Detecting Textual Propaganda Using Machine Learning Techniques

Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Majallat Baghdād lil-ʻulūm Ročník 18; číslo 1; s. 199
Hlavní autoři: Khanday, Akib Mohi Ud Din, Khan, Qamar Rayees, Rabani, Syed Tanzeel
Médium: Journal Article
Jazyk:angličtina
Vydáno: University of Baghdad, College of Science for Women 01.01.2021
Témata:
ISSN:2078-8665, 2411-7986
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation.  Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annotating the text, feature engineering is performed using techniques like term frequency/inverse document frequency (TF/IDF) and Bag of words (BOW). The relevant features are supplied to support vector machine (SVM) and Multinomial Naïve Bayesian (MNB) classifiers. The fine tuning of SVM is being done by taking kernel Linear, Poly and RBF. SVM showed better results than MNB by having precision of 70%, recall of 76.5%, F1 Score of 69.5% and overall Accuracy of 69.2%.
AbstractList Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation.  Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annotating the text, feature engineering is performed using techniques like term frequency/inverse document frequency (TF/IDF) and Bag of words (BOW). The relevant features are supplied to support vector machine (SVM) and Multinomial Naïve Bayesian (MNB) classifiers. The fine tuning of SVM is being done by taking kernel Linear, Poly and RBF. SVM showed better results than MNB by having precision of 70%, recall of 76.5%, F1 Score of 69.5% and overall Accuracy of 69.2%.
Author Khanday, Akib Mohi Ud Din
Rabani, Syed Tanzeel
Khan, Qamar Rayees
Author_xml – sequence: 1
  givenname: Akib Mohi Ud Din
  orcidid: 0000-0001-6804-4905
  surname: Khanday
  fullname: Khanday, Akib Mohi Ud Din
– sequence: 2
  givenname: Qamar Rayees
  surname: Khan
  fullname: Khan, Qamar Rayees
– sequence: 3
  givenname: Syed Tanzeel
  surname: Rabani
  fullname: Rabani, Syed Tanzeel
BookMark eNp9kM1OwzAQhC1UJErpE3DJCyR4bcexL0io_FUqgkN7tja207oKSXFSCd6etIULB067mt0Zjb5LMmraxhNyDTRjAIzflN02Y5RBBiqDjILWZ2TMBEBaaCVHw04LlSop8wsy7bpQUhCggTE5Jrf3vve2D806WfrPfo918hbbHa6xcZisusPhBe0mND5ZeIzN6dNumvCx990VOa-w7vz0Z07I6vFhOXtOF69P89ndIrVc0j7lOXesqrxT1mnrSqmsYNI7Nqiy0oVTopBS5UoWQlmmlRZeWLTUWiYcr_iEzE-5rsWt2cXwjvHLtBjMUWjj2mDsg629AVk6wUvNBTpRQIW5d4BUWwAvlWNDlj5l2dh2XfSVsaHHPrRNHzHUBqg5cjUDV3PgakAZMAeug5f_8f52-c_1DQAcfpU
CitedBy_id crossref_primary_10_1007_s10115_023_01984_6
crossref_primary_10_3390_app13148356
crossref_primary_10_47164_ijngc_v13i3_870
crossref_primary_10_3390_su151813384
crossref_primary_10_3390_su15021249
crossref_primary_10_1016_j_susoc_2022_03_001
crossref_primary_10_1371_journal_pone_0302583
crossref_primary_10_3390_app15158160
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.21123/bsj.2021.18.1.0199
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2411-7986
ExternalDocumentID oai_doaj_org_article_16bd43b934ad471fa5ed1a09c11e68d2
10_21123_bsj_2021_18_1_0199
GroupedDBID .4S
AAYXX
ADBBV
AFWDF
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
H13
GROUPED_DOAJ
ID FETCH-LOGICAL-c360t-353d2ffed8cd9cdb68c426ed2d2f6f97d847668586748c29894e4cac0cc24d3f3
IEDL.DBID DOA
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000648758500025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2078-8665
IngestDate Fri Oct 03 12:43:57 EDT 2025
Sat Nov 29 08:06:29 EST 2025
Tue Nov 18 21:56:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-353d2ffed8cd9cdb68c426ed2d2f6f97d847668586748c29894e4cac0cc24d3f3
ORCID 0000-0001-6804-4905
OpenAccessLink https://doaj.org/article/16bd43b934ad471fa5ed1a09c11e68d2
ParticipantIDs doaj_primary_oai_doaj_org_article_16bd43b934ad471fa5ed1a09c11e68d2
crossref_citationtrail_10_21123_bsj_2021_18_1_0199
crossref_primary_10_21123_bsj_2021_18_1_0199
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Majallat Baghdād lil-ʻulūm
PublicationYear 2021
Publisher University of Baghdad, College of Science for Women
Publisher_xml – name: University of Baghdad, College of Science for Women
SSID ssib014191226
ssj0002013441
ssib044752010
ssib012089588
ssib060617717
Score 2.2223551
Snippet Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 199
SubjectTerms Social Networks, Disinformation, Propaganda, Term Frequency, Bag of Words
Title Detecting Textual Propaganda Using Machine Learning Techniques
URI https://doaj.org/article/16bd43b934ad471fa5ed1a09c11e68d2
Volume 18
WOSCitedRecordID wos000648758500025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2411-7986
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssib060617717
  issn: 2078-8665
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2411-7986
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044752010
  issn: 2078-8665
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMctVDGwIBAgyksZGEkbx05iL0g8WjHQqkNB3SzHD0SFCuqDkc_OnZPSTLCwRIrlWPHp5PPfPv2OkEsrmSuFEbEVqY25KXUMsrmIIXIjO4QVNCSPPz8Ww6GYTOSoUeoLc8IqPHBluC7NS8tZKRnXFhZSrzNnqU6kodTlwobVNylkQ0yBJ9E0ETLbgLgoB1nS2Ggg5Q6vgdfvOQbytbCZhus5yngoewmDixihcBWyCPRSyrrlYgrSMqUdKjq0k1Tk2E1Ya9D_Q5jq75Hden8Z3VTz2idbbnZAru8d3hVAlIrGsBivoMNoDmr5BY8RopA1EA1CVqWLauAq9qzprotD8tTvje8e4rpwQmxYnixjljGbeu-wMpE0tsyFgUDsbAqtuZeFhZCUI3geK42YwGB33GiTGJNyyzw7Iq3Z-8wdk0gLsL4QrkDumjNOZjox0mvBDc-9922SruetTE0Vx-IWbwrURTCWAmMpNJaiQlGFxmqTq5-PPiqoxu_db9GgP12RiB0awE9U7SfqLz85-Y9BTskO_lp1BHNGWsv5yp2TbfO5fF3ML4ILwnPw1fsGGKrXgw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Textual+Propaganda+Using+Machine+Learning+Techniques&rft.jtitle=Majallat+Baghd%C4%81d+lil-%CA%BBul%C5%ABm&rft.au=Akib+Mohi+Ud+Din+Khanday&rft.au=Qamar+Rayees+Khan&rft.au=Syed+Tanzeel+Rabani&rft.date=2021-01-01&rft.pub=University+of+Baghdad%2C+College+of+Science+for+Women&rft.issn=2078-8665&rft.eissn=2411-7986&rft.volume=18&rft.issue=1&rft_id=info:doi/10.21123%2Fbsj.2021.18.1.0199&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_16bd43b934ad471fa5ed1a09c11e68d2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-8665&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-8665&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-8665&client=summon