alsmadi (b24) 2022; 71
Benedetto, La Quatra, Cagliero, Vassio, Trevisan (b27) 2024; 255
Aharoni, Narayan, Maynez, Herzig, Clark, Lapata (b41) 2023
Mridha, Lima, Nur, Das, Hasan, Kabir (b3) 2021; 9
Laskar, Hoque, Huang (b25) 2022; 48
N. Foroutan, A. Romanou, S. Massonnet, R. Lebret, K. Aberer, Multilingual text summarization on financial documents, in: Proceedings of the 4th Financial Narrative Processing Workshop@ LREC2022, 2022, pp. 53–58.
Brugger, türmer, Niklaus (b29) 2023
Tian, Song, Ting, Huang (b34) 2022; 199
Reimers, Gurevych (b32) 2019
J. Li, J. Chen, H. Chen, D. Zhao, R. Yan, Multilingual Generation in Abstractive Summarization: A Comparative Study, in: Proc. 2024 Joint Int. Conf. Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024, 2024, pp. 11827–11837.
Ahuir, Hurtado, González, Segarra (b8) 2021; 11
Xue, Constant, Roberts, Kale, Al-Rfou, Siddhant, Barua, Raffel (b9) 2020
D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Published As a Conference Paper at the 3rd International Conference for Learning Representations, 2014.
Syed, Gaol, Matsuo (b6) 2021; 9
Şahin (b44) 2022; 48
El-Kassas, Salama, Rafea, Mohamed (b13) 2021; 165
Burchell, Birch, Heafield (b37) 2022
J. Wang, F. Meng, D. Zheng, Y. Liang, Z. Li, J. Qu, J. Zhou, Towards unifying multi-lingual and cross-lingual summarization, in: Proc. of the 61st Annual Meeting of the Association for Computational Linguistics, 2023, pp. 15127–15143.
Mutlu, Sezer (b15) 2023; 227
Shi, Keneshloo, Ramakrishnan, Reddy (b19) 2021; 2
French, in: Proceedings of the Thirteenth Language Resources and Evaluation Conf., 2022, pp. 6654–6661.
Srivastava, Singh, Rana, Kumar (b14) 2022; 246
Deng, Zhang, Xu, Shen, Lam (b4) 2023
Abualigah, Bashabsheh, Alabool, Shehab (b5) 2020
Vo, Vo, Le (b17) 2024; 245
El-Kassas, Salama, Rafea, Mohamed (b2) 2021; 165
Berthele (b11) 2021; 71
Liu, Sun, Yu, Wang, Peng, Hou, Guo, Wang, Liu (b26) 2024; 287
Alomari, Idris, Sabri, Alsmadi (b21) 2022; 71
Huang, Zhou, Zaïane, Mou, Li (b35) 2022; vol. 36
Savelieva, Au. Yeung, Ramani (b23) 2020
-
Hasan, Bhattacharjee, Islam, Samin, Li, Kang, Rahman, Shahriyar (b10) 2021
Scialom, Dray, Lamprier, Piwowarski, Staiano (b30) 2020
N. Schluter, The limits of automatic summarisation according to rouge, in: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, 2017, pp. 41–45.
Tomer, Kumar (b16) 2022; 34
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b40) 2014; 15
Kovačević, Kečo (b22) 2021
C.M.B. Dione, A. Lo, E.M. Nguer, S. Ba, Low-resource Neural Machine Translation: Benchmarking State-of-the-art Transformer for Wolof
Dabre, Shrotriya, Kunchukuttan, Puduppully, Khapra, Kumar (b42) 2022
H.Q. To, K. Van Nguyen, N.L.T. Nguyen, A.G.T. Nguyen, Monolingual vs multilingual BERTology for Vietnamese extractive multi-document summarization, in: Proceedings of the 35th Pacific Asia Conference on Language, Information and Computation, 2021, pp. 692–699.
Tan, Wan, Xiao (b20) 2017; vol. 1
Mridha (10.1016/j.aej.2025.04.031_b3) 2021; 9
Brugger (10.1016/j.aej.2025.04.031_b29) 2023
10.1016/j.aej.2025.04.031_b39
Tan (10.1016/j.aej.2025.04.031_b20) 2017; vol. 1
10.1016/j.aej.2025.04.031_b38
El-Kassas (10.1016/j.aej.2025.04.031_b2) 2021; 165
Abualigah (10.1016/j.aej.2025.04.031_b5) 2020
Benedetto (10.1016/j.aej.2025.04.031_b27) 2024; 255
El-Kassas (10.1016/j.aej.2025.04.031_b13) 2021; 165
Aharoni (10.1016/j.aej.2025.04.031_b41) 2023
Scialom (10.1016/j.aej.2025.04.031_b30) 2020
Berthele (10.1016/j.aej.2025.04.031_b11) 2021; 71
Reimers (10.1016/j.aej.2025.04.031_b32) 2019
Syed (10.1016/j.aej.2025.04.031_b6) 2021; 9
10.1016/j.aej.2025.04.031_b1
Kovačević (10.1016/j.aej.2025.04.031_b22) 2021
Deng (10.1016/j.aej.2025.04.031_b4) 2023
10.1016/j.aej.2025.04.031_b7
10.1016/j.aej.2025.04.031_b31
Xue (10.1016/j.aej.2025.04.031_b9) 2020
Liu (10.1016/j.aej.2025.04.031_b26) 2024; 287
Tomer (10.1016/j.aej.2025.04.031_b16) 2022; 34
10.1016/j.aej.2025.04.031_b36
10.1016/j.aej.2025.04.031_b28
Vats (10.1016/j.aej.2025.04.031_b12) 2023
Wahab (10.1016/j.aej.2025.04.031_b18) 2024; 151
Tian (10.1016/j.aej.2025.04.031_b34) 2022; 199
Srivastava (10.1016/j.aej.2025.04.031_b14) 2022; 246
Dabre (10.1016/j.aej.2025.04.031_b42) 2022
Huang (10.1016/j.aej.2025.04.031_b35) 2022; vol. 36
Srivastava (10.1016/j.aej.2025.04.031_b40) 2014; 15
Alomari (10.1016/j.aej.2025.04.031_b24) 2022; 71
Savelieva (10.1016/j.aej.2025.04.031_b23) 2020
Burchell (10.1016/j.aej.2025.04.031_b37) 2022
Shi (10.1016/j.aej.2025.04.031_b19) 2021; 2
Ahuir (10.1016/j.aej.2025.04.031_b8) 2021; 11
Laskar (10.1016/j.aej.2025.04.031_b25) 2022; 48
10.1016/j.aej.2025.04.031_b43
Vaswani (10.1016/j.aej.2025.04.031_b33) 2017; vol. 30
Mutlu (10.1016/j.aej.2025.04.031_b15) 2023; 227
Vo (10.1016/j.aej.2025.04.031_b17) 2024; 245
Hasan (10.1016/j.aej.2025.04.031_b10) 2021
Şahin (10.1016/j.aej.2025.04.031_b44) 2022; 48
Alomari (10.1016/j.aej.2025.04.031_b21) 2022; 71
References_xml – volume: 227
  year: 2023
  ident: b15
  article-title: Enhanced sentence representation for extractive text summarization: Investigating the syntactic and semantic features and their contribution to sentence scoring
  publication-title: Expert Syst. Appl.
– reference: N. Foroutan, A. Romanou, S. Massonnet, R. Lebret, K. Aberer, Multilingual text summarization on financial documents, in: Proceedings of the 4th Financial Narrative Processing Workshop@ LREC2022, 2022, pp. 53–58.
– volume: 199
  start-page: 1438
  year: 2022
  end-page: 1443
  ident: b34
  article-title: A french-to-english machine translation model using transformer network
  publication-title: Procedia Comput. Sci.
– volume: vol. 36
  start-page: 10776
  year: 2022
  end-page: 10784
  ident: b35
  article-title: Non-autoregressive translation with layer-wise prediction and deep supervision
  publication-title: Proceedings of the AAAI Conf. on Artificial Intelligence
– volume: 246
  year: 2022
  ident: b14
  article-title: A topic modeled unsupervised approach to single document extractive text summarization
  publication-title: Knowl.-Based Syst.
– volume: 151
  year: 2024
  ident: b18
  article-title: Decomposition–based multi-objective differential evolution for extractive multi-document automatic text summarization
  publication-title: Appl. Soft Comput.
– volume: 9
  start-page: 13248
  year: 2021
  end-page: 13265
  ident: b6
  article-title: A survey of the state-of-the-art models in neural abstractive text summarization
  publication-title: IEEE Access
– start-page: 4693
  year: 2021
  end-page: 4703
  ident: b10
  article-title: XL-sum: Large-scale multilingual abstractive summarization for 44 languages
  publication-title: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
– volume: 48
  start-page: 279
  year: 2022
  end-page: 320
  ident: b25
  article-title: Domain adaptation with pre-trained transformers for query-focused abstractive text summarization
  publication-title: Comput. Linguist.
– volume: 34
  start-page: 6057
  year: 2022
  end-page: 6065
  ident: b16
  article-title: Multi-document extractive text summarization based on firefly algorithm
  publication-title: J. King Saud Univ.- Comput. Inf. Sci.
– reference: French, in: Proceedings of the Thirteenth Language Resources and Evaluation Conf., 2022, pp. 6654–6661.
– volume: 165
  year: 2021
  ident: b2
  article-title: Automatic text summarization: A comprehensive survey
  publication-title: Expert Syst. Appl.
– volume: 11
  start-page: 9872
  year: 2021
  ident: b8
  article-title: Nasca and nases: Two monolingual pre-trained models for abstractive summarization in catalan and spanish
  publication-title: Appl. Sci.
– start-page: 11934
  year: 2020
  ident: b9
  article-title: mT5: A massively multilingual pre-trained text-to-text transformer
  publication-title: Comput. Lang.
– reference: P. Rajpurkar, J. Zhang, K. Lopyrev, P. Liang, Squad: 100, 000+ questions for machine comprehension of text, in: EMNLP, 2016, pp. 2383–2392.
– volume: 255
  year: 2024
  ident: b27
  article-title: TASP: Topic-based abstractive summarization of facebook text posts
  publication-title: Expert Syst. Appl.
– year: 2023
  ident: b12
  article-title: HKG: A novel approach for low resource indic languages to automatic knowledge graph construction
  publication-title: ACM Trans. Asian Low- Resour. Lang. Inf. Process.
– volume: 71
  year: 2022
  ident: b21
  article-title: Deep reinforcement and transfer learning for abstractive text summarization: A review
  publication-title: Comput. Speech Lang.
– volume: 9
  start-page: 156043
  year: 2021
  end-page: 1–56070
  ident: b3
  article-title: A survey of automatic text summarization: Progress, process and challenges
  publication-title: IEEE Access
– reference: J. Li, J. Chen, H. Chen, D. Zhao, R. Yan, Multilingual Generation in Abstractive Summarization: A Comparative Study, in: Proc. 2024 Joint Int. Conf. Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024, 2024, pp. 11827–11837.
– volume: 245
  year: 2024
  ident: b17
  article-title: Interpretable extractive text summarization with meta-learning and BI-LSTM: A study of meta learning and explainability techniques
  publication-title: Expert Syst. Appl.
– reference: -
– year: 2022
  ident: b37
  article-title: Exploring diversity in back translation for low-resource machine translation
  publication-title: Comput. Lang.
– volume: 71
  year: 2022
  ident: b24
  article-title: Deep reinforcement and transfer learning for abstractive text summarization: A review
  publication-title: Comput. Speech Lang.
– volume: 165
  year: 2021
  ident: b13
  article-title: Automatic text summarization: A comprehensive survey
  publication-title: Expert Syst. Appl.
– year: 2020
  ident: b23
  article-title: Abstractive summarization of spoken and written instructions with bert
  publication-title: Comput. Lang.
– volume: 71
  start-page: 80
  year: 2021
  end-page: 120
  ident: b11
  article-title: The extraordinary ordinary: Re-engineering multilingualism as a natural category
  publication-title: Lang. Learn.
– reference: N. Schluter, The limits of automatic summarisation according to rouge, in: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, 2017, pp. 41–45.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b40
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– reference: D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Published As a Conference Paper at the 3rd International Conference for Learning Representations, 2014.
– year: 2020
  ident: b30
  article-title: MLSUM: The multilingual summarization corpus
  publication-title: Proc. of the 2020 Conf. on Empirical Methods in Natural Language Processing
– year: 2019
  ident: b32
  article-title: Sentence-bert: Sentence embeddings using siamese bert-networks
  publication-title: Proc. of the 2019 Conf. on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
– start-page: 3562
  year: 2023
  end-page: 3591
  ident: b41
  article-title: mface: Multilingual Summarization with Factual Consistency Evaluation
– volume: 48
  start-page: 5
  year: 2022
  end-page: 42
  ident: b44
  article-title: To augment or not to augment? A comparative study on text augmentation techniques for low-resource NLP
  publication-title: Comput. Linguist.
– year: 2023
  ident: b29
  article-title: MultiLegalSBD: A multilingual legal sentence boundary detection dataset
  publication-title: Comput. Lang.
– reference: J. Wang, F. Meng, D. Zheng, Y. Liang, Z. Li, J. Qu, J. Zhou, Towards unifying multi-lingual and cross-lingual summarization, in: Proc. of the 61st Annual Meeting of the Association for Computational Linguistics, 2023, pp. 15127–15143.
– volume: 287
  year: 2024
  ident: b26
  article-title: Automatic text summarization method based on improved TextRank algorithm and K-means clustering
  publication-title: Knowl.-Based Syst.
– volume: 2
  start-page: 1
  year: 2021
  end-page: 37
  ident: b19
  article-title: Neural abstractive text summarization with sequence-to-sequence models.
  publication-title: ACM Trans. Data Sci.
– start-page: 1
  year: 2020
  end-page: 15
  ident: b5
  article-title: Text summarization: a brief review
  publication-title: Recent Advances in NLP: The Case of Arabic Language
– start-page: 281
  year: 2021
  end-page: 293
  ident: b22
  article-title: Bidirectional LSTM networks for abstractive text summarization
  publication-title: International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies
– reference: C.M.B. Dione, A. Lo, E.M. Nguer, S. Ba, Low-resource Neural Machine Translation: Benchmarking State-of-the-art Transformer for Wolof
– volume: vol. 30
  year: 2017
  ident: b33
  article-title: Attention is all you need
  publication-title: Advances in neural information processing systems
– start-page: 1849
  year: 2022
  end-page: 1863
  ident: b42
  article-title: IndicBART: A Pre-Trained Model for Indic Natural Language Generation
– volume: vol. 1
  start-page: 1171
  year: 2017
  end-page: 1181
  ident: b20
  article-title: Abstractive document summarization with a graph-based attentional neural model
  publication-title: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
– year: 2023
  ident: b4
  article-title: Nonfactoid question answering as query-focused summarization with graph-enhanced multihop inference
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– reference: H.Q. To, K. Van Nguyen, N.L.T. Nguyen, A.G.T. Nguyen, Monolingual vs multilingual BERTology for Vietnamese extractive multi-document summarization, in: Proceedings of the 35th Pacific Asia Conference on Language, Information and Computation, 2021, pp. 692–699.
– year: 2019
  ident: 10.1016/j.aej.2025.04.031_b32
  article-title: Sentence-bert: Sentence embeddings using siamese bert-networks
– volume: 227
  year: 2023
  ident: 10.1016/j.aej.2025.04.031_b15
  article-title: Enhanced sentence representation for extractive text summarization: Investigating the syntactic and semantic features and their contribution to sentence scoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120302
– start-page: 1
  year: 2020
  ident: 10.1016/j.aej.2025.04.031_b5
  article-title: Text summarization: a brief review
– year: 2020
  ident: 10.1016/j.aej.2025.04.031_b30
  article-title: MLSUM: The multilingual summarization corpus
– volume: 11
  start-page: 9872
  issue: 21
  year: 2021
  ident: 10.1016/j.aej.2025.04.031_b8
  article-title: Nasca and nases: Two monolingual pre-trained models for abstractive summarization in catalan and spanish
  publication-title: Appl. Sci.
  doi: 10.3390/app11219872
– volume: 199
  start-page: 1438
  year: 2022
  ident: 10.1016/j.aej.2025.04.031_b34
  article-title: A french-to-english machine translation model using transformer network
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2022.01.182
– year: 2023
  ident: 10.1016/j.aej.2025.04.031_b4
  article-title: Nonfactoid question answering as query-focused summarization with graph-enhanced multihop inference
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2020
  ident: 10.1016/j.aej.2025.04.031_b23
  article-title: Abstractive summarization of spoken and written instructions with bert
  publication-title: Comput. Lang.
– start-page: 11934
  year: 2020
  ident: 10.1016/j.aej.2025.04.031_b9
  article-title: mT5: A massively multilingual pre-trained text-to-text transformer
  publication-title: Comput. Lang.
– start-page: 3562
  year: 2023
  ident: 10.1016/j.aej.2025.04.031_b41
– volume: 48
  start-page: 279
  issue: 2
  year: 2022
  ident: 10.1016/j.aej.2025.04.031_b25
  article-title: Domain adaptation with pre-trained transformers for query-focused abstractive text summarization
  publication-title: Comput. Linguist.
  doi: 10.1162/coli_a_00434
– volume: vol. 30
  year: 2017
  ident: 10.1016/j.aej.2025.04.031_b33
  article-title: Attention is all you need
– volume: 34
  start-page: 6057
  issue: 8
  year: 2022
  ident: 10.1016/j.aej.2025.04.031_b16
  article-title: Multi-document extractive text summarization based on firefly algorithm
  publication-title: J. King Saud Univ.- Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2021.04.004
– year: 2022
  ident: 10.1016/j.aej.2025.04.031_b37
  article-title: Exploring diversity in back translation for low-resource machine translation
  publication-title: Comput. Lang.
– ident: 10.1016/j.aej.2025.04.031_b39
– start-page: 281
  year: 2021
  ident: 10.1016/j.aej.2025.04.031_b22
  article-title: Bidirectional LSTM networks for abstractive text summarization
– ident: 10.1016/j.aej.2025.04.031_b31
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.aej.2025.04.031_b40
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: vol. 36
  start-page: 10776
  year: 2022
  ident: 10.1016/j.aej.2025.04.031_b35
  article-title: Non-autoregressive translation with layer-wise prediction and deep supervision
– start-page: 4693
  year: 2021
  ident: 10.1016/j.aej.2025.04.031_b10
  article-title: XL-sum: Large-scale multilingual abstractive summarization for 44 languages
– volume: vol. 1
  start-page: 1171
  year: 2017
  ident: 10.1016/j.aej.2025.04.031_b20
  article-title: Abstractive document summarization with a graph-based attentional neural model
– volume: 165
  year: 2021
  ident: 10.1016/j.aej.2025.04.031_b13
  article-title: Automatic text summarization: A comprehensive survey
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113679
– volume: 9
  start-page: 156043
  year: 2021
  ident: 10.1016/j.aej.2025.04.031_b3
  article-title: A survey of automatic text summarization: Progress, process and challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3129786
– volume: 9
  start-page: 13248
  year: 2021
  ident: 10.1016/j.aej.2025.04.031_b6
  article-title: A survey of the state-of-the-art models in neural abstractive text summarization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3052783
– volume: 71
  year: 2022
  ident: 10.1016/j.aej.2025.04.031_b24
  article-title: Deep reinforcement and transfer learning for abstractive text summarization: A review
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2021.101276
– year: 2023
  ident: 10.1016/j.aej.2025.04.031_b29
  article-title: MultiLegalSBD: A multilingual legal sentence boundary detection dataset
  publication-title: Comput. Lang.
– start-page: 1849
  year: 2022
  ident: 10.1016/j.aej.2025.04.031_b42
– volume: 165
  year: 2021
  ident: 10.1016/j.aej.2025.04.031_b2
  article-title: Automatic text summarization: A comprehensive survey
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113679
– ident: 10.1016/j.aej.2025.04.031_b7
– volume: 71
  year: 2022
  ident: 10.1016/j.aej.2025.04.031_b21
  article-title: Deep reinforcement and transfer learning for abstractive text summarization: A review
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2021.101276
– ident: 10.1016/j.aej.2025.04.031_b1
  doi: 10.18653/v1/D16-1264
– volume: 255
  year: 2024
  ident: 10.1016/j.aej.2025.04.031_b27
  article-title: TASP: Topic-based abstractive summarization of facebook text posts
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.124567
– year: 2023
  ident: 10.1016/j.aej.2025.04.031_b12
  article-title: HKG: A novel approach for low resource indic languages to automatic knowledge graph construction
  publication-title: ACM Trans. Asian Low- Resour. Lang. Inf. Process.
  doi: 10.1145/3611306
– volume: 246
  year: 2022
  ident: 10.1016/j.aej.2025.04.031_b14
  article-title: A topic modeled unsupervised approach to single document extractive text summarization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108636
– volume: 2
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.aej.2025.04.031_b19
  article-title: Neural abstractive text summarization with sequence-to-sequence models.
  publication-title: ACM Trans. Data Sci.
  doi: 10.1145/3419106
– ident: 10.1016/j.aej.2025.04.031_b28
– volume: 151
  year: 2024
  ident: 10.1016/j.aej.2025.04.031_b18
  article-title: Decomposition–based multi-objective differential evolution for extractive multi-document automatic text summarization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110994
– volume: 287
  year: 2024
  ident: 10.1016/j.aej.2025.04.031_b26
  article-title: Automatic text summarization method based on improved TextRank algorithm and K-means clustering
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2024.111447
– ident: 10.1016/j.aej.2025.04.031_b43
  doi: 10.18653/v1/2023.acl-long.843
– ident: 10.1016/j.aej.2025.04.031_b38
  doi: 10.18653/v1/E17-2007
– volume: 48
  start-page: 5
  issue: 1
  year: 2022
  ident: 10.1016/j.aej.2025.04.031_b44
  article-title: To augment or not to augment? A comparative study on text augmentation techniques for low-resource NLP
  publication-title: Comput. Linguist.
  doi: 10.1162/coli_a_00425
– volume: 71
  start-page: 80
  issue: S1
  year: 2021
  ident: 10.1016/j.aej.2025.04.031_b11
  article-title: The extraordinary ordinary: Re-engineering multilingualism as a natural category
  publication-title: Lang. Learn.
  doi: 10.1111/lang.12407
– volume: 245
  year: 2024
  ident: 10.1016/j.aej.2025.04.031_b17
  article-title: Interpretable extractive text summarization with meta-learning and BI-LSTM: A study of meta learning and explainability techniques
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.123045
– ident: 10.1016/j.aej.2025.04.031_b36
SSID ssj0000579496
Score 2.3477204
Snippet User query-based summarization is a challenging research area of natural language processing. However, the existing approaches struggle to effectively manage...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 129
SubjectTerms Co-attention mechanism
Fine-tuning mT5
Multilingual text summarization
Shared encoder–decoder
User query-based summarization
Title MATSFT: User query-based multilingual abstractive text summarization for low resource Indian languages by fine-tuning mT5
URI https://dx.doi.org/10.1016/j.aej.2025.04.031
https://doaj.org/article/5f5bec6e242e417891b146c0d1a6db3e
Volume 127
WOSCitedRecordID wos001490918100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1110-0168
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0000579496
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOhB_MT5RQ6ehGLbpGnnbYpDDw7BDnYLSV4KG7pJtyn7731JW6kH8eK1JO-V15e8X15ffo-QS5akDBDm40rrsYAnSRZoYeNAGIBeHIlQh8o3m0iHw2w87j23Wn25mrCKHrgy3HVSJKgGp_PY8ijNepHGxW1CiJQAzazbfRH1tA5TFas3-plvzoVr2VVeiaz5pemLu5Sd4tkwTjzNKYt-BCXP3d-KTa14M9glOzVQpP3qBffIhp3tk-0WfeABWT_185dBfkNH6EcUN_hyHbioBNSXCbqL5isUobRLZ_h9jbo6D1pdWKsvYFJErfR1_knLOpFPH2fOZ2iTyVxQvaYFag2WK5dEoW95ckhGg_v87iGoWykEholwGXAwxsQ2NIi2TAbAhQWrYgUIIAwg5FMZ4BghdCbCFCKBMSxF6GeNhdQkmh2Rzmw-s8eExsxEmXKM41DwFJQqBCsKjVM4ntWAdclVY0v5XjFmyKaUbCrR8NIZXoZcouG75NZZ-3ugI7v2D9AFZO0C8i8X6BLefCtZ44YKD6Coye-6T_5D9ynZciKrksAz0lmWK3tONs3HcrIoL7xTfgHZpuZU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MATSFT%3A+User+query-based+multilingual+abstractive+text+summarization+for+low+resource+Indian+languages+by+fine-tuning+mT5&rft.jtitle=Alexandria+engineering+journal&rft.au=Siginamsetty+Phani&rft.au=Ashu+Abdul&rft.au=M.+Krishna+Siva+Prasad&rft.au=V.+Dinesh+Reddy&rft.date=2025-08-01&rft.pub=Elsevier&rft.issn=1110-0168&rft.volume=127&rft.spage=129&rft.epage=142&rft_id=info:doi/10.1016%2Fj.aej.2025.04.031&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5f5bec6e242e417891b146c0d1a6db3e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon