Data-Driven Day-Ahead PV Estimation Using Autoencoder-LSTM and Persistence Model
Inherent variability in photovoltaic (PV) and associated impacts on power systems is a challenging problem for both the PV owners and the grid operators. Existing statistical and machine learning algorithms typically work well for weather conditions similar to historical data. However, uncertain wea...
Saved in:
| Published in: | IEEE transactions on industry applications Vol. 56; no. 6; pp. 7185 - 7192 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0093-9994, 1939-9367 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Inherent variability in photovoltaic (PV) and associated impacts on power systems is a challenging problem for both the PV owners and the grid operators. Existing statistical and machine learning algorithms typically work well for weather conditions similar to historical data. However, uncertain weather conditions pose a great challenge to the estimation accuracy of the estimation models. With the enhanced integration of intelligent electronic devices and the realization of associated automation in the power grid, renewable energy data are becoming more accessible, which can be utilized by deep learning models and improve the PV power generation estimation accuracy. In this article, a hybrid deep learning model driven by external weather data is proposed to do day-ahead PV output forecasting at 15-min interval. The proposed model is motivated by the recent advancement of long-short-term-memory networks and autoencoder, which estimates uncertainties in sequence while making the prediction for complex weather conditions. Meanwhile, the persistence model is used to predict continuous sunny weather conditions. The forecasting result is validated with data from multiple locations. |
|---|---|
| AbstractList | Inherent variability in photovoltaic (PV) and associated impacts on power systems is a challenging problem for both the PV owners and the grid operators. Existing statistical and machine learning algorithms typically work well for weather conditions similar to historical data. Furthermore, uncertain weather conditions pose a great challenge to the estimation accuracy of the estimation models. With the enhanced integration of intelligent electronic devices and the realization of associated automation in the power grid, renewable energy data is becoming more accessible, which can be utilized by deep learning models and improve the PV power generation estimation accuracy. In this paper, a hybrid deep learning model driven by external weather data is proposed to do day-ahead PV output forecasting at 15-minute-interval. The proposed model is motivated by the recent advancement of Long-Short-Term-Memory (LSTM) networks and AutoEncoder (AE), which estimates uncertainties in sequence while making the prediction for complex weather conditions. Meanwhile, the persistence model (PM) is used to predict continuous sunny weather conditions. The forecasting result is validated with data from multiple locations Inherent variability in photovoltaic (PV) and associated impacts on power systems is a challenging problem for both the PV owners and the grid operators. Existing statistical and machine learning algorithms typically work well for weather conditions similar to historical data. However, uncertain weather conditions pose a great challenge to the estimation accuracy of the estimation models. With the enhanced integration of intelligent electronic devices and the realization of associated automation in the power grid, renewable energy data are becoming more accessible, which can be utilized by deep learning models and improve the PV power generation estimation accuracy. In this article, a hybrid deep learning model driven by external weather data is proposed to do day-ahead PV output forecasting at 15-min interval. The proposed model is motivated by the recent advancement of long-short-term-memory networks and autoencoder, which estimates uncertainties in sequence while making the prediction for complex weather conditions. Meanwhile, the persistence model is used to predict continuous sunny weather conditions. The forecasting result is validated with data from multiple locations. |
| Author | Sharma, Ratnesh K. Zhang, Yue Srivastava, Anurag K. Qin, Chuan Jin, Chenrui |
| Author_xml | – sequence: 1 givenname: Yue orcidid: 0000-0002-4146-9716 surname: Zhang fullname: Zhang, Yue email: zzyt1998@gmail.com organization: GE Digital, Bothell, WA, USA – sequence: 2 givenname: Chuan orcidid: 0000-0001-7804-3690 surname: Qin fullname: Qin, Chuan email: chuan.qin@wsu.edu organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA – sequence: 3 givenname: Anurag K. orcidid: 0000-0003-3518-8018 surname: Srivastava fullname: Srivastava, Anurag K. email: anurag.k.srivastava@wsu.edu organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA – sequence: 4 givenname: Chenrui surname: Jin fullname: Jin, Chenrui email: jinchenrui@gmail.com organization: NEC Labs America, Cupertino, CA, USA – sequence: 5 givenname: Ratnesh K. surname: Sharma fullname: Sharma, Ratnesh K. email: mybluejayholdings@gmail.com organization: NEC Labs America, Cupertino, CA, USA |
| BackLink | https://www.osti.gov/servlets/purl/1810249$$D View this record in Osti.gov |
| BookMark | eNp9kEtLAzEURoMoWKt7wc2g66k3j3lkWWx9QIsFq9uQZu7oSE1qkgr-e1NHXLhwFUjOd--Xc0T2rbNIyCmFEaUgL5d34xEDBiMOrKgE2yMDKrnMJS-rfTIAkDyXUopDchTCKwAVBRUDspjoqPOJ7z7QZhP9mY9fUDfZ4imbhti96dg5mz2Gzj5n4210aI1r0Oezh-U80zaB6EMXYrrHbJ6e1sfkoNXrgCc_55A8Xk-XV7f57P7m7mo8yw0vIebcSAG80FQLLiS0oq10I1cN5zUw0wioS6mrpsLCAGCNrOAUV7rh9apqSlrzITnv57rUUwXTRTQvxlmLJipaU2BCJuiihzbevW8xRPXqtt6mXoqJopJVQUtIFPSU8S4Ej63a-PR1_6koqJ1cleSqnVz1IzdFyj-RVOBbVvS6W_8XPOuDHSL-7pEMhICSfwGyeoXw |
| CODEN | ITIACR |
| CitedBy_id | crossref_primary_10_1016_j_energy_2025_135744 crossref_primary_10_1007_s00521_025_11035_6 crossref_primary_10_1109_ACCESS_2024_3471073 crossref_primary_10_1109_TII_2024_3452180 crossref_primary_10_1007_s00202_024_02759_0 crossref_primary_10_1109_ACCESS_2022_3187839 crossref_primary_10_1016_j_eswa_2023_122925 crossref_primary_10_1109_ACCESS_2022_3208894 crossref_primary_10_1109_ACCESS_2021_3061370 crossref_primary_10_1109_TIA_2023_3276356 crossref_primary_10_1016_j_apenergy_2023_122589 crossref_primary_10_1109_TPWRS_2023_3257368 crossref_primary_10_1109_TIA_2022_3199182 crossref_primary_10_1007_s00202_023_02220_8 crossref_primary_10_1016_j_eswa_2025_126734 crossref_primary_10_1109_TQE_2023_3271362 crossref_primary_10_1049_rpg2_12736 crossref_primary_10_1109_TIA_2023_3322117 crossref_primary_10_1007_s00521_022_08160_x crossref_primary_10_3390_en17030737 crossref_primary_10_1016_j_rineng_2024_102773 crossref_primary_10_1109_TIA_2022_3170385 crossref_primary_10_1109_ACCESS_2023_3233951 crossref_primary_10_3390_en14164776 crossref_primary_10_3390_en15239125 crossref_primary_10_1016_j_energy_2023_127942 crossref_primary_10_1016_j_jclepro_2022_135414 crossref_primary_10_1109_ACCESS_2021_3103126 crossref_primary_10_1016_j_engappai_2024_109555 crossref_primary_10_1109_ACCESS_2022_3156942 crossref_primary_10_1109_TIA_2022_3206731 crossref_primary_10_1109_ACCESS_2021_3125895 crossref_primary_10_3390_math13111783 crossref_primary_10_1109_TPWRS_2024_3404815 crossref_primary_10_1109_ACCESS_2021_3117004 crossref_primary_10_1016_j_ijepes_2022_108257 crossref_primary_10_1109_TSTE_2024_3486907 crossref_primary_10_3389_fnbot_2024_1431643 crossref_primary_10_3390_s22103959 crossref_primary_10_1007_s42835_024_01974_w crossref_primary_10_1109_TIA_2025_3529819 crossref_primary_10_1016_j_ref_2025_100739 crossref_primary_10_1049_gtd2_12603 crossref_primary_10_1016_j_ijepes_2024_110389 crossref_primary_10_1109_ACCESS_2025_3583225 crossref_primary_10_1088_1402_4896_ad6cad crossref_primary_10_1109_ACCESS_2023_3326415 crossref_primary_10_1016_j_iintel_2024_100086 crossref_primary_10_3390_en15103838 crossref_primary_10_1016_j_egyr_2022_09_077 crossref_primary_10_1016_j_jclepro_2021_127037 crossref_primary_10_1109_ACCESS_2021_3062776 crossref_primary_10_1016_j_solener_2023_06_002 crossref_primary_10_1109_TIM_2023_3310090 crossref_primary_10_1016_j_segan_2023_101149 crossref_primary_10_1049_rpg2_13050 crossref_primary_10_3390_en16237871 crossref_primary_10_1002_cem_3640 crossref_primary_10_1177_01445987251360490 crossref_primary_10_3390_electronics13081545 crossref_primary_10_1016_j_ijepes_2022_108183 crossref_primary_10_1109_TSTE_2022_3148718 crossref_primary_10_1109_TPWRD_2022_3197170 |
| Cites_doi | 10.1016/j.solener.2017.02.007 10.1016/j.apenergy.2016.07.052 10.1016/j.renene.2016.04.089 10.1049/iet-gtd.2018.5847 10.3390/en6052624 10.1109/TENCON.2017.8228038 10.1016/j.enconman.2017.11.019 10.1007/s00521-017-3225-z 10.3390/en12020215 10.1016/j.renene.2016.06.018 10.1109/IAS.2019.8912017 10.1177/1687814017715983 10.1016/j.solener.2013.04.012 10.2172/1069158 10.1016/j.apenergy.2014.05.055 10.1109/IAS.2018.8544694 10.1109/72.279181 10.1109/TSG.2015.2397003 10.1109/TIA.2012.2190816 10.1049/iet-rpg.2018.5779 10.1016/j.apenergy.2019.113315 10.1016/j.apenergy.2019.114216 10.1109/UPEC.2013.6714975 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| CorporateAuthor | Washington State Univ., Pullman, WA (United States) |
| CorporateAuthor_xml | – name: Washington State Univ., Pullman, WA (United States) |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D OIOZB OTOTI |
| DOI | 10.1109/TIA.2020.3025742 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9367 |
| EndPage | 7192 |
| ExternalDocumentID | 1810249 10_1109_TIA_2020_3025742 9204406 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NEC – fundername: U.S. Department of Energy funderid: 10.13039/100000015 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D ABPTK OIOZB OTOTI |
| ID | FETCH-LOGICAL-c360t-3c94035a1a43490f4f7ad9bd33802cd40869a7d7e5c00e8e2531ebad38b7d6183 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 79 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000587752900105&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0093-9994 |
| IngestDate | Thu May 18 22:34:47 EDT 2023 Mon Jun 30 10:11:56 EDT 2025 Sat Nov 29 02:18:31 EST 2025 Tue Nov 18 22:37:09 EST 2025 Wed Aug 27 02:29:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c360t-3c94035a1a43490f4f7ad9bd33802cd40869a7d7e5c00e8e2531ebad38b7d6183 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Electricity (OE) OE0000878 OE0000878-WSUpaper-1 |
| ORCID | 0000-0001-7804-3690 0000-0003-3518-8018 0000-0002-4146-9716 0000000241469716 0000000335188018 0000000178043690 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1810249 |
| PQID | 2457975160 |
| PQPubID | 85463 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2457975160 crossref_citationtrail_10_1109_TIA_2020_3025742 crossref_primary_10_1109_TIA_2020_3025742 ieee_primary_9204406 osti_scitechconnect_1810249 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | IEEE transactions on industry applications |
| PublicationTitleAbbrev | TIA |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref14 ref11 ref32 ref10 (ref31) 2020 ref17 ref16 lew (ref5) 2010 ref19 ref18 (ref2) 2019 chollet (ref24) 2017 gensler (ref15) 0 janjic (ref26) 2010 ref25 ref20 ref22 ref21 hinton (ref33) 2014; 15 ref28 ref27 ref29 ref8 ref7 ref9 (ref30) 2020 ref4 ref3 ref6 osborne (ref1) 2019 chollet (ref23) 2015 |
| References_xml | – year: 2020 ident: ref31 publication-title: Average weather – ident: ref12 doi: 10.1016/j.solener.2017.02.007 – ident: ref11 doi: 10.1016/j.apenergy.2016.07.052 – ident: ref10 doi: 10.1016/j.renene.2016.04.089 – ident: ref19 doi: 10.1049/iet-gtd.2018.5847 – year: 2019 ident: ref1 publication-title: Global Solar PV Installations Reach 109 GW in 2018-BNEF – ident: ref8 doi: 10.3390/en6052624 – ident: ref13 doi: 10.1109/TENCON.2017.8228038 – ident: ref29 doi: 10.1016/j.enconman.2017.11.019 – ident: ref16 doi: 10.1007/s00521-017-3225-z – ident: ref17 doi: 10.3390/en12020215 – year: 2017 ident: ref24 publication-title: Deep Learning with Python – ident: ref28 doi: 10.1016/j.renene.2016.06.018 – ident: ref6 doi: 10.1109/IAS.2019.8912017 – ident: ref14 doi: 10.1177/1687814017715983 – ident: ref32 doi: 10.1016/j.solener.2013.04.012 – ident: ref4 doi: 10.2172/1069158 – start-page: 2858 year: 0 ident: ref15 article-title: Deep learning for solar power forecasting-An approach using autoencoder and LSTM neural metworks publication-title: Proc IEEE Int Conf Syst Man Cybern – ident: ref27 doi: 10.1016/j.apenergy.2014.05.055 – volume: 15 start-page: 1929 year: 2014 ident: ref33 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: ref3 doi: 10.1109/IAS.2018.8544694 – year: 2020 ident: ref30 publication-title: Weather calendar – ident: ref22 doi: 10.1109/72.279181 – ident: ref25 doi: 10.1109/TSG.2015.2397003 – ident: ref9 doi: 10.1109/TIA.2012.2190816 – ident: ref21 doi: 10.1049/iet-rpg.2018.5779 – year: 2015 ident: ref23 article-title: Keras – ident: ref18 doi: 10.1016/j.apenergy.2019.113315 – ident: ref20 doi: 10.1016/j.apenergy.2019.114216 – year: 2010 ident: ref5 article-title: NREL: How do high levels of wind and solar impact the grid? the western wind and solar integration study publication-title: Ntl Renewable Energy Lab (NREL) – year: 2019 ident: ref2 publication-title: Solar industry research data – ident: ref7 doi: 10.1109/UPEC.2013.6714975 – year: 2010 ident: ref26 article-title: Scientific documentation for the NMM solver publication-title: National Center for Atmospheric Research University Corporation for Atmospheric Research |
| SSID | ssj0014514 |
| Score | 2.609226 |
| Snippet | Inherent variability in photovoltaic (PV) and associated impacts on power systems is a challenging problem for both the PV owners and the grid operators.... |
| SourceID | osti proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7185 |
| SubjectTerms | Algorithms Autoencoder long short-term memory (AE-LSTM) data processing automation day-ahead forecasting Deep learning Economic forecasting Electric power generation Electric power grids Electronic devices ENGINEERING Estimation Forecasting hybrid model Machine learning Mathematical models Meteorological data Meteorology Model accuracy photovoltaic (PV) power estimation Photovoltaic cells Predictive models renewable energy integration Training Uncertainty Weather forecasting |
| Title | Data-Driven Day-Ahead PV Estimation Using Autoencoder-LSTM and Persistence Model |
| URI | https://ieeexplore.ieee.org/document/9204406 https://www.proquest.com/docview/2457975160 https://www.osti.gov/servlets/purl/1810249 |
| Volume | 56 |
| WOSCitedRecordID | wos000587752900105&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9367 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014514 issn: 0093-9994 databaseCode: RIE dateStart: 19720101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9swED7asoftYeuWjWXpih76MpgWWZYt6zEsCS1sJdBs9E3I0hkKJSmJM9i_30l2wsZGYU_2w9kWOt_pPunuO4ALdGhk8AX3mZdcNSbjtVKGN-gVSi2bompSswl9fV3d3prFEXw81MIgYko-w0_xNp3lh7Xfxa2ysZGxQXJ5DMdal12t1uHEQPU83oTQOQU9an8kKcx4eTUhICgJn9ICr5X8YwlKPVXosiaL-ssfp0Vm_uL_hncKz_tgkk067b-EI1y9gme_UQwOYDF1rePTTXRqbOp-8gl538AW39mMhtLVLbKUN8Amu3YdaS0DbviXm-VX5lYkGPfTtimwZrFv2v1r-DafLT9f8r6LAvd5KVqee6NEXrjMqVwZ0ahGu2DqQNhUSB8UYRrjdNBYeCGwQklWibULeVXrUJLFv4GT1XqFb4GFxpEweq01EoysncCmQsxyHzlcsB7CeD-x1vcU47HTxb1NUEMYS6qwURW2V8UQPhyeeOjoNR6RHcQ5P8j10z2EUdSdpYgh0t76mB_kW0uRS2RDHMLZXqW2t86tlarQRhdZKd79-50jeBq_3NUcnsFJu9nhe3jif7R32815-vF-AWP309k |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NaxsxEB2StJD0kH4kJW7SVodcClGt1Wqt1dHUCQl1jCFuyE1opVkIBLvY60L_fUfy2jQkFHraPcwuQqOR5kma9wBO0aGRwRfcZ15yVZuMV0oZXqNXKLWsi7JOYhN6NCrv7sx4C842tTCImC6f4df4ms7yw8wv41ZZ18gokNzbhhdROaut1tqcGaiWyZswOqe0R60PJYXpTq76BAUlIVRa4rWSjxahpKpCjxnF1JMZOS0zF6__r4FvYL9NJ1l_5f-3sIXTd_DqL5LBAxgPXOP4YB6nNTZwv3mf5t_AxrfsnJqyqlxk6eYA6y-bWSS2DDjnw5vJNXNTMow7aouUWrOonPZwCD8uziffLnmro8B93hMNz71RIi9c5lSujKhVrV0wVSB0KqQPilCNcTpoLLwQWKKkuMTKhbysdOhRzL-HnelsikfAQu3IGL3WGglIVk5gXSJmuY8sLlh1oLvuWOtbkvGodfFgE9gQxpIrbHSFbV3RgS-bL36uCDb-YXsQ-3xj13Z3B46j7yzlDJH41scbQr6xlLtEPsQOnKxdatv4XFipCm10kfXEh-f_-Rl2LyfXQzu8Gn0_hr3YilUF4gnsNPMlfoSX_ldzv5h_SoPwD5mG1yI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Day-Ahead+PV+Estimation+Using+Autoencoder-LSTM+and+Persistence+Model&rft.jtitle=IEEE+transactions+on+industry+applications&rft.au=Zhang%2C+Yue&rft.au=Qin%2C+Chuan&rft.au=Srivastava%2C+Anurag+K.&rft.au=Jin%2C+Chenrui&rft.date=2020-11-01&rft.pub=IEEE&rft.issn=0093-9994&rft.eissn=1939-9367&rft.volume=56&rft.issue=6&rft_id=info:doi/10.1109%2FTIA.2020.3025742&rft.externalDocID=1810249 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-9994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-9994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-9994&client=summon |