Data-Driven Day-Ahead PV Estimation Using Autoencoder-LSTM and Persistence Model

Inherent variability in photovoltaic (PV) and associated impacts on power systems is a challenging problem for both the PV owners and the grid operators. Existing statistical and machine learning algorithms typically work well for weather conditions similar to historical data. However, uncertain wea...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications Vol. 56; no. 6; pp. 7185 - 7192
Main Authors: Zhang, Yue, Qin, Chuan, Srivastava, Anurag K., Jin, Chenrui, Sharma, Ratnesh K.
Format: Journal Article
Language:English
Published: New York IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0093-9994, 1939-9367
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Inherent variability in photovoltaic (PV) and associated impacts on power systems is a challenging problem for both the PV owners and the grid operators. Existing statistical and machine learning algorithms typically work well for weather conditions similar to historical data. However, uncertain weather conditions pose a great challenge to the estimation accuracy of the estimation models. With the enhanced integration of intelligent electronic devices and the realization of associated automation in the power grid, renewable energy data are becoming more accessible, which can be utilized by deep learning models and improve the PV power generation estimation accuracy. In this article, a hybrid deep learning model driven by external weather data is proposed to do day-ahead PV output forecasting at 15-min interval. The proposed model is motivated by the recent advancement of long-short-term-memory networks and autoencoder, which estimates uncertainties in sequence while making the prediction for complex weather conditions. Meanwhile, the persistence model is used to predict continuous sunny weather conditions. The forecasting result is validated with data from multiple locations.
AbstractList Inherent variability in photovoltaic (PV) and associated impacts on power systems is a challenging problem for both the PV owners and the grid operators. Existing statistical and machine learning algorithms typically work well for weather conditions similar to historical data. Furthermore, uncertain weather conditions pose a great challenge to the estimation accuracy of the estimation models. With the enhanced integration of intelligent electronic devices and the realization of associated automation in the power grid, renewable energy data is becoming more accessible, which can be utilized by deep learning models and improve the PV power generation estimation accuracy. In this paper, a hybrid deep learning model driven by external weather data is proposed to do day-ahead PV output forecasting at 15-minute-interval. The proposed model is motivated by the recent advancement of Long-Short-Term-Memory (LSTM) networks and AutoEncoder (AE), which estimates uncertainties in sequence while making the prediction for complex weather conditions. Meanwhile, the persistence model (PM) is used to predict continuous sunny weather conditions. The forecasting result is validated with data from multiple locations
Inherent variability in photovoltaic (PV) and associated impacts on power systems is a challenging problem for both the PV owners and the grid operators. Existing statistical and machine learning algorithms typically work well for weather conditions similar to historical data. However, uncertain weather conditions pose a great challenge to the estimation accuracy of the estimation models. With the enhanced integration of intelligent electronic devices and the realization of associated automation in the power grid, renewable energy data are becoming more accessible, which can be utilized by deep learning models and improve the PV power generation estimation accuracy. In this article, a hybrid deep learning model driven by external weather data is proposed to do day-ahead PV output forecasting at 15-min interval. The proposed model is motivated by the recent advancement of long-short-term-memory networks and autoencoder, which estimates uncertainties in sequence while making the prediction for complex weather conditions. Meanwhile, the persistence model is used to predict continuous sunny weather conditions. The forecasting result is validated with data from multiple locations.
Author Sharma, Ratnesh K.
Zhang, Yue
Srivastava, Anurag K.
Qin, Chuan
Jin, Chenrui
Author_xml – sequence: 1
  givenname: Yue
  orcidid: 0000-0002-4146-9716
  surname: Zhang
  fullname: Zhang, Yue
  email: zzyt1998@gmail.com
  organization: GE Digital, Bothell, WA, USA
– sequence: 2
  givenname: Chuan
  orcidid: 0000-0001-7804-3690
  surname: Qin
  fullname: Qin, Chuan
  email: chuan.qin@wsu.edu
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
– sequence: 3
  givenname: Anurag K.
  orcidid: 0000-0003-3518-8018
  surname: Srivastava
  fullname: Srivastava, Anurag K.
  email: anurag.k.srivastava@wsu.edu
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
– sequence: 4
  givenname: Chenrui
  surname: Jin
  fullname: Jin, Chenrui
  email: jinchenrui@gmail.com
  organization: NEC Labs America, Cupertino, CA, USA
– sequence: 5
  givenname: Ratnesh K.
  surname: Sharma
  fullname: Sharma, Ratnesh K.
  email: mybluejayholdings@gmail.com
  organization: NEC Labs America, Cupertino, CA, USA
BackLink https://www.osti.gov/servlets/purl/1810249$$D View this record in Osti.gov
BookMark eNp9kEtLAzEURoMoWKt7wc2g66k3j3lkWWx9QIsFq9uQZu7oSE1qkgr-e1NHXLhwFUjOd--Xc0T2rbNIyCmFEaUgL5d34xEDBiMOrKgE2yMDKrnMJS-rfTIAkDyXUopDchTCKwAVBRUDspjoqPOJ7z7QZhP9mY9fUDfZ4imbhti96dg5mz2Gzj5n4210aI1r0Oezh-U80zaB6EMXYrrHbJ6e1sfkoNXrgCc_55A8Xk-XV7f57P7m7mo8yw0vIebcSAG80FQLLiS0oq10I1cN5zUw0wioS6mrpsLCAGCNrOAUV7rh9apqSlrzITnv57rUUwXTRTQvxlmLJipaU2BCJuiihzbevW8xRPXqtt6mXoqJopJVQUtIFPSU8S4Ej63a-PR1_6koqJ1cleSqnVz1IzdFyj-RVOBbVvS6W_8XPOuDHSL-7pEMhICSfwGyeoXw
CODEN ITIACR
CitedBy_id crossref_primary_10_1016_j_energy_2025_135744
crossref_primary_10_1007_s00521_025_11035_6
crossref_primary_10_1109_ACCESS_2024_3471073
crossref_primary_10_1109_TII_2024_3452180
crossref_primary_10_1007_s00202_024_02759_0
crossref_primary_10_1109_ACCESS_2022_3187839
crossref_primary_10_1016_j_eswa_2023_122925
crossref_primary_10_1109_ACCESS_2022_3208894
crossref_primary_10_1109_ACCESS_2021_3061370
crossref_primary_10_1109_TIA_2023_3276356
crossref_primary_10_1016_j_apenergy_2023_122589
crossref_primary_10_1109_TPWRS_2023_3257368
crossref_primary_10_1109_TIA_2022_3199182
crossref_primary_10_1007_s00202_023_02220_8
crossref_primary_10_1016_j_eswa_2025_126734
crossref_primary_10_1109_TQE_2023_3271362
crossref_primary_10_1049_rpg2_12736
crossref_primary_10_1109_TIA_2023_3322117
crossref_primary_10_1007_s00521_022_08160_x
crossref_primary_10_3390_en17030737
crossref_primary_10_1016_j_rineng_2024_102773
crossref_primary_10_1109_TIA_2022_3170385
crossref_primary_10_1109_ACCESS_2023_3233951
crossref_primary_10_3390_en14164776
crossref_primary_10_3390_en15239125
crossref_primary_10_1016_j_energy_2023_127942
crossref_primary_10_1016_j_jclepro_2022_135414
crossref_primary_10_1109_ACCESS_2021_3103126
crossref_primary_10_1016_j_engappai_2024_109555
crossref_primary_10_1109_ACCESS_2022_3156942
crossref_primary_10_1109_TIA_2022_3206731
crossref_primary_10_1109_ACCESS_2021_3125895
crossref_primary_10_3390_math13111783
crossref_primary_10_1109_TPWRS_2024_3404815
crossref_primary_10_1109_ACCESS_2021_3117004
crossref_primary_10_1016_j_ijepes_2022_108257
crossref_primary_10_1109_TSTE_2024_3486907
crossref_primary_10_3389_fnbot_2024_1431643
crossref_primary_10_3390_s22103959
crossref_primary_10_1007_s42835_024_01974_w
crossref_primary_10_1109_TIA_2025_3529819
crossref_primary_10_1016_j_ref_2025_100739
crossref_primary_10_1049_gtd2_12603
crossref_primary_10_1016_j_ijepes_2024_110389
crossref_primary_10_1109_ACCESS_2025_3583225
crossref_primary_10_1088_1402_4896_ad6cad
crossref_primary_10_1109_ACCESS_2023_3326415
crossref_primary_10_1016_j_iintel_2024_100086
crossref_primary_10_3390_en15103838
crossref_primary_10_1016_j_egyr_2022_09_077
crossref_primary_10_1016_j_jclepro_2021_127037
crossref_primary_10_1109_ACCESS_2021_3062776
crossref_primary_10_1016_j_solener_2023_06_002
crossref_primary_10_1109_TIM_2023_3310090
crossref_primary_10_1016_j_segan_2023_101149
crossref_primary_10_1049_rpg2_13050
crossref_primary_10_3390_en16237871
crossref_primary_10_1002_cem_3640
crossref_primary_10_1177_01445987251360490
crossref_primary_10_3390_electronics13081545
crossref_primary_10_1016_j_ijepes_2022_108183
crossref_primary_10_1109_TSTE_2022_3148718
crossref_primary_10_1109_TPWRD_2022_3197170
Cites_doi 10.1016/j.solener.2017.02.007
10.1016/j.apenergy.2016.07.052
10.1016/j.renene.2016.04.089
10.1049/iet-gtd.2018.5847
10.3390/en6052624
10.1109/TENCON.2017.8228038
10.1016/j.enconman.2017.11.019
10.1007/s00521-017-3225-z
10.3390/en12020215
10.1016/j.renene.2016.06.018
10.1109/IAS.2019.8912017
10.1177/1687814017715983
10.1016/j.solener.2013.04.012
10.2172/1069158
10.1016/j.apenergy.2014.05.055
10.1109/IAS.2018.8544694
10.1109/72.279181
10.1109/TSG.2015.2397003
10.1109/TIA.2012.2190816
10.1049/iet-rpg.2018.5779
10.1016/j.apenergy.2019.113315
10.1016/j.apenergy.2019.114216
10.1109/UPEC.2013.6714975
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
CorporateAuthor Washington State Univ., Pullman, WA (United States)
CorporateAuthor_xml – name: Washington State Univ., Pullman, WA (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
OIOZB
OTOTI
DOI 10.1109/TIA.2020.3025742
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9367
EndPage 7192
ExternalDocumentID 1810249
10_1109_TIA_2020_3025742
9204406
Genre orig-research
GrantInformation_xml – fundername: NEC
– fundername: U.S. Department of Energy
  funderid: 10.13039/100000015
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ABPTK
OIOZB
OTOTI
ID FETCH-LOGICAL-c360t-3c94035a1a43490f4f7ad9bd33802cd40869a7d7e5c00e8e2531ebad38b7d6183
IEDL.DBID RIE
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000587752900105&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0093-9994
IngestDate Thu May 18 22:34:47 EDT 2023
Mon Jun 30 10:11:56 EDT 2025
Sat Nov 29 02:18:31 EST 2025
Tue Nov 18 22:37:09 EST 2025
Wed Aug 27 02:29:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-3c94035a1a43490f4f7ad9bd33802cd40869a7d7e5c00e8e2531ebad38b7d6183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Electricity (OE)
OE0000878
OE0000878-WSUpaper-1
ORCID 0000-0001-7804-3690
0000-0003-3518-8018
0000-0002-4146-9716
0000000241469716
0000000335188018
0000000178043690
OpenAccessLink https://www.osti.gov/servlets/purl/1810249
PQID 2457975160
PQPubID 85463
PageCount 8
ParticipantIDs proquest_journals_2457975160
crossref_citationtrail_10_1109_TIA_2020_3025742
crossref_primary_10_1109_TIA_2020_3025742
ieee_primary_9204406
osti_scitechconnect_1810249
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle IEEE transactions on industry applications
PublicationTitleAbbrev TIA
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref32
ref10
(ref31) 2020
ref17
ref16
lew (ref5) 2010
ref19
ref18
(ref2) 2019
chollet (ref24) 2017
gensler (ref15) 0
janjic (ref26) 2010
ref25
ref20
ref22
ref21
hinton (ref33) 2014; 15
ref28
ref27
ref29
ref8
ref7
ref9
(ref30) 2020
ref4
ref3
ref6
osborne (ref1) 2019
chollet (ref23) 2015
References_xml – year: 2020
  ident: ref31
  publication-title: Average weather
– ident: ref12
  doi: 10.1016/j.solener.2017.02.007
– ident: ref11
  doi: 10.1016/j.apenergy.2016.07.052
– ident: ref10
  doi: 10.1016/j.renene.2016.04.089
– ident: ref19
  doi: 10.1049/iet-gtd.2018.5847
– year: 2019
  ident: ref1
  publication-title: Global Solar PV Installations Reach 109 GW in 2018-BNEF
– ident: ref8
  doi: 10.3390/en6052624
– ident: ref13
  doi: 10.1109/TENCON.2017.8228038
– ident: ref29
  doi: 10.1016/j.enconman.2017.11.019
– ident: ref16
  doi: 10.1007/s00521-017-3225-z
– ident: ref17
  doi: 10.3390/en12020215
– year: 2017
  ident: ref24
  publication-title: Deep Learning with Python
– ident: ref28
  doi: 10.1016/j.renene.2016.06.018
– ident: ref6
  doi: 10.1109/IAS.2019.8912017
– ident: ref14
  doi: 10.1177/1687814017715983
– ident: ref32
  doi: 10.1016/j.solener.2013.04.012
– ident: ref4
  doi: 10.2172/1069158
– start-page: 2858
  year: 0
  ident: ref15
  article-title: Deep learning for solar power forecasting-An approach using autoencoder and LSTM neural metworks
  publication-title: Proc IEEE Int Conf Syst Man Cybern
– ident: ref27
  doi: 10.1016/j.apenergy.2014.05.055
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref33
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref3
  doi: 10.1109/IAS.2018.8544694
– year: 2020
  ident: ref30
  publication-title: Weather calendar
– ident: ref22
  doi: 10.1109/72.279181
– ident: ref25
  doi: 10.1109/TSG.2015.2397003
– ident: ref9
  doi: 10.1109/TIA.2012.2190816
– ident: ref21
  doi: 10.1049/iet-rpg.2018.5779
– year: 2015
  ident: ref23
  article-title: Keras
– ident: ref18
  doi: 10.1016/j.apenergy.2019.113315
– ident: ref20
  doi: 10.1016/j.apenergy.2019.114216
– year: 2010
  ident: ref5
  article-title: NREL: How do high levels of wind and solar impact the grid? the western wind and solar integration study
  publication-title: Ntl Renewable Energy Lab (NREL)
– year: 2019
  ident: ref2
  publication-title: Solar industry research data
– ident: ref7
  doi: 10.1109/UPEC.2013.6714975
– year: 2010
  ident: ref26
  article-title: Scientific documentation for the NMM solver
  publication-title: National Center for Atmospheric Research University Corporation for Atmospheric Research
SSID ssj0014514
Score 2.609226
Snippet Inherent variability in photovoltaic (PV) and associated impacts on power systems is a challenging problem for both the PV owners and the grid operators....
SourceID osti
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7185
SubjectTerms Algorithms
Autoencoder long short-term memory (AE-LSTM)
data processing automation
day-ahead forecasting
Deep learning
Economic forecasting
Electric power generation
Electric power grids
Electronic devices
ENGINEERING
Estimation
Forecasting
hybrid model
Machine learning
Mathematical models
Meteorological data
Meteorology
Model accuracy
photovoltaic (PV) power estimation
Photovoltaic cells
Predictive models
renewable energy integration
Training
Uncertainty
Weather forecasting
Title Data-Driven Day-Ahead PV Estimation Using Autoencoder-LSTM and Persistence Model
URI https://ieeexplore.ieee.org/document/9204406
https://www.proquest.com/docview/2457975160
https://www.osti.gov/servlets/purl/1810249
Volume 56
WOSCitedRecordID wos000587752900105&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9367
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014514
  issn: 0093-9994
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9swED7asoftYeuWjWXpih76MpgWWZYt6zEsCS1sJdBs9E3I0hkKJSmJM9i_30l2wsZGYU_2w9kWOt_pPunuO4ALdGhk8AX3mZdcNSbjtVKGN-gVSi2bompSswl9fV3d3prFEXw81MIgYko-w0_xNp3lh7Xfxa2ysZGxQXJ5DMdal12t1uHEQPU83oTQOQU9an8kKcx4eTUhICgJn9ICr5X8YwlKPVXosiaL-ssfp0Vm_uL_hncKz_tgkk067b-EI1y9gme_UQwOYDF1rePTTXRqbOp-8gl538AW39mMhtLVLbKUN8Amu3YdaS0DbviXm-VX5lYkGPfTtimwZrFv2v1r-DafLT9f8r6LAvd5KVqee6NEXrjMqVwZ0ahGu2DqQNhUSB8UYRrjdNBYeCGwQklWibULeVXrUJLFv4GT1XqFb4GFxpEweq01EoysncCmQsxyHzlcsB7CeD-x1vcU47HTxb1NUEMYS6qwURW2V8UQPhyeeOjoNR6RHcQ5P8j10z2EUdSdpYgh0t76mB_kW0uRS2RDHMLZXqW2t86tlarQRhdZKd79-50jeBq_3NUcnsFJu9nhe3jif7R32815-vF-AWP309k
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NaxsxEB2StJD0kH4kJW7SVodcClGt1Wqt1dHUCQl1jCFuyE1opVkIBLvY60L_fUfy2jQkFHraPcwuQqOR5kma9wBO0aGRwRfcZ15yVZuMV0oZXqNXKLWsi7JOYhN6NCrv7sx4C842tTCImC6f4df4ms7yw8wv41ZZ18gokNzbhhdROaut1tqcGaiWyZswOqe0R60PJYXpTq76BAUlIVRa4rWSjxahpKpCjxnF1JMZOS0zF6__r4FvYL9NJ1l_5f-3sIXTd_DqL5LBAxgPXOP4YB6nNTZwv3mf5t_AxrfsnJqyqlxk6eYA6y-bWSS2DDjnw5vJNXNTMow7aouUWrOonPZwCD8uziffLnmro8B93hMNz71RIi9c5lSujKhVrV0wVSB0KqQPilCNcTpoLLwQWKKkuMTKhbysdOhRzL-HnelsikfAQu3IGL3WGglIVk5gXSJmuY8sLlh1oLvuWOtbkvGodfFgE9gQxpIrbHSFbV3RgS-bL36uCDb-YXsQ-3xj13Z3B46j7yzlDJH41scbQr6xlLtEPsQOnKxdatv4XFipCm10kfXEh-f_-Rl2LyfXQzu8Gn0_hr3YilUF4gnsNPMlfoSX_ldzv5h_SoPwD5mG1yI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Day-Ahead+PV+Estimation+Using+Autoencoder-LSTM+and+Persistence+Model&rft.jtitle=IEEE+transactions+on+industry+applications&rft.au=Zhang%2C+Yue&rft.au=Qin%2C+Chuan&rft.au=Srivastava%2C+Anurag+K.&rft.au=Jin%2C+Chenrui&rft.date=2020-11-01&rft.pub=IEEE&rft.issn=0093-9994&rft.eissn=1939-9367&rft.volume=56&rft.issue=6&rft_id=info:doi/10.1109%2FTIA.2020.3025742&rft.externalDocID=1810249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-9994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-9994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-9994&client=summon