A Framework for Large-Scale Multiobjective Optimization Based on Problem Transformation
In this paper, we propose a new method for solving multiobjective optimization problems with a large number of decision variables. The proposed method called weighted optimization framework is intended to serve as a generic method that can be used with any population-based metaheuristic algorithm. A...
Uloženo v:
| Vydáno v: | IEEE Transactions on Evolutionary Computation Ročník 22; číslo 2; s. 260 - 275 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina japonština |
| Vydáno: |
IEEE
01.04.2018
Institute of Electrical and Electronics Engineers (IEEE) |
| Témata: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we propose a new method for solving multiobjective optimization problems with a large number of decision variables. The proposed method called weighted optimization framework is intended to serve as a generic method that can be used with any population-based metaheuristic algorithm. After explaining some general issues of large-scale optimization, we introduce a problem transformation scheme that is used to reduce the dimensionality of the search space and search for improved solutions in the reduced subspace. This involves so-called weights that are applied to alter the decision variables and are also subject to optimization. Our method relies on grouping mechanisms and employs a population-based algorithm as an optimizer for both original variables and weight variables. Different grouping mechanisms and transformation functions within the framework are explained and their advantages and disadvantages are examined. Our experiments use test problems with 2-3 objectives 40-5000 variables. Using our approach on three well-known algorithms and comparing its performance with other large-scale optimizers, we show that our method can significantly outperform most existing methods in terms of solution quality as well as convergence rate on almost all tested problems for many-variable instances. |
|---|---|
| AbstractList | In this paper, we propose a new method for solving multiobjective optimization problems with a large number of decision variables. The proposed method called weighted optimization framework is intended to serve as a generic method that can be used with any population-based metaheuristic algorithm. After explaining some general issues of large-scale optimization, we introduce a problem transformation scheme that is used to reduce the dimensionality of the search space and search for improved solutions in the reduced subspace. This involves so-called weights that are applied to alter the decision variables and are also subject to optimization. Our method relies on grouping mechanisms and employs a population-based algorithm as an optimizer for both original variables and weight variables. Different grouping mechanisms and transformation functions within the framework are explained and their advantages and disadvantages are examined. Our experiments use test problems with 2-3 objectives 40-5000 variables. Using our approach on three well-known algorithms and comparing its performance with other large-scale optimizers, we show that our method can significantly outperform most existing methods in terms of solution quality as well as convergence rate on almost all tested problems for many-variable instances. |
| Author | Mostaghim, Sanaz Ishibuchi, Hisao Nojima, Yusuke Zille, Heiner |
| Author_xml | – sequence: 1 givenname: Heiner orcidid: 0000-0002-7262-9487 surname: Zille fullname: Zille, Heiner email: heiner.zille organization: Institute for Intelligent Cooperating Systems, Faculty of Computer Science, Otto von Guericke University Magdeburg, Magdeburg, Germany – sequence: 2 givenname: Hisao orcidid: 0000-0001-9186-6472 surname: Ishibuchi fullname: Ishibuchi, Hisao email: hisao@sustc.edu.cn organization: Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China – sequence: 3 givenname: Sanaz orcidid: 0000-0002-9917-5227 surname: Mostaghim fullname: Mostaghim, Sanaz email: sanaz.mostaghim@ovgu.de organization: Institute for Intelligent Cooperating Systems, Faculty of Computer Science, Otto von Guericke University Magdeburg, Magdeburg, Germany – sequence: 4 givenname: Yusuke orcidid: 0000-0003-4853-1305 surname: Nojima fullname: Nojima, Yusuke email: nojima@cs.osakafu-u.ac.jp organization: Department of Computer Science and Intelligent Systems, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan |
| BackLink | https://cir.nii.ac.jp/crid/1870302167732148736$$DView record in CiNii |
| BookMark | eNp9UMtOwzAQtFCRaAsfgLj4wDXFayexfSwVBaSiIlEet8hxbOSSR-UEEHw9Tltx4MBld7U7MzuaERrUTW0QOgUyASDyYnX1NJtQAnxCOYm5oAdoCDKGiBCaDsJMhIw4Fy9HaNS2a0IgTkAO0fMUz72qzGfj37BtPF4o_2qiB61Kg-_ey841-drozn0YvNx0rnLfKuxqfKlaU-Aw3PsmL02FV17VbVCotvdjdGhV2ZqTfR-jx_nVanYTLZbXt7PpItIsJV0Us1wKqlIrhFCFMkwBtVYpQS0UOmFMCyqYsnkChUi0MVZLK5I8Ce5JISwbI77T1b5pW29spl23ddB55coMSNbnk_X5ZH0-2T6fwIQ_zI13lfJf_3LOd5zaufCoryA4YYRCyjmjEAvO0gA728GcMeZXlksqGY3ZD4P1fu4 |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1007_s13369_021_06523_5 crossref_primary_10_1007_s40747_021_00270_8 crossref_primary_10_1109_TNNLS_2021_3113158 crossref_primary_10_1016_j_swevo_2023_101360 crossref_primary_10_1016_j_swevo_2022_101084 crossref_primary_10_1016_j_engappai_2025_111281 crossref_primary_10_1109_TAI_2024_3444736 crossref_primary_10_1109_TETCI_2023_3300526 crossref_primary_10_1109_TEVC_2022_3166815 crossref_primary_10_1007_s10489_022_04037_7 crossref_primary_10_3390_a18030164 crossref_primary_10_1038_s41598_023_39053_1 crossref_primary_10_1007_s13042_024_02221_4 crossref_primary_10_1109_TEVC_2022_3161363 crossref_primary_10_1007_s40747_023_01137_w crossref_primary_10_1016_j_eswa_2025_127374 crossref_primary_10_1109_JAS_2024_124947 crossref_primary_10_1016_j_eswa_2023_120184 crossref_primary_10_1016_j_swevo_2023_101235 crossref_primary_10_1016_j_swevo_2024_101752 crossref_primary_10_1145_3470971 crossref_primary_10_1016_j_eswa_2023_122370 crossref_primary_10_1016_j_eswa_2025_129328 crossref_primary_10_1016_j_ins_2023_02_055 crossref_primary_10_1109_TEVC_2023_3296488 crossref_primary_10_1016_j_ins_2022_07_018 crossref_primary_10_1016_j_swevo_2021_101008 crossref_primary_10_1109_TIM_2024_3440371 crossref_primary_10_1016_j_swevo_2024_101504 crossref_primary_10_1109_ACCESS_2023_3321313 crossref_primary_10_1016_j_swevo_2024_101628 crossref_primary_10_1016_j_swevo_2024_101622 crossref_primary_10_1016_j_ins_2023_119095 crossref_primary_10_1016_j_ins_2018_10_007 crossref_primary_10_1109_JAS_2022_105875 crossref_primary_10_1007_s40747_019_0113_4 crossref_primary_10_1109_TAI_2022_3156952 crossref_primary_10_1186_s41601_022_00271_w crossref_primary_10_1016_j_swevo_2023_101262 crossref_primary_10_1007_s12293_025_00438_6 crossref_primary_10_1109_TEVC_2020_3044711 crossref_primary_10_1016_j_engappai_2025_110089 crossref_primary_10_3390_math10122077 crossref_primary_10_1016_j_asoc_2025_113921 crossref_primary_10_1016_j_swevo_2023_101377 crossref_primary_10_1016_j_intell_2023_101793 crossref_primary_10_1016_j_swevo_2020_100647 crossref_primary_10_1016_j_swevo_2022_101093 crossref_primary_10_1007_s11047_022_09910_5 crossref_primary_10_1016_j_eswa_2023_120290 crossref_primary_10_1109_TEVC_2022_3144675 crossref_primary_10_1016_j_swevo_2023_101393 crossref_primary_10_1080_23799927_2023_2227147 crossref_primary_10_1016_j_ins_2023_119638 crossref_primary_10_1109_TETCI_2024_3386866 crossref_primary_10_1016_j_asoc_2025_113386 crossref_primary_10_3390_sym16101289 crossref_primary_10_1016_j_eswa_2025_129460 crossref_primary_10_1109_MCI_2022_3180913 crossref_primary_10_1109_JIOT_2021_3104661 crossref_primary_10_1109_TCYB_2023_3287596 crossref_primary_10_1007_s10489_023_04822_y crossref_primary_10_1016_j_ins_2024_120719 crossref_primary_10_1109_TEVC_2020_2967501 crossref_primary_10_1109_TEVC_2022_3213006 crossref_primary_10_1007_s12293_025_00473_3 crossref_primary_10_1016_j_ins_2021_04_003 crossref_primary_10_1109_TEVC_2023_3349073 crossref_primary_10_1016_j_asoc_2023_110233 crossref_primary_10_1016_j_swevo_2021_100866 crossref_primary_10_1109_TCYB_2019_2906383 crossref_primary_10_1109_TEVC_2021_3111209 crossref_primary_10_1016_j_swevo_2023_101397 crossref_primary_10_1016_j_swevo_2024_101832 crossref_primary_10_1007_s44196_025_00884_7 crossref_primary_10_1016_j_asoc_2022_109651 crossref_primary_10_1016_j_jpdc_2022_06_016 crossref_primary_10_1016_j_ins_2024_120607 crossref_primary_10_1109_JAS_2024_124341 crossref_primary_10_1007_s00521_021_06844_4 crossref_primary_10_1016_j_swevo_2021_100995 crossref_primary_10_1007_s40747_025_01822_y crossref_primary_10_1016_j_swevo_2024_101820 crossref_primary_10_3233_JCM_226740 crossref_primary_10_1007_s10589_024_00551_1 crossref_primary_10_1016_j_swevo_2020_100697 crossref_primary_10_1016_j_swevo_2025_102079 crossref_primary_10_1007_s12293_025_00459_1 crossref_primary_10_1016_j_swevo_2020_100684 crossref_primary_10_3390_su15129238 crossref_primary_10_1016_j_swevo_2024_101499 crossref_primary_10_1016_j_swevo_2025_102089 crossref_primary_10_1109_TEVC_2024_3355221 crossref_primary_10_1016_j_eswa_2024_123301 crossref_primary_10_1109_TGRS_2022_3198426 crossref_primary_10_1109_TCYB_2019_2950626 crossref_primary_10_1016_j_petsci_2024_09_018 crossref_primary_10_1038_s41598_024_64570_y crossref_primary_10_1016_j_eswa_2025_129142 crossref_primary_10_1109_TSMC_2024_3454051 crossref_primary_10_1093_jcde_qwac124 crossref_primary_10_1016_j_ins_2024_120950 crossref_primary_10_1016_j_ins_2022_05_005 crossref_primary_10_1016_j_asoc_2021_108158 crossref_primary_10_1016_j_swevo_2025_101881 crossref_primary_10_1109_ACCESS_2022_3212081 crossref_primary_10_1016_j_ins_2023_119003 crossref_primary_10_1109_TSMC_2021_3131312 crossref_primary_10_1007_s00500_023_09061_4 crossref_primary_10_1016_j_swevo_2022_101119 crossref_primary_10_1016_j_ins_2020_05_019 crossref_primary_10_1007_s10489_023_04500_z crossref_primary_10_1109_JIOT_2024_3496585 crossref_primary_10_1109_TCYB_2022_3178929 crossref_primary_10_1109_JAS_2024_124548 crossref_primary_10_1007_s12293_022_00358_9 crossref_primary_10_1016_j_swevo_2025_102061 crossref_primary_10_1109_TCYB_2023_3265652 crossref_primary_10_1007_s41965_024_00172_x crossref_primary_10_1109_TCYB_2020_3041325 crossref_primary_10_1007_s40747_024_01752_1 crossref_primary_10_1109_TETCI_2025_3537916 crossref_primary_10_1109_TEVC_2019_2918140 crossref_primary_10_1016_j_asoc_2019_106059 crossref_primary_10_1007_s40747_021_00553_0 crossref_primary_10_1007_s00500_021_06613_4 crossref_primary_10_1109_TEVC_2023_3256183 crossref_primary_10_1016_j_ins_2023_119253 crossref_primary_10_1016_j_swevo_2022_101100 crossref_primary_10_1109_TCYB_2020_3041212 crossref_primary_10_1016_j_eswa_2023_121563 crossref_primary_10_1016_j_ins_2024_120411 crossref_primary_10_1109_JIOT_2021_3102421 crossref_primary_10_1109_TCYB_2020_2979930 crossref_primary_10_1109_TEVC_2021_3119933 crossref_primary_10_3390_electronics11203317 crossref_primary_10_1016_j_eswa_2024_125068 crossref_primary_10_1109_TEVC_2021_3130835 crossref_primary_10_1007_s00500_023_08825_2 crossref_primary_10_1007_s40747_021_00273_5 crossref_primary_10_1007_s10489_025_06772_z crossref_primary_10_1016_j_knosys_2021_106856 crossref_primary_10_1109_TEVC_2019_2933444 crossref_primary_10_1007_s40747_024_01616_8 crossref_primary_10_1109_TCYB_2022_3225341 crossref_primary_10_1016_j_ins_2023_119221 crossref_primary_10_1016_j_swevo_2025_102149 crossref_primary_10_3390_rs15174178 crossref_primary_10_1007_s00500_023_09468_z crossref_primary_10_1016_j_asoc_2020_106947 crossref_primary_10_1007_s44336_024_00006_5 crossref_primary_10_1109_TCYB_2021_3098186 crossref_primary_10_1016_j_swevo_2019_04_008 crossref_primary_10_1016_j_swevo_2023_101429 crossref_primary_10_1016_j_neucom_2023_126892 crossref_primary_10_1007_s12293_022_00382_9 crossref_primary_10_1016_j_engappai_2024_109775 crossref_primary_10_1007_s40747_023_00990_z crossref_primary_10_1109_TCYB_2022_3180214 crossref_primary_10_1016_j_swevo_2025_101863 crossref_primary_10_1109_ACCESS_2025_3541271 crossref_primary_10_1109_JAS_2022_105437 crossref_primary_10_1109_TEVC_2021_3118593 crossref_primary_10_1080_09540091_2022_2075828 crossref_primary_10_1109_TIM_2022_3169551 crossref_primary_10_1109_TEVC_2023_3332913 crossref_primary_10_1109_TETCI_2024_3369629 crossref_primary_10_1109_MCI_2024_3363980 crossref_primary_10_1109_TEVC_2024_3380327 crossref_primary_10_1016_j_engappai_2024_108194 crossref_primary_10_1016_j_swevo_2022_101152 crossref_primary_10_1109_TEVC_2019_2896002 crossref_primary_10_1007_s40747_024_01489_x crossref_primary_10_1088_1742_6596_2488_1_012053 crossref_primary_10_3390_ma16247580 crossref_primary_10_1109_TEVC_2023_3264875 crossref_primary_10_1109_TEVC_2021_3099487 crossref_primary_10_1007_s11633_020_1253_0 crossref_primary_10_1109_TEVC_2023_3319640 crossref_primary_10_1109_TCYB_2022_3165374 crossref_primary_10_1016_j_asoc_2020_106650 crossref_primary_10_1109_TEVC_2020_3020423 crossref_primary_10_1016_j_swevo_2022_101181 crossref_primary_10_1109_TEVC_2025_3529938 crossref_primary_10_1007_s12293_022_00368_7 crossref_primary_10_1016_j_neucom_2021_01_115 crossref_primary_10_1145_3734865 crossref_primary_10_3390_en17174323 crossref_primary_10_1007_s40747_025_01835_7 crossref_primary_10_1007_s11269_022_03196_z crossref_primary_10_1109_TEVC_2021_3063606 crossref_primary_10_1016_j_swevo_2024_101654 crossref_primary_10_1007_s00521_022_08133_0 crossref_primary_10_1016_j_swevo_2023_101453 crossref_primary_10_1016_j_asoc_2023_110538 crossref_primary_10_1016_j_swevo_2025_101931 crossref_primary_10_1155_int_6462697 crossref_primary_10_1016_j_eswa_2025_129410 crossref_primary_10_1109_TSMC_2019_2956288 crossref_primary_10_1109_TSMC_2024_3446822 crossref_primary_10_1016_j_swevo_2024_101770 crossref_primary_10_1016_j_swevo_2025_102000 crossref_primary_10_1109_TEVC_2022_3166482 crossref_primary_10_1109_TSMC_2019_2898456 crossref_primary_10_1109_TSMC_2020_3003926 crossref_primary_10_1007_s00521_023_08505_0 crossref_primary_10_1016_j_asoc_2023_111081 crossref_primary_10_1016_j_ins_2022_07_110 crossref_primary_10_1162_evco_a_00354 crossref_primary_10_1109_TEVC_2018_2881153 crossref_primary_10_1109_TEVC_2022_3155593 crossref_primary_10_1016_j_asoc_2024_112344 crossref_primary_10_1007_s40747_021_00596_3 crossref_primary_10_1109_ACCESS_2020_3046002 crossref_primary_10_1016_j_swevo_2022_101045 crossref_primary_10_1016_j_swevo_2023_101462 crossref_primary_10_1016_j_swevo_2023_101466 crossref_primary_10_1016_j_swevo_2024_101763 crossref_primary_10_1088_1742_6596_2890_1_012013 |
| Cites_doi | 10.1109/TCYB.2014.2322602 10.1109/CEC.2009.4983126 10.1007/3-540-58484-6_269 10.1109/TEVC.2015.2455812 10.1162/106365600568086 10.1007/s12293-015-0175-9 10.1109/CEC.2002.1007032 10.1109/CEC.2013.6557903 10.1109/CEC.2015.7257307 10.1016/j.ins.2008.02.017 10.1109/CEC.2009.4982936 10.1162/106365600568202 10.1109/4235.996017 10.1109/TEVC.2011.2112662 10.1007/978-3-642-15871-1_31 10.1109/TEVC.2013.2281543 10.1145/2908961.2908979 10.1109/CEC.2014.6900420 10.1109/TEVC.2016.2600642 10.1109/MCDM.2009.4938830 10.1109/TEVC.2005.861417 10.1016/j.advengsoft.2011.05.014 10.1109/CEC.2015.7256959 10.1109/CEC.2005.1554717 10.1016/j.ins.2014.10.042 10.1145/2739480.2754666 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE RYH AAYXX CITATION |
| DOI | 10.1109/TEVC.2017.2704782 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CiNii Complete CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 275 |
| ExternalDocumentID | 10_1109_TEVC_2017_2704782 7929324 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: German Academic Exchange Service (DAAD) funderid: 10.13039/501100001655 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 RYH AAYXX CITATION |
| ID | FETCH-LOGICAL-c360t-43b982a6f888adae3a12ffaa82f1dc533c8283afb51d85ceefc9f85b54510d8f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 275 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429039100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sat Nov 29 03:13:47 EST 2025 Tue Nov 18 21:28:58 EST 2025 Mon Nov 10 09:21:26 EST 2025 Wed Aug 27 02:51:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English Japanese |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c360t-43b982a6f888adae3a12ffaa82f1dc533c8283afb51d85ceefc9f85b54510d8f3 |
| ORCID | 0000-0002-7262-9487 0000-0001-9186-6472 0000-0002-9917-5227 0000-0003-4853-1305 |
| PageCount | 16 |
| ParticipantIDs | ieee_primary_7929324 nii_cinii_1870302167732148736 crossref_citationtrail_10_1109_TEVC_2017_2704782 crossref_primary_10_1109_TEVC_2017_2704782 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-April 2018-04-01 2018-4-00 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-April |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE Transactions on Evolutionary Computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2018 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers (IEEE) |
| References | ref13 ref12 ref15 ref30 ref11 ref10 potter (ref14) 1994; 866 ref2 ref1 ref17 ref16 ref18 zhang (ref7) 2008 yang (ref19) 2007 ref24 ref23 ref26 ref25 iorio (ref22) 2004 elsayed (ref27) 2015 zitzler (ref31) 1998 li (ref20) 2012; 16 ref21 ref28 ref29 ref8 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref13 doi: 10.1109/TCYB.2014.2322602 – ident: ref18 doi: 10.1109/CEC.2009.4983126 – volume: 866 start-page: 249 year: 1994 ident: ref14 article-title: A cooperative coevolutionary approach to function optimization publication-title: Parallel Problem Solving from Nature - PPSN III doi: 10.1007/3-540-58484-6_269 – ident: ref12 doi: 10.1109/TEVC.2015.2455812 – ident: ref15 doi: 10.1162/106365600568086 – ident: ref26 doi: 10.1007/s12293-015-0175-9 – ident: ref6 doi: 10.1109/CEC.2002.1007032 – ident: ref11 doi: 10.1109/CEC.2013.6557903 – ident: ref2 doi: 10.1109/CEC.2015.7257307 – ident: ref16 doi: 10.1016/j.ins.2008.02.017 – ident: ref21 doi: 10.1109/CEC.2009.4982936 – ident: ref5 doi: 10.1162/106365600568202 – ident: ref8 doi: 10.1109/4235.996017 – volume: 16 start-page: 210 year: 2012 ident: ref20 article-title: Cooperatively coevolving particle swarms for large scale optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2011.2112662 – start-page: 537 year: 2004 ident: ref22 article-title: A cooperative coevolutionary multiobjective algorithm using non-dominated sorting publication-title: Proc Genet Evol Comput Conf (GECCO) – ident: ref17 doi: 10.1007/978-3-642-15871-1_31 – ident: ref23 doi: 10.1109/TEVC.2013.2281543 – ident: ref3 doi: 10.1145/2908961.2908979 – ident: ref24 doi: 10.1109/CEC.2014.6900420 – ident: ref29 doi: 10.1109/TEVC.2016.2600642 – ident: ref9 doi: 10.1109/MCDM.2009.4938830 – start-page: 695 year: 2015 ident: ref27 article-title: An adaptive configuration of differential evolution algorithms for big data publication-title: Proc IEEE Congr Evol Comput (CEC) – ident: ref4 doi: 10.1109/TEVC.2005.861417 – ident: ref30 doi: 10.1016/j.advengsoft.2011.05.014 – ident: ref28 doi: 10.1109/CEC.2015.7256959 – start-page: 3523 year: 2007 ident: ref19 article-title: Differential evolution for high-dimensional function optimization publication-title: Proc IEEE Congr Evol Comput (CEC) – ident: ref10 doi: 10.1109/CEC.2005.1554717 – ident: ref1 doi: 10.1016/j.ins.2014.10.042 – start-page: 292 year: 1998 ident: ref31 article-title: Multiobjective optimization using evolutionary algorithms-A comparative case study publication-title: Parallel Problem Solving From Nature (LNCS 6238) – year: 2008 ident: ref7 article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition – ident: ref25 doi: 10.1145/2739480.2754666 |
| SSID | ssj0014519 ssib009884049 ssib004836741 ssib006547266 ssib020737774 |
| Score | 2.6415524 |
| Snippet | In this paper, we propose a new method for solving multiobjective optimization problems with a large number of decision variables. The proposed method called... |
| SourceID | crossref nii ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 260 |
| SubjectTerms | Algorithm design and analysis Benchmark testing Computer science Diversity reception Electronic mail Large-scale optimization (LSO) many-variable optimization metaheuristic framework multiobjective optimization Optimization Search problems variable grouping weighting |
| Title | A Framework for Large-Scale Multiobjective Optimization Based on Problem Transformation |
| URI | https://ieeexplore.ieee.org/document/7929324 https://cir.nii.ac.jp/crid/1870302167732148736 |
| Volume | 22 |
| WOSCitedRecordID | wos000429039100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60eNCDb7G-2IMnMZpkk30cVSwepBas2lvYJ1Q0ldr6-51N0lJBBC9hD7ubkC_Z-XbnmxmAU2ZtrqX0ETOKRpmJ40jojEWWWpaw3GayEsg-3_NuVwwGsrcE5_NYGOdcJT5zF6FZ-fLtyEzDUdklR1uOBGAZljlndazW3GMQ0qTUYnqJjFEMGg9mEsvL_u3zTRBx8YuUh2Q06Q8bVBVVQctSDocLlqWz8b9n2oT1hkGSqxryLVhy5TZszKozkOZn3Ya1hVSDO_ByRTozHRZBokrugwQ8ekSIHKmicEf6tV78yAMuI-9NfCa5RjNnCTZ6dekZ0l-guqNyF546t_2bu6gpqhAZyuJJlFEtRaqYx62vsspRlaTeKyVSn1iD5M_gHowqr_PEihxNqDfSi1wj00piKzzdg1Y5Kt0-kFRrqm3tOswc1dpmqWcaZ81iKoxqQzx7zYVpMo6HwhdvRbXziGURkCkCMkWDTBvO5kM-6nQbf3XeCXjMOzZQtOEYscQ7hmsiwpKWJozzUJJJcMoOfh92CKs4uahVOUfQmoyn7hhWzNdk-Dk-qT62b3F20Ds |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH7aBtLGgcF-aAXGfOCEyObYjmMfx7SqaKVUoozeIv-UiiBFXcvfz3OSVkVCSFwiH-w4ypf4ffb73nsAb6T3hdU6ZtIZnglHaaaskJnnXuay8EI3Atn7YTkaqelUj3fg3SYWJoTQiM_CZWo2vnw_d6t0VHZVoi1HArALjwohGG2jtTY-g5QopZXTa-SMatr5MHOqrya39zdJxlVesjKlo2F_WKGmrAralno227It_cP_e6pn8LTjkOS6Bf057IT6CA7X9RlI97sewZOtZIPH8PWa9NdKLIJUlQyTCDz7jCAF0sThzu23dvkjn3Ah-dFFaJL3aOg8wca4LT5DJltkd16fwJf-7eRmkHVlFTLHJV1mglutmJERN7_Gm8BNzmI0RrGYe4f0z-EujJtoi9yrAo1odDqqwiLXyqlXkZ_CXj2vwxkQZi23vnUeisCt9YJFafGugnLlTA_o-jVXrss5nkpffK-avQfVVUKmSshUHTI9eLsZ8rNNuPGvzscJj03HDooenCOWOGO65iotaiyXZZmKMqmSyxd_H3YB-4PJx2E1_DC6ewkHOJFqNTqvYG-5WIVzeOx-LWcPi9fNh_cbcGLTgg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Framework+for+Large-Scale+Multiobjective+Optimization+Based+on+Problem+Transformation&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Zille%2C+Heiner&rft.au=Ishibuchi%2C+Hisao&rft.au=Mostaghim%2C+Sanaz&rft.au=Nojima%2C+Yusuke&rft.date=2018-04-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=22&rft.issue=2&rft.spage=260&rft.epage=275&rft_id=info:doi/10.1109%2FTEVC.2017.2704782&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2017_2704782 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |