Improved Estimates of Biomass Expansion Factors for Russian Forests

Biomass structure is an important feature of terrestrial vegetation. The parameters of forest biomass structure are important for forest monitoring, biomass modelling and the optimal utilization and management of forests. In this paper, we used the most comprehensive database of sample plots availab...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Forests Ročník 9; číslo 6; s. 312
Hlavní autori: Schepaschenko, Dmitry, Moltchanova, Elena, Shvidenko, Anatoly, Blyshchyk, Volodymyr, Dmitriev, Egor, Martynenko, Olga, See, Linda, Kraxner, Florian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 01.06.2018
Predmet:
ISSN:1999-4907, 1999-4907
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Biomass structure is an important feature of terrestrial vegetation. The parameters of forest biomass structure are important for forest monitoring, biomass modelling and the optimal utilization and management of forests. In this paper, we used the most comprehensive database of sample plots available to build a set of multi-dimensional regression models that describe the proportion of different live biomass fractions (i.e., the stem, branches, foliage, roots) of forest stands as a function of average stand age, density (relative stocking) and site quality for forests of the major tree species of northern Eurasia. Bootstrapping was used to determine the accuracy of the estimates and also provides the associated uncertainties in these estimates. The species-specific mean percentage errors were then calculated between the sample plot data and the model estimates, resulting in overall relative errors in the regression model of −0.6%, −1.0% and 11.6% for biomass conversion and expansion factor (BCEF), biomass expansion factor (BEF), and root-to-shoot ratio respectively. The equations were then applied to data obtained from the Russian State Forest Register (SFR) and a map of forest cover to produce spatially distributed estimators of biomass conversion and expansion factors and root-to-shoot ratios for Russian forests. The equations and the resulting maps can be used to convert growing stock volume to the components of both above-ground and below-ground live biomass. The new live biomass conversion factors can be used in different applications, in particular to substitute those that are currently used by Russia in national reporting to the UNFCCC (United Nations Framework Convention on Climate Change) and the FAO FRA (Food and Agriculture Organization’s Forest Resource Assessment), among others.
AbstractList Biomass structure is an important feature of terrestrial vegetation. The parameters of forest biomass structure are important for forest monitoring, biomass modelling and the optimal utilization and management of forests. In this paper, we used the most comprehensive database of sample plots available to build a set of multi-dimensional regression models that describe the proportion of different live biomass fractions (i.e., the stem, branches, foliage, roots) of forest stands as a function of average stand age, density (relative stocking) and site quality for forests of the major tree species of northern Eurasia. Bootstrapping was used to determine the accuracy of the estimates and also provides the associated uncertainties in these estimates. The species-specific mean percentage errors were then calculated between the sample plot data and the model estimates, resulting in overall relative errors in the regression model of −0.6%, −1.0% and 11.6% for biomass conversion and expansion factor (BCEF), biomass expansion factor (BEF), and root-to-shoot ratio respectively. The equations were then applied to data obtained from the Russian State Forest Register (SFR) and a map of forest cover to produce spatially distributed estimators of biomass conversion and expansion factors and root-to-shoot ratios for Russian forests. The equations and the resulting maps can be used to convert growing stock volume to the components of both above-ground and below-ground live biomass. The new live biomass conversion factors can be used in different applications, in particular to substitute those that are currently used by Russia in national reporting to the UNFCCC (United Nations Framework Convention on Climate Change) and the FAO FRA (Food and Agriculture Organization’s Forest Resource Assessment), among others.
Author Martynenko, Olga
Dmitriev, Egor
Blyshchyk, Volodymyr
See, Linda
Moltchanova, Elena
Shvidenko, Anatoly
Schepaschenko, Dmitry
Kraxner, Florian
Author_xml – sequence: 1
  givenname: Dmitry
  orcidid: 0000-0002-7814-4990
  surname: Schepaschenko
  fullname: Schepaschenko, Dmitry
– sequence: 2
  givenname: Elena
  surname: Moltchanova
  fullname: Moltchanova, Elena
– sequence: 3
  givenname: Anatoly
  surname: Shvidenko
  fullname: Shvidenko, Anatoly
– sequence: 4
  givenname: Volodymyr
  orcidid: 0000-0002-5440-3142
  surname: Blyshchyk
  fullname: Blyshchyk, Volodymyr
– sequence: 5
  givenname: Egor
  surname: Dmitriev
  fullname: Dmitriev, Egor
– sequence: 6
  givenname: Olga
  surname: Martynenko
  fullname: Martynenko, Olga
– sequence: 7
  givenname: Linda
  orcidid: 0000-0002-2665-7065
  surname: See
  fullname: See, Linda
– sequence: 8
  givenname: Florian
  surname: Kraxner
  fullname: Kraxner, Florian
BookMark eNplkN9LwzAQx4NMcM6Bf0Iefem8JE3aPOrY5mAgiD6XtE0h0jYzl4n-90bmL_Be7jg-97277zmZjH60hFwyWAih4brToEAwfkKmTGud5RqKyZ_6jMwRnyGFLErN8ylZbod98K-2pSuMbjDRIvUdvXV-MIh09bY3Izo_0rVpog9IOx_owwHRmdTzwWLEC3LamR7t_CvPyNN69bi8y3b3m-3yZpc1QkHM8tpqw1VetxaUgQJs3UChWyslKGEL1YlGSaaU0lIYYC3Pc8OKVpSlkZLXYkaujrrp4pdD2lwNDhvb92a0_oAV56UqtVBcJHRxRJvgEYPtqsZFE9MjMRjXVwyqT8Oqb8N-tX8G9iHZEd7_ox_9P2rs
CitedBy_id crossref_primary_10_1093_forsci_fxad013
crossref_primary_10_1088_1748_9326_adf23e
crossref_primary_10_1134_S0001433818090487
crossref_primary_10_1088_1755_1315_350_1_012043
crossref_primary_10_36930_40300405
crossref_primary_10_1007_s10342_019_01197_z
crossref_primary_10_1088_1755_1315_806_1_012033
crossref_primary_10_3390_f11070775
crossref_primary_10_1051_bioconf_20248401022
crossref_primary_10_3390_f15010026
crossref_primary_10_1007_s10342_024_01721_w
crossref_primary_10_1007_s10712_019_09538_8
crossref_primary_10_1016_j_forpol_2025_103444
crossref_primary_10_3390_f12070823
crossref_primary_10_1016_j_foreco_2020_118329
crossref_primary_10_3390_f15040707
crossref_primary_10_1088_1755_1315_876_1_012028
crossref_primary_10_3390_f10110951
crossref_primary_10_1051_e3sconf_202346203032
crossref_primary_10_1186_s42408_023_00188_1
crossref_primary_10_1007_s11676_020_01156_0
crossref_primary_10_3390_agriculture13020504
crossref_primary_10_1051_e3sconf_202346203059
crossref_primary_10_3390_su151310396
crossref_primary_10_1186_s40663_021_00308_w
crossref_primary_10_2478_forj_2023_0021
crossref_primary_10_1007_s10342_025_01782_5
crossref_primary_10_1038_s41598_024_71133_8
crossref_primary_10_2989_20702620_2020_1819151
crossref_primary_10_1007_s13595_019_0842_y
crossref_primary_10_1080_10549811_2018_1528157
crossref_primary_10_1007_s10661_024_12478_5
crossref_primary_10_1029_2021RG000736
crossref_primary_10_1038_s41598_021_92152_9
crossref_primary_10_3390_f14010045
crossref_primary_10_3390_su16041403
crossref_primary_10_3390_f9100587
crossref_primary_10_1016_j_foreco_2022_120731
crossref_primary_10_1088_1757_899X_492_1_012019
crossref_primary_10_3103_S1068373922100065
crossref_primary_10_1016_j_ecolmodel_2024_110835
crossref_primary_10_1080_21580103_2023_2208141
crossref_primary_10_1134_S1064229324601847
crossref_primary_10_3390_su17156917
crossref_primary_10_5194_essd_13_4263_2021
crossref_primary_10_1038_s41597_019_0196_1
crossref_primary_10_1038_s41559_021_01528_7
Cites_doi 10.1016/j.techfore.2015.03.002
10.1016/j.foreco.2017.04.011
10.1111/j.1365-2486.2005.001043.x
10.2737/NE-GTR-244
10.1002/2017JG003914
10.1016/j.rse.2010.09.018
10.1016/S0961-9534(97)10006-X
10.1080/1747423X.2010.511681
10.1016/j.ecolmodel.2006.12.040
10.1016/j.rse.2015.07.005
10.1023/A:1026631523999
10.1007/978-94-007-4569-8_2
10.1111/gcb.12629
10.1038/sdata.2017.70
10.1134/S1995425515070136
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.3390/f9060312
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISSN 1999-4907
ExternalDocumentID 10_3390_f9060312
GeographicLocations Eurasia
Russia
GeographicLocations_xml – name: Eurasia
– name: Russia
GroupedDBID 5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ATCPS
BANNL
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
ECGQY
EDH
HCIFZ
IAO
IEP
IPNFZ
ITG
ITH
KQ8
LK5
M0K
M7R
MODMG
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
RIG
TR2
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c360t-4be9a264bde06a070ebc079de55063e76f3c651666953a01d244a17d388a552b3
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436277900029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4907
IngestDate Fri Sep 05 06:23:12 EDT 2025
Tue Nov 18 21:29:04 EST 2025
Sat Nov 29 07:17:43 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c360t-4be9a264bde06a070ebc079de55063e76f3c651666953a01d244a17d388a552b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7814-4990
0000-0002-5440-3142
0000-0002-2665-7065
OpenAccessLink https://www.mdpi.com/1999-4907/9/6/312/pdf?version=1527847022
PQID 2286893623
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2286893623
crossref_citationtrail_10_3390_f9060312
crossref_primary_10_3390_f9060312
PublicationCentury 2000
PublicationDate 2018-06-01
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Forests
PublicationYear 2018
References Schepaschenko (ref_25) 2015; 8
Shvidenko (ref_3) 2000; 31
ref_14
ref_13
ref_12
ref_11
Song (ref_6) 2017; 122
ref_19
ref_18
ref_17
Shepashenko (ref_4) 1998; 14
ref_15
Mokany (ref_30) 2006; 12
Zamolodchikov (ref_16) 2003; 1
Schepaschenko (ref_21) 2017; 4
Usoltsev (ref_10) 2016; 3
Forrester (ref_9) 2017; 396
Chave (ref_7) 2014; 20
ref_23
ref_22
ref_20
Schepaschenko (ref_24) 2011; 6
ref_1
Santoro (ref_2) 2015; 168
ref_29
ref_28
See (ref_26) 2015; 98
ref_27
Shvidenko (ref_5) 2007; 204
ref_8
Santoro (ref_31) 2011; 115
References_xml – volume: 98
  start-page: 324
  year: 2015
  ident: ref_26
  article-title: Harnessing the power of volunteers, the internet and Google Earth to collect and validate global spatial information using Geo-Wiki
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2015.03.002
– ident: ref_28
– volume: 396
  start-page: 160
  year: 2017
  ident: ref_9
  article-title: Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate—ScienceDirect
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2017.04.011
– volume: 12
  start-page: 84
  year: 2006
  ident: ref_30
  article-title: Critical analysis of root: Shoot ratios in terrestrial biomes
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2005.001043.x
– ident: ref_15
  doi: 10.2737/NE-GTR-244
– ident: ref_14
– ident: ref_1
– ident: ref_18
– ident: ref_23
– volume: 122
  start-page: 2282
  year: 2017
  ident: ref_6
  article-title: Significant inconsistency of vegetation carbon density in CMIP5 Earth system models against observational data
  publication-title: J. Geophys. Res. Biogeosciences
  doi: 10.1002/2017JG003914
– volume: 115
  start-page: 490
  year: 2011
  ident: ref_31
  article-title: Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.09.018
– volume: 14
  start-page: 21
  year: 1998
  ident: ref_4
  article-title: Phytomass (live biomass) and carbon of Siberian forests
  publication-title: Biomass Bioenergy
  doi: 10.1016/S0961-9534(97)10006-X
– ident: ref_8
– volume: 1
  start-page: 119
  year: 2003
  ident: ref_16
  article-title: Biomass conversion and expansion factors for major forest forming species in Russia
  publication-title: For. Mensurat. For. Invent.
– ident: ref_29
– ident: ref_27
– volume: 6
  start-page: 245
  year: 2011
  ident: ref_24
  article-title: A new hybrid land cover dataset for Russia: A methodology for integrating statistics, remote sensing and in situ information
  publication-title: J. Land Use Sci.
  doi: 10.1080/1747423X.2010.511681
– ident: ref_12
– volume: 204
  start-page: 163
  year: 2007
  ident: ref_5
  article-title: Semi-empirical models for assessing biological productivity of Northern Eurasian forests
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2006.12.040
– ident: ref_13
– volume: 168
  start-page: 316
  year: 2015
  ident: ref_2
  article-title: Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.07.005
– ident: ref_17
– volume: 31
  start-page: 371
  year: 2000
  ident: ref_3
  article-title: Aggregated estimation of the basic parameters of biological production and the carbon budget of Russian terrestrial ecosystems: 1. Stocks of plant organic mass
  publication-title: Russ. J. Ecol.
  doi: 10.1023/A:1026631523999
– ident: ref_11
  doi: 10.1007/978-94-007-4569-8_2
– ident: ref_19
– ident: ref_22
– volume: 20
  start-page: 3177
  year: 2014
  ident: ref_7
  article-title: Improved allometric models to estimate the aboveground biomass of tropical trees
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12629
– ident: ref_20
– volume: 4
  start-page: 170070
  year: 2017
  ident: ref_21
  article-title: A dataset of forest biomass structure for Eurasia
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.70
– volume: 8
  start-page: 811
  year: 2015
  ident: ref_25
  article-title: Estimation of forest area and its dynamics in Russia based on synthesis of remote sensing products
  publication-title: Contemp. Probl. Ecol.
  doi: 10.1134/S1995425515070136
– volume: 3
  start-page: 68
  year: 2016
  ident: ref_10
  article-title: Allometric Models of Tree Biomass for Airborne Laser Scanning and Ground Inventory of Carbon Pool in the Forests of Eurasia: Comparative Analysis
  publication-title: Sib. J. For. Sci.
SSID ssj0000578924
Score 2.3617606
Snippet Biomass structure is an important feature of terrestrial vegetation. The parameters of forest biomass structure are important for forest monitoring, biomass...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 312
SubjectTerms biomass
branches
equations
Eurasia
Food and Agriculture Organization
forest stands
forests
leaves
monitoring
regression analysis
root shoot ratio
roots
Russia
stand age
trees
uncertainty
United Nations Framework Convention on Climate Change
Title Improved Estimates of Biomass Expansion Factors for Russian Forests
URI https://www.proquest.com/docview/2286893623
Volume 9
WOSCitedRecordID wos000436277900029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: M0K
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: PCBAR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: PATMY
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: PIMPY
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbYihAXxE8xBpWREJwC-enEx3a0ArGWamSoO0VO4qgVbdI17bT897wXO2kn9TAOXNLKcprKn_O99-zn9xHyAYx0lgkrNoSbScOVrjACL7UMoEHBEj_LmJfUYhP-eBxMp3yiyxOUtZyAn-fB7S1f_VeooQ3AxqOz_wB3-6PQAN8BdLgC7HC9F_BqmQD8yAG8vUt0JdEh7M8xEajE0sZgnBDzoVbawTzDi21ZH6ZEoc5S1Xba1-5smuoNmxkYMAiJZf6nXmX9upxv9lKJi8UGzxIXN0Iljcm85f1fs1rBVN3WyyHa36WS9hdVOUtmVc3Nv4GQ02pZrfeXJKxglzqlWRRLG7hcydl-lgfaNPXyvRnGDhG643DMgMy4iWrY9s5oNRv145_R8PL8PAoH0_Dj6tpAOTHcdtfaKkekY_seB7rrTHrh6KpdfgM3NeBK8rj5Y6o0MT7xS_O8u87KXVtdOyDhU_JERw60pxB_Rh7I_Dl5pOBZVy_IWQM8bYGnRUY18LQFnmrgKQBPNfBUo_ySXA4H4dk3Q0tkGInDzI3hxpIL8GnjVJpMAH3LODF9nkoIPJkjfZY5CfNwa5h7jjCtFLw5YfmpEwTC8-zYeUWO8yKXrwmVwuLCSnmaMohigZkD23O8RFgeWEDf5yfkUzMWUaLrx6OMySKCOBJHLWpG7YS8b3uuVM2UQ32a4YyA0HCXSuSy2JaRbQcMnGhwy9_co88pebybgW_J8Wa9le_Iw-RmMy_XXdLpD8aTiy45Gpk_unoO4Of30eTqL-4LdJo
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Estimates+of+Biomass+Expansion+Factors+for+Russian+Forests&rft.jtitle=Forests&rft.au=Schepaschenko%2C+Dmitry&rft.au=Moltchanova%2C+Elena&rft.au=Shvidenko%2C+Anatoly&rft.au=Blyshchyk%2C+Volodymyr&rft.date=2018-06-01&rft.issn=1999-4907&rft.eissn=1999-4907&rft.volume=9&rft.issue=6&rft_id=info:doi/10.3390%2Ff9060312&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4907&client=summon