Improved Estimates of Biomass Expansion Factors for Russian Forests
Biomass structure is an important feature of terrestrial vegetation. The parameters of forest biomass structure are important for forest monitoring, biomass modelling and the optimal utilization and management of forests. In this paper, we used the most comprehensive database of sample plots availab...
Uložené v:
| Vydané v: | Forests Ročník 9; číslo 6; s. 312 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
01.06.2018
|
| Predmet: | |
| ISSN: | 1999-4907, 1999-4907 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Biomass structure is an important feature of terrestrial vegetation. The parameters of forest biomass structure are important for forest monitoring, biomass modelling and the optimal utilization and management of forests. In this paper, we used the most comprehensive database of sample plots available to build a set of multi-dimensional regression models that describe the proportion of different live biomass fractions (i.e., the stem, branches, foliage, roots) of forest stands as a function of average stand age, density (relative stocking) and site quality for forests of the major tree species of northern Eurasia. Bootstrapping was used to determine the accuracy of the estimates and also provides the associated uncertainties in these estimates. The species-specific mean percentage errors were then calculated between the sample plot data and the model estimates, resulting in overall relative errors in the regression model of −0.6%, −1.0% and 11.6% for biomass conversion and expansion factor (BCEF), biomass expansion factor (BEF), and root-to-shoot ratio respectively. The equations were then applied to data obtained from the Russian State Forest Register (SFR) and a map of forest cover to produce spatially distributed estimators of biomass conversion and expansion factors and root-to-shoot ratios for Russian forests. The equations and the resulting maps can be used to convert growing stock volume to the components of both above-ground and below-ground live biomass. The new live biomass conversion factors can be used in different applications, in particular to substitute those that are currently used by Russia in national reporting to the UNFCCC (United Nations Framework Convention on Climate Change) and the FAO FRA (Food and Agriculture Organization’s Forest Resource Assessment), among others. |
|---|---|
| AbstractList | Biomass structure is an important feature of terrestrial vegetation. The parameters of forest biomass structure are important for forest monitoring, biomass modelling and the optimal utilization and management of forests. In this paper, we used the most comprehensive database of sample plots available to build a set of multi-dimensional regression models that describe the proportion of different live biomass fractions (i.e., the stem, branches, foliage, roots) of forest stands as a function of average stand age, density (relative stocking) and site quality for forests of the major tree species of northern Eurasia. Bootstrapping was used to determine the accuracy of the estimates and also provides the associated uncertainties in these estimates. The species-specific mean percentage errors were then calculated between the sample plot data and the model estimates, resulting in overall relative errors in the regression model of −0.6%, −1.0% and 11.6% for biomass conversion and expansion factor (BCEF), biomass expansion factor (BEF), and root-to-shoot ratio respectively. The equations were then applied to data obtained from the Russian State Forest Register (SFR) and a map of forest cover to produce spatially distributed estimators of biomass conversion and expansion factors and root-to-shoot ratios for Russian forests. The equations and the resulting maps can be used to convert growing stock volume to the components of both above-ground and below-ground live biomass. The new live biomass conversion factors can be used in different applications, in particular to substitute those that are currently used by Russia in national reporting to the UNFCCC (United Nations Framework Convention on Climate Change) and the FAO FRA (Food and Agriculture Organization’s Forest Resource Assessment), among others. |
| Author | Martynenko, Olga Dmitriev, Egor Blyshchyk, Volodymyr See, Linda Moltchanova, Elena Shvidenko, Anatoly Schepaschenko, Dmitry Kraxner, Florian |
| Author_xml | – sequence: 1 givenname: Dmitry orcidid: 0000-0002-7814-4990 surname: Schepaschenko fullname: Schepaschenko, Dmitry – sequence: 2 givenname: Elena surname: Moltchanova fullname: Moltchanova, Elena – sequence: 3 givenname: Anatoly surname: Shvidenko fullname: Shvidenko, Anatoly – sequence: 4 givenname: Volodymyr orcidid: 0000-0002-5440-3142 surname: Blyshchyk fullname: Blyshchyk, Volodymyr – sequence: 5 givenname: Egor surname: Dmitriev fullname: Dmitriev, Egor – sequence: 6 givenname: Olga surname: Martynenko fullname: Martynenko, Olga – sequence: 7 givenname: Linda orcidid: 0000-0002-2665-7065 surname: See fullname: See, Linda – sequence: 8 givenname: Florian surname: Kraxner fullname: Kraxner, Florian |
| BookMark | eNplkN9LwzAQx4NMcM6Bf0Iefem8JE3aPOrY5mAgiD6XtE0h0jYzl4n-90bmL_Be7jg-97277zmZjH60hFwyWAih4brToEAwfkKmTGud5RqKyZ_6jMwRnyGFLErN8ylZbod98K-2pSuMbjDRIvUdvXV-MIh09bY3Izo_0rVpog9IOx_owwHRmdTzwWLEC3LamR7t_CvPyNN69bi8y3b3m-3yZpc1QkHM8tpqw1VetxaUgQJs3UChWyslKGEL1YlGSaaU0lIYYC3Pc8OKVpSlkZLXYkaujrrp4pdD2lwNDhvb92a0_oAV56UqtVBcJHRxRJvgEYPtqsZFE9MjMRjXVwyqT8Oqb8N-tX8G9iHZEd7_ox_9P2rs |
| CitedBy_id | crossref_primary_10_1093_forsci_fxad013 crossref_primary_10_1088_1748_9326_adf23e crossref_primary_10_1134_S0001433818090487 crossref_primary_10_1088_1755_1315_350_1_012043 crossref_primary_10_36930_40300405 crossref_primary_10_1007_s10342_019_01197_z crossref_primary_10_1088_1755_1315_806_1_012033 crossref_primary_10_3390_f11070775 crossref_primary_10_1051_bioconf_20248401022 crossref_primary_10_3390_f15010026 crossref_primary_10_1007_s10342_024_01721_w crossref_primary_10_1007_s10712_019_09538_8 crossref_primary_10_1016_j_forpol_2025_103444 crossref_primary_10_3390_f12070823 crossref_primary_10_1016_j_foreco_2020_118329 crossref_primary_10_3390_f15040707 crossref_primary_10_1088_1755_1315_876_1_012028 crossref_primary_10_3390_f10110951 crossref_primary_10_1051_e3sconf_202346203032 crossref_primary_10_1186_s42408_023_00188_1 crossref_primary_10_1007_s11676_020_01156_0 crossref_primary_10_3390_agriculture13020504 crossref_primary_10_1051_e3sconf_202346203059 crossref_primary_10_3390_su151310396 crossref_primary_10_1186_s40663_021_00308_w crossref_primary_10_2478_forj_2023_0021 crossref_primary_10_1007_s10342_025_01782_5 crossref_primary_10_1038_s41598_024_71133_8 crossref_primary_10_2989_20702620_2020_1819151 crossref_primary_10_1007_s13595_019_0842_y crossref_primary_10_1080_10549811_2018_1528157 crossref_primary_10_1007_s10661_024_12478_5 crossref_primary_10_1029_2021RG000736 crossref_primary_10_1038_s41598_021_92152_9 crossref_primary_10_3390_f14010045 crossref_primary_10_3390_su16041403 crossref_primary_10_3390_f9100587 crossref_primary_10_1016_j_foreco_2022_120731 crossref_primary_10_1088_1757_899X_492_1_012019 crossref_primary_10_3103_S1068373922100065 crossref_primary_10_1016_j_ecolmodel_2024_110835 crossref_primary_10_1080_21580103_2023_2208141 crossref_primary_10_1134_S1064229324601847 crossref_primary_10_3390_su17156917 crossref_primary_10_5194_essd_13_4263_2021 crossref_primary_10_1038_s41597_019_0196_1 crossref_primary_10_1038_s41559_021_01528_7 |
| Cites_doi | 10.1016/j.techfore.2015.03.002 10.1016/j.foreco.2017.04.011 10.1111/j.1365-2486.2005.001043.x 10.2737/NE-GTR-244 10.1002/2017JG003914 10.1016/j.rse.2010.09.018 10.1016/S0961-9534(97)10006-X 10.1080/1747423X.2010.511681 10.1016/j.ecolmodel.2006.12.040 10.1016/j.rse.2015.07.005 10.1023/A:1026631523999 10.1007/978-94-007-4569-8_2 10.1111/gcb.12629 10.1038/sdata.2017.70 10.1134/S1995425515070136 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.3390/f9060312 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Forestry |
| EISSN | 1999-4907 |
| ExternalDocumentID | 10_3390_f9060312 |
| GeographicLocations | Eurasia Russia |
| GeographicLocations_xml | – name: Eurasia – name: Russia |
| GroupedDBID | 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AENEX AEUYN AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ATCPS BANNL BCNDV BENPR BHPHI BKSAR CCPQU CITATION ECGQY EDH HCIFZ IAO IEP IPNFZ ITG ITH KQ8 LK5 M0K M7R MODMG M~E OK1 PATMY PCBAR PHGZM PHGZT PIMPY PROAC PYCSY RIG TR2 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c360t-4be9a264bde06a070ebc079de55063e76f3c651666953a01d244a17d388a552b3 |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436277900029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-4907 |
| IngestDate | Fri Sep 05 06:23:12 EDT 2025 Tue Nov 18 21:29:04 EST 2025 Sat Nov 29 07:17:43 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c360t-4be9a264bde06a070ebc079de55063e76f3c651666953a01d244a17d388a552b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7814-4990 0000-0002-5440-3142 0000-0002-2665-7065 |
| OpenAccessLink | https://www.mdpi.com/1999-4907/9/6/312/pdf?version=1527847022 |
| PQID | 2286893623 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2286893623 crossref_citationtrail_10_3390_f9060312 crossref_primary_10_3390_f9060312 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-01 20180601 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Forests |
| PublicationYear | 2018 |
| References | Schepaschenko (ref_25) 2015; 8 Shvidenko (ref_3) 2000; 31 ref_14 ref_13 ref_12 ref_11 Song (ref_6) 2017; 122 ref_19 ref_18 ref_17 Shepashenko (ref_4) 1998; 14 ref_15 Mokany (ref_30) 2006; 12 Zamolodchikov (ref_16) 2003; 1 Schepaschenko (ref_21) 2017; 4 Usoltsev (ref_10) 2016; 3 Forrester (ref_9) 2017; 396 Chave (ref_7) 2014; 20 ref_23 ref_22 ref_20 Schepaschenko (ref_24) 2011; 6 ref_1 Santoro (ref_2) 2015; 168 ref_29 ref_28 See (ref_26) 2015; 98 ref_27 Shvidenko (ref_5) 2007; 204 ref_8 Santoro (ref_31) 2011; 115 |
| References_xml | – volume: 98 start-page: 324 year: 2015 ident: ref_26 article-title: Harnessing the power of volunteers, the internet and Google Earth to collect and validate global spatial information using Geo-Wiki publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2015.03.002 – ident: ref_28 – volume: 396 start-page: 160 year: 2017 ident: ref_9 article-title: Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate—ScienceDirect publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2017.04.011 – volume: 12 start-page: 84 year: 2006 ident: ref_30 article-title: Critical analysis of root: Shoot ratios in terrestrial biomes publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2005.001043.x – ident: ref_15 doi: 10.2737/NE-GTR-244 – ident: ref_14 – ident: ref_1 – ident: ref_18 – ident: ref_23 – volume: 122 start-page: 2282 year: 2017 ident: ref_6 article-title: Significant inconsistency of vegetation carbon density in CMIP5 Earth system models against observational data publication-title: J. Geophys. Res. Biogeosciences doi: 10.1002/2017JG003914 – volume: 115 start-page: 490 year: 2011 ident: ref_31 article-title: Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.09.018 – volume: 14 start-page: 21 year: 1998 ident: ref_4 article-title: Phytomass (live biomass) and carbon of Siberian forests publication-title: Biomass Bioenergy doi: 10.1016/S0961-9534(97)10006-X – ident: ref_8 – volume: 1 start-page: 119 year: 2003 ident: ref_16 article-title: Biomass conversion and expansion factors for major forest forming species in Russia publication-title: For. Mensurat. For. Invent. – ident: ref_29 – ident: ref_27 – volume: 6 start-page: 245 year: 2011 ident: ref_24 article-title: A new hybrid land cover dataset for Russia: A methodology for integrating statistics, remote sensing and in situ information publication-title: J. Land Use Sci. doi: 10.1080/1747423X.2010.511681 – ident: ref_12 – volume: 204 start-page: 163 year: 2007 ident: ref_5 article-title: Semi-empirical models for assessing biological productivity of Northern Eurasian forests publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2006.12.040 – ident: ref_13 – volume: 168 start-page: 316 year: 2015 ident: ref_2 article-title: Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.07.005 – ident: ref_17 – volume: 31 start-page: 371 year: 2000 ident: ref_3 article-title: Aggregated estimation of the basic parameters of biological production and the carbon budget of Russian terrestrial ecosystems: 1. Stocks of plant organic mass publication-title: Russ. J. Ecol. doi: 10.1023/A:1026631523999 – ident: ref_11 doi: 10.1007/978-94-007-4569-8_2 – ident: ref_19 – ident: ref_22 – volume: 20 start-page: 3177 year: 2014 ident: ref_7 article-title: Improved allometric models to estimate the aboveground biomass of tropical trees publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12629 – ident: ref_20 – volume: 4 start-page: 170070 year: 2017 ident: ref_21 article-title: A dataset of forest biomass structure for Eurasia publication-title: Sci. Data doi: 10.1038/sdata.2017.70 – volume: 8 start-page: 811 year: 2015 ident: ref_25 article-title: Estimation of forest area and its dynamics in Russia based on synthesis of remote sensing products publication-title: Contemp. Probl. Ecol. doi: 10.1134/S1995425515070136 – volume: 3 start-page: 68 year: 2016 ident: ref_10 article-title: Allometric Models of Tree Biomass for Airborne Laser Scanning and Ground Inventory of Carbon Pool in the Forests of Eurasia: Comparative Analysis publication-title: Sib. J. For. Sci. |
| SSID | ssj0000578924 |
| Score | 2.3617606 |
| Snippet | Biomass structure is an important feature of terrestrial vegetation. The parameters of forest biomass structure are important for forest monitoring, biomass... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 312 |
| SubjectTerms | biomass branches equations Eurasia Food and Agriculture Organization forest stands forests leaves monitoring regression analysis root shoot ratio roots Russia stand age trees uncertainty United Nations Framework Convention on Climate Change |
| Title | Improved Estimates of Biomass Expansion Factors for Russian Forests |
| URI | https://www.proquest.com/docview/2286893623 |
| Volume | 9 |
| WOSCitedRecordID | wos000436277900029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: M0K dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: PCBAR dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: PATMY dateStart: 20100301 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: PIMPY dateStart: 20100301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbYihAXxE8xBpWREJwC-enEx3a0ArGWamSoO0VO4qgVbdI17bT897wXO2kn9TAOXNLKcprKn_O99-zn9xHyAYx0lgkrNoSbScOVrjACL7UMoEHBEj_LmJfUYhP-eBxMp3yiyxOUtZyAn-fB7S1f_VeooQ3AxqOz_wB3-6PQAN8BdLgC7HC9F_BqmQD8yAG8vUt0JdEh7M8xEajE0sZgnBDzoVbawTzDi21ZH6ZEoc5S1Xba1-5smuoNmxkYMAiJZf6nXmX9upxv9lKJi8UGzxIXN0Iljcm85f1fs1rBVN3WyyHa36WS9hdVOUtmVc3Nv4GQ02pZrfeXJKxglzqlWRRLG7hcydl-lgfaNPXyvRnGDhG643DMgMy4iWrY9s5oNRv145_R8PL8PAoH0_Dj6tpAOTHcdtfaKkekY_seB7rrTHrh6KpdfgM3NeBK8rj5Y6o0MT7xS_O8u87KXVtdOyDhU_JERw60pxB_Rh7I_Dl5pOBZVy_IWQM8bYGnRUY18LQFnmrgKQBPNfBUo_ySXA4H4dk3Q0tkGInDzI3hxpIL8GnjVJpMAH3LODF9nkoIPJkjfZY5CfNwa5h7jjCtFLw5YfmpEwTC8-zYeUWO8yKXrwmVwuLCSnmaMohigZkD23O8RFgeWEDf5yfkUzMWUaLrx6OMySKCOBJHLWpG7YS8b3uuVM2UQ32a4YyA0HCXSuSy2JaRbQcMnGhwy9_co88pebybgW_J8Wa9le_Iw-RmMy_XXdLpD8aTiy45Gpk_unoO4Of30eTqL-4LdJo |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Estimates+of+Biomass+Expansion+Factors+for+Russian+Forests&rft.jtitle=Forests&rft.au=Schepaschenko%2C+Dmitry&rft.au=Moltchanova%2C+Elena&rft.au=Shvidenko%2C+Anatoly&rft.au=Blyshchyk%2C+Volodymyr&rft.date=2018-06-01&rft.issn=1999-4907&rft.eissn=1999-4907&rft.volume=9&rft.issue=6&rft_id=info:doi/10.3390%2Ff9060312&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4907&client=summon |