A Framework for Large-Scale Multiobjective Optimization Based on Problem Transformation

In this paper, we propose a new method for solving multiobjective optimization problems with a large number of decision variables. The proposed method called weighted optimization framework is intended to serve as a generic method that can be used with any population-based metaheuristic algorithm. A...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Transactions on Evolutionary Computation Ročník 22; číslo 2; s. 260 - 275
Hlavní autoři: Zille, Heiner, Ishibuchi, Hisao, Mostaghim, Sanaz, Nojima, Yusuke
Médium: Journal Article
Jazyk:angličtina
japonština
Vydáno: IEEE 01.04.2018
Institute of Electrical and Electronics Engineers (IEEE)
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we propose a new method for solving multiobjective optimization problems with a large number of decision variables. The proposed method called weighted optimization framework is intended to serve as a generic method that can be used with any population-based metaheuristic algorithm. After explaining some general issues of large-scale optimization, we introduce a problem transformation scheme that is used to reduce the dimensionality of the search space and search for improved solutions in the reduced subspace. This involves so-called weights that are applied to alter the decision variables and are also subject to optimization. Our method relies on grouping mechanisms and employs a population-based algorithm as an optimizer for both original variables and weight variables. Different grouping mechanisms and transformation functions within the framework are explained and their advantages and disadvantages are examined. Our experiments use test problems with 2-3 objectives 40-5000 variables. Using our approach on three well-known algorithms and comparing its performance with other large-scale optimizers, we show that our method can significantly outperform most existing methods in terms of solution quality as well as convergence rate on almost all tested problems for many-variable instances.
AbstractList In this paper, we propose a new method for solving multiobjective optimization problems with a large number of decision variables. The proposed method called weighted optimization framework is intended to serve as a generic method that can be used with any population-based metaheuristic algorithm. After explaining some general issues of large-scale optimization, we introduce a problem transformation scheme that is used to reduce the dimensionality of the search space and search for improved solutions in the reduced subspace. This involves so-called weights that are applied to alter the decision variables and are also subject to optimization. Our method relies on grouping mechanisms and employs a population-based algorithm as an optimizer for both original variables and weight variables. Different grouping mechanisms and transformation functions within the framework are explained and their advantages and disadvantages are examined. Our experiments use test problems with 2-3 objectives 40-5000 variables. Using our approach on three well-known algorithms and comparing its performance with other large-scale optimizers, we show that our method can significantly outperform most existing methods in terms of solution quality as well as convergence rate on almost all tested problems for many-variable instances.
Author Mostaghim, Sanaz
Ishibuchi, Hisao
Nojima, Yusuke
Zille, Heiner
Author_xml – sequence: 1
  givenname: Heiner
  orcidid: 0000-0002-7262-9487
  surname: Zille
  fullname: Zille, Heiner
  email: heiner.zille
  organization: Institute for Intelligent Cooperating Systems, Faculty of Computer Science, Otto von Guericke University Magdeburg, Magdeburg, Germany
– sequence: 2
  givenname: Hisao
  orcidid: 0000-0001-9186-6472
  surname: Ishibuchi
  fullname: Ishibuchi, Hisao
  email: hisao@sustc.edu.cn
  organization: Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 3
  givenname: Sanaz
  orcidid: 0000-0002-9917-5227
  surname: Mostaghim
  fullname: Mostaghim, Sanaz
  email: sanaz.mostaghim@ovgu.de
  organization: Institute for Intelligent Cooperating Systems, Faculty of Computer Science, Otto von Guericke University Magdeburg, Magdeburg, Germany
– sequence: 4
  givenname: Yusuke
  orcidid: 0000-0003-4853-1305
  surname: Nojima
  fullname: Nojima, Yusuke
  email: nojima@cs.osakafu-u.ac.jp
  organization: Department of Computer Science and Intelligent Systems, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
BackLink https://cir.nii.ac.jp/crid/1870302167732148736$$DView record in CiNii
BookMark eNp9UMtOwzAQtFCRaAsfgLj4wDXFayexfSwVBaSiIlEet8hxbOSSR-UEEHw9Tltx4MBld7U7MzuaERrUTW0QOgUyASDyYnX1NJtQAnxCOYm5oAdoCDKGiBCaDsJMhIw4Fy9HaNS2a0IgTkAO0fMUz72qzGfj37BtPF4o_2qiB61Kg-_ey841-drozn0YvNx0rnLfKuxqfKlaU-Aw3PsmL02FV17VbVCotvdjdGhV2ZqTfR-jx_nVanYTLZbXt7PpItIsJV0Us1wKqlIrhFCFMkwBtVYpQS0UOmFMCyqYsnkChUi0MVZLK5I8Ce5JISwbI77T1b5pW29spl23ddB55coMSNbnk_X5ZH0-2T6fwIQ_zI13lfJf_3LOd5zaufCoryA4YYRCyjmjEAvO0gA728GcMeZXlksqGY3ZD4P1fu4
CODEN ITEVF5
CitedBy_id crossref_primary_10_1007_s13369_021_06523_5
crossref_primary_10_1007_s40747_021_00270_8
crossref_primary_10_1109_TNNLS_2021_3113158
crossref_primary_10_1016_j_swevo_2023_101360
crossref_primary_10_1016_j_swevo_2022_101084
crossref_primary_10_1016_j_engappai_2025_111281
crossref_primary_10_1109_TAI_2024_3444736
crossref_primary_10_1109_TETCI_2023_3300526
crossref_primary_10_1109_TEVC_2022_3166815
crossref_primary_10_1007_s10489_022_04037_7
crossref_primary_10_3390_a18030164
crossref_primary_10_1038_s41598_023_39053_1
crossref_primary_10_1007_s13042_024_02221_4
crossref_primary_10_1109_TEVC_2022_3161363
crossref_primary_10_1007_s40747_023_01137_w
crossref_primary_10_1016_j_eswa_2025_127374
crossref_primary_10_1109_JAS_2024_124947
crossref_primary_10_1016_j_eswa_2023_120184
crossref_primary_10_1016_j_swevo_2023_101235
crossref_primary_10_1016_j_swevo_2024_101752
crossref_primary_10_1145_3470971
crossref_primary_10_1016_j_eswa_2023_122370
crossref_primary_10_1016_j_eswa_2025_129328
crossref_primary_10_1016_j_ins_2023_02_055
crossref_primary_10_1109_TEVC_2023_3296488
crossref_primary_10_1016_j_ins_2022_07_018
crossref_primary_10_1016_j_swevo_2021_101008
crossref_primary_10_1109_TIM_2024_3440371
crossref_primary_10_1016_j_swevo_2024_101504
crossref_primary_10_1109_ACCESS_2023_3321313
crossref_primary_10_1016_j_swevo_2024_101628
crossref_primary_10_1016_j_swevo_2024_101622
crossref_primary_10_1016_j_ins_2023_119095
crossref_primary_10_1016_j_ins_2018_10_007
crossref_primary_10_1109_JAS_2022_105875
crossref_primary_10_1007_s40747_019_0113_4
crossref_primary_10_1109_TAI_2022_3156952
crossref_primary_10_1186_s41601_022_00271_w
crossref_primary_10_1016_j_swevo_2023_101262
crossref_primary_10_1007_s12293_025_00438_6
crossref_primary_10_1109_TEVC_2020_3044711
crossref_primary_10_1016_j_engappai_2025_110089
crossref_primary_10_3390_math10122077
crossref_primary_10_1016_j_asoc_2025_113921
crossref_primary_10_1016_j_swevo_2023_101377
crossref_primary_10_1016_j_intell_2023_101793
crossref_primary_10_1016_j_swevo_2020_100647
crossref_primary_10_1016_j_swevo_2022_101093
crossref_primary_10_1007_s11047_022_09910_5
crossref_primary_10_1016_j_eswa_2023_120290
crossref_primary_10_1109_TEVC_2022_3144675
crossref_primary_10_1016_j_swevo_2023_101393
crossref_primary_10_1080_23799927_2023_2227147
crossref_primary_10_1016_j_ins_2023_119638
crossref_primary_10_1109_TETCI_2024_3386866
crossref_primary_10_1016_j_asoc_2025_113386
crossref_primary_10_3390_sym16101289
crossref_primary_10_1016_j_eswa_2025_129460
crossref_primary_10_1109_MCI_2022_3180913
crossref_primary_10_1109_JIOT_2021_3104661
crossref_primary_10_1109_TCYB_2023_3287596
crossref_primary_10_1007_s10489_023_04822_y
crossref_primary_10_1016_j_ins_2024_120719
crossref_primary_10_1109_TEVC_2020_2967501
crossref_primary_10_1109_TEVC_2022_3213006
crossref_primary_10_1007_s12293_025_00473_3
crossref_primary_10_1016_j_ins_2021_04_003
crossref_primary_10_1109_TEVC_2023_3349073
crossref_primary_10_1016_j_asoc_2023_110233
crossref_primary_10_1016_j_swevo_2021_100866
crossref_primary_10_1109_TCYB_2019_2906383
crossref_primary_10_1109_TEVC_2021_3111209
crossref_primary_10_1016_j_swevo_2023_101397
crossref_primary_10_1016_j_swevo_2024_101832
crossref_primary_10_1007_s44196_025_00884_7
crossref_primary_10_1016_j_asoc_2022_109651
crossref_primary_10_1016_j_jpdc_2022_06_016
crossref_primary_10_1016_j_ins_2024_120607
crossref_primary_10_1109_JAS_2024_124341
crossref_primary_10_1007_s00521_021_06844_4
crossref_primary_10_1016_j_swevo_2021_100995
crossref_primary_10_1007_s40747_025_01822_y
crossref_primary_10_1016_j_swevo_2024_101820
crossref_primary_10_3233_JCM_226740
crossref_primary_10_1007_s10589_024_00551_1
crossref_primary_10_1016_j_swevo_2020_100697
crossref_primary_10_1016_j_swevo_2025_102079
crossref_primary_10_1007_s12293_025_00459_1
crossref_primary_10_1016_j_swevo_2020_100684
crossref_primary_10_3390_su15129238
crossref_primary_10_1016_j_swevo_2024_101499
crossref_primary_10_1016_j_swevo_2025_102089
crossref_primary_10_1109_TEVC_2024_3355221
crossref_primary_10_1016_j_eswa_2024_123301
crossref_primary_10_1109_TGRS_2022_3198426
crossref_primary_10_1109_TCYB_2019_2950626
crossref_primary_10_1016_j_petsci_2024_09_018
crossref_primary_10_1038_s41598_024_64570_y
crossref_primary_10_1016_j_eswa_2025_129142
crossref_primary_10_1109_TSMC_2024_3454051
crossref_primary_10_1093_jcde_qwac124
crossref_primary_10_1016_j_ins_2024_120950
crossref_primary_10_1016_j_ins_2022_05_005
crossref_primary_10_1016_j_asoc_2021_108158
crossref_primary_10_1016_j_swevo_2025_101881
crossref_primary_10_1109_ACCESS_2022_3212081
crossref_primary_10_1016_j_ins_2023_119003
crossref_primary_10_1109_TSMC_2021_3131312
crossref_primary_10_1007_s00500_023_09061_4
crossref_primary_10_1016_j_swevo_2022_101119
crossref_primary_10_1016_j_ins_2020_05_019
crossref_primary_10_1007_s10489_023_04500_z
crossref_primary_10_1109_JIOT_2024_3496585
crossref_primary_10_1109_TCYB_2022_3178929
crossref_primary_10_1109_JAS_2024_124548
crossref_primary_10_1007_s12293_022_00358_9
crossref_primary_10_1016_j_swevo_2025_102061
crossref_primary_10_1109_TCYB_2023_3265652
crossref_primary_10_1007_s41965_024_00172_x
crossref_primary_10_1109_TCYB_2020_3041325
crossref_primary_10_1007_s40747_024_01752_1
crossref_primary_10_1109_TETCI_2025_3537916
crossref_primary_10_1109_TEVC_2019_2918140
crossref_primary_10_1016_j_asoc_2019_106059
crossref_primary_10_1007_s40747_021_00553_0
crossref_primary_10_1007_s00500_021_06613_4
crossref_primary_10_1109_TEVC_2023_3256183
crossref_primary_10_1016_j_ins_2023_119253
crossref_primary_10_1016_j_swevo_2022_101100
crossref_primary_10_1109_TCYB_2020_3041212
crossref_primary_10_1016_j_eswa_2023_121563
crossref_primary_10_1016_j_ins_2024_120411
crossref_primary_10_1109_JIOT_2021_3102421
crossref_primary_10_1109_TCYB_2020_2979930
crossref_primary_10_1109_TEVC_2021_3119933
crossref_primary_10_3390_electronics11203317
crossref_primary_10_1016_j_eswa_2024_125068
crossref_primary_10_1109_TEVC_2021_3130835
crossref_primary_10_1007_s00500_023_08825_2
crossref_primary_10_1007_s40747_021_00273_5
crossref_primary_10_1007_s10489_025_06772_z
crossref_primary_10_1016_j_knosys_2021_106856
crossref_primary_10_1109_TEVC_2019_2933444
crossref_primary_10_1007_s40747_024_01616_8
crossref_primary_10_1109_TCYB_2022_3225341
crossref_primary_10_1016_j_ins_2023_119221
crossref_primary_10_1016_j_swevo_2025_102149
crossref_primary_10_3390_rs15174178
crossref_primary_10_1007_s00500_023_09468_z
crossref_primary_10_1016_j_asoc_2020_106947
crossref_primary_10_1007_s44336_024_00006_5
crossref_primary_10_1109_TCYB_2021_3098186
crossref_primary_10_1016_j_swevo_2019_04_008
crossref_primary_10_1016_j_swevo_2023_101429
crossref_primary_10_1016_j_neucom_2023_126892
crossref_primary_10_1007_s12293_022_00382_9
crossref_primary_10_1016_j_engappai_2024_109775
crossref_primary_10_1007_s40747_023_00990_z
crossref_primary_10_1109_TCYB_2022_3180214
crossref_primary_10_1016_j_swevo_2025_101863
crossref_primary_10_1109_ACCESS_2025_3541271
crossref_primary_10_1109_JAS_2022_105437
crossref_primary_10_1109_TEVC_2021_3118593
crossref_primary_10_1080_09540091_2022_2075828
crossref_primary_10_1109_TIM_2022_3169551
crossref_primary_10_1109_TEVC_2023_3332913
crossref_primary_10_1109_TETCI_2024_3369629
crossref_primary_10_1109_MCI_2024_3363980
crossref_primary_10_1109_TEVC_2024_3380327
crossref_primary_10_1016_j_engappai_2024_108194
crossref_primary_10_1016_j_swevo_2022_101152
crossref_primary_10_1109_TEVC_2019_2896002
crossref_primary_10_1007_s40747_024_01489_x
crossref_primary_10_1088_1742_6596_2488_1_012053
crossref_primary_10_3390_ma16247580
crossref_primary_10_1109_TEVC_2023_3264875
crossref_primary_10_1109_TEVC_2021_3099487
crossref_primary_10_1007_s11633_020_1253_0
crossref_primary_10_1109_TEVC_2023_3319640
crossref_primary_10_1109_TCYB_2022_3165374
crossref_primary_10_1016_j_asoc_2020_106650
crossref_primary_10_1109_TEVC_2020_3020423
crossref_primary_10_1016_j_swevo_2022_101181
crossref_primary_10_1109_TEVC_2025_3529938
crossref_primary_10_1007_s12293_022_00368_7
crossref_primary_10_1016_j_neucom_2021_01_115
crossref_primary_10_1145_3734865
crossref_primary_10_3390_en17174323
crossref_primary_10_1007_s40747_025_01835_7
crossref_primary_10_1007_s11269_022_03196_z
crossref_primary_10_1109_TEVC_2021_3063606
crossref_primary_10_1016_j_swevo_2024_101654
crossref_primary_10_1007_s00521_022_08133_0
crossref_primary_10_1016_j_swevo_2023_101453
crossref_primary_10_1016_j_asoc_2023_110538
crossref_primary_10_1016_j_swevo_2025_101931
crossref_primary_10_1155_int_6462697
crossref_primary_10_1016_j_eswa_2025_129410
crossref_primary_10_1109_TSMC_2019_2956288
crossref_primary_10_1109_TSMC_2024_3446822
crossref_primary_10_1016_j_swevo_2024_101770
crossref_primary_10_1016_j_swevo_2025_102000
crossref_primary_10_1109_TEVC_2022_3166482
crossref_primary_10_1109_TSMC_2019_2898456
crossref_primary_10_1109_TSMC_2020_3003926
crossref_primary_10_1007_s00521_023_08505_0
crossref_primary_10_1016_j_asoc_2023_111081
crossref_primary_10_1016_j_ins_2022_07_110
crossref_primary_10_1162_evco_a_00354
crossref_primary_10_1109_TEVC_2018_2881153
crossref_primary_10_1109_TEVC_2022_3155593
crossref_primary_10_1016_j_asoc_2024_112344
crossref_primary_10_1007_s40747_021_00596_3
crossref_primary_10_1109_ACCESS_2020_3046002
crossref_primary_10_1016_j_swevo_2022_101045
crossref_primary_10_1016_j_swevo_2023_101462
crossref_primary_10_1016_j_swevo_2023_101466
crossref_primary_10_1016_j_swevo_2024_101763
crossref_primary_10_1088_1742_6596_2890_1_012013
Cites_doi 10.1109/TCYB.2014.2322602
10.1109/CEC.2009.4983126
10.1007/3-540-58484-6_269
10.1109/TEVC.2015.2455812
10.1162/106365600568086
10.1007/s12293-015-0175-9
10.1109/CEC.2002.1007032
10.1109/CEC.2013.6557903
10.1109/CEC.2015.7257307
10.1016/j.ins.2008.02.017
10.1109/CEC.2009.4982936
10.1162/106365600568202
10.1109/4235.996017
10.1109/TEVC.2011.2112662
10.1007/978-3-642-15871-1_31
10.1109/TEVC.2013.2281543
10.1145/2908961.2908979
10.1109/CEC.2014.6900420
10.1109/TEVC.2016.2600642
10.1109/MCDM.2009.4938830
10.1109/TEVC.2005.861417
10.1016/j.advengsoft.2011.05.014
10.1109/CEC.2015.7256959
10.1109/CEC.2005.1554717
10.1016/j.ins.2014.10.042
10.1145/2739480.2754666
ContentType Journal Article
DBID 97E
RIA
RIE
RYH
AAYXX
CITATION
DOI 10.1109/TEVC.2017.2704782
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CiNii Complete
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 275
ExternalDocumentID 10_1109_TEVC_2017_2704782
7929324
Genre orig-research
GrantInformation_xml – fundername: German Academic Exchange Service (DAAD)
  funderid: 10.13039/501100001655
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
RYH
AAYXX
CITATION
ID FETCH-LOGICAL-c360t-43b982a6f888adae3a12ffaa82f1dc533c8283afb51d85ceefc9f85b54510d8f3
IEDL.DBID RIE
ISICitedReferencesCount 275
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429039100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sat Nov 29 03:13:47 EST 2025
Tue Nov 18 21:28:58 EST 2025
Mon Nov 10 09:21:26 EST 2025
Wed Aug 27 02:51:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
Japanese
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-43b982a6f888adae3a12ffaa82f1dc533c8283afb51d85ceefc9f85b54510d8f3
ORCID 0000-0002-7262-9487
0000-0001-9186-6472
0000-0002-9917-5227
0000-0003-4853-1305
PageCount 16
ParticipantIDs ieee_primary_7929324
nii_cinii_1870302167732148736
crossref_citationtrail_10_1109_TEVC_2017_2704782
crossref_primary_10_1109_TEVC_2017_2704782
PublicationCentury 2000
PublicationDate 2018-April
2018-04-01
2018-4-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-April
PublicationDecade 2010
PublicationTitle IEEE Transactions on Evolutionary Computation
PublicationTitleAbbrev TEVC
PublicationYear 2018
Publisher IEEE
Institute of Electrical and Electronics Engineers (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers (IEEE)
References ref13
ref12
ref15
ref30
ref11
ref10
potter (ref14) 1994; 866
ref2
ref1
ref17
ref16
ref18
zhang (ref7) 2008
yang (ref19) 2007
ref24
ref23
ref26
ref25
iorio (ref22) 2004
elsayed (ref27) 2015
zitzler (ref31) 1998
li (ref20) 2012; 16
ref21
ref28
ref29
ref8
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1109/TCYB.2014.2322602
– ident: ref18
  doi: 10.1109/CEC.2009.4983126
– volume: 866
  start-page: 249
  year: 1994
  ident: ref14
  article-title: A cooperative coevolutionary approach to function optimization
  publication-title: Parallel Problem Solving from Nature - PPSN III
  doi: 10.1007/3-540-58484-6_269
– ident: ref12
  doi: 10.1109/TEVC.2015.2455812
– ident: ref15
  doi: 10.1162/106365600568086
– ident: ref26
  doi: 10.1007/s12293-015-0175-9
– ident: ref6
  doi: 10.1109/CEC.2002.1007032
– ident: ref11
  doi: 10.1109/CEC.2013.6557903
– ident: ref2
  doi: 10.1109/CEC.2015.7257307
– ident: ref16
  doi: 10.1016/j.ins.2008.02.017
– ident: ref21
  doi: 10.1109/CEC.2009.4982936
– ident: ref5
  doi: 10.1162/106365600568202
– ident: ref8
  doi: 10.1109/4235.996017
– volume: 16
  start-page: 210
  year: 2012
  ident: ref20
  article-title: Cooperatively coevolving particle swarms for large scale optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2011.2112662
– start-page: 537
  year: 2004
  ident: ref22
  article-title: A cooperative coevolutionary multiobjective algorithm using non-dominated sorting
  publication-title: Proc Genet Evol Comput Conf (GECCO)
– ident: ref17
  doi: 10.1007/978-3-642-15871-1_31
– ident: ref23
  doi: 10.1109/TEVC.2013.2281543
– ident: ref3
  doi: 10.1145/2908961.2908979
– ident: ref24
  doi: 10.1109/CEC.2014.6900420
– ident: ref29
  doi: 10.1109/TEVC.2016.2600642
– ident: ref9
  doi: 10.1109/MCDM.2009.4938830
– start-page: 695
  year: 2015
  ident: ref27
  article-title: An adaptive configuration of differential evolution algorithms for big data
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref4
  doi: 10.1109/TEVC.2005.861417
– ident: ref30
  doi: 10.1016/j.advengsoft.2011.05.014
– ident: ref28
  doi: 10.1109/CEC.2015.7256959
– start-page: 3523
  year: 2007
  ident: ref19
  article-title: Differential evolution for high-dimensional function optimization
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref10
  doi: 10.1109/CEC.2005.1554717
– ident: ref1
  doi: 10.1016/j.ins.2014.10.042
– start-page: 292
  year: 1998
  ident: ref31
  article-title: Multiobjective optimization using evolutionary algorithms-A comparative case study
  publication-title: Parallel Problem Solving From Nature (LNCS 6238)
– year: 2008
  ident: ref7
  article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition
– ident: ref25
  doi: 10.1145/2739480.2754666
SSID ssj0014519
ssib009884049
ssib004836741
ssib006547266
ssib020737774
Score 2.6415524
Snippet In this paper, we propose a new method for solving multiobjective optimization problems with a large number of decision variables. The proposed method called...
SourceID crossref
nii
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 260
SubjectTerms Algorithm design and analysis
Benchmark testing
Computer science
Diversity reception
Electronic mail
Large-scale optimization (LSO)
many-variable optimization
metaheuristic framework
multiobjective optimization
Optimization
Search problems
variable grouping
weighting
Title A Framework for Large-Scale Multiobjective Optimization Based on Problem Transformation
URI https://ieeexplore.ieee.org/document/7929324
https://cir.nii.ac.jp/crid/1870302167732148736
Volume 22
WOSCitedRecordID wos000429039100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60eNCDb7G-2IMnMZpkk30cVSwepBas2lvYJ1Q0ldr6-51N0lJBBC9hD7ubkC_Z-XbnmxmAU2ZtrqX0ETOKRpmJ40jojEWWWpaw3GayEsg-3_NuVwwGsrcE5_NYGOdcJT5zF6FZ-fLtyEzDUdklR1uOBGAZljlndazW3GMQ0qTUYnqJjFEMGg9mEsvL_u3zTRBx8YuUh2Q06Q8bVBVVQctSDocLlqWz8b9n2oT1hkGSqxryLVhy5TZszKozkOZn3Ya1hVSDO_ByRTozHRZBokrugwQ8ekSIHKmicEf6tV78yAMuI-9NfCa5RjNnCTZ6dekZ0l-guqNyF546t_2bu6gpqhAZyuJJlFEtRaqYx62vsspRlaTeKyVSn1iD5M_gHowqr_PEihxNqDfSi1wj00piKzzdg1Y5Kt0-kFRrqm3tOswc1dpmqWcaZ81iKoxqQzx7zYVpMo6HwhdvRbXziGURkCkCMkWDTBvO5kM-6nQbf3XeCXjMOzZQtOEYscQ7hmsiwpKWJozzUJJJcMoOfh92CKs4uahVOUfQmoyn7hhWzNdk-Dk-qT62b3F20Ds
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH7aBtLGgcF-aAXGfOCEyObYjmMfx7SqaKVUoozeIv-UiiBFXcvfz3OSVkVCSFwiH-w4ypf4ffb73nsAb6T3hdU6ZtIZnglHaaaskJnnXuay8EI3Atn7YTkaqelUj3fg3SYWJoTQiM_CZWo2vnw_d6t0VHZVoi1HArALjwohGG2jtTY-g5QopZXTa-SMatr5MHOqrya39zdJxlVesjKlo2F_WKGmrAralno227It_cP_e6pn8LTjkOS6Bf057IT6CA7X9RlI97sewZOtZIPH8PWa9NdKLIJUlQyTCDz7jCAF0sThzu23dvkjn3Ah-dFFaJL3aOg8wca4LT5DJltkd16fwJf-7eRmkHVlFTLHJV1mglutmJERN7_Gm8BNzmI0RrGYe4f0z-EujJtoi9yrAo1odDqqwiLXyqlXkZ_CXj2vwxkQZi23vnUeisCt9YJFafGugnLlTA_o-jVXrss5nkpffK-avQfVVUKmSshUHTI9eLsZ8rNNuPGvzscJj03HDooenCOWOGO65iotaiyXZZmKMqmSyxd_H3YB-4PJx2E1_DC6ewkHOJFqNTqvYG-5WIVzeOx-LWcPi9fNh_cbcGLTgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Framework+for+Large-Scale+Multiobjective+Optimization+Based+on+Problem+Transformation&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Zille%2C+Heiner&rft.au=Ishibuchi%2C+Hisao&rft.au=Mostaghim%2C+Sanaz&rft.au=Nojima%2C+Yusuke&rft.date=2018-04-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=22&rft.issue=2&rft.spage=260&rft.epage=275&rft_id=info:doi/10.1109%2FTEVC.2017.2704782&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2017_2704782
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon