Detecting Textual Propaganda Using Machine Learning Techniques
Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising...
Uloženo v:
| Vydáno v: | Majallat Baghdād lil-ʻulūm Ročník 18; číslo 1; s. 199 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
University of Baghdad, College of Science for Women
01.01.2021
|
| Témata: | |
| ISSN: | 2078-8665, 2411-7986 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation. Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annotating the text, feature engineering is performed using techniques like term frequency/inverse document frequency (TF/IDF) and Bag of words (BOW). The relevant features are supplied to support vector machine (SVM) and Multinomial Naïve Bayesian (MNB) classifiers. The fine tuning of SVM is being done by taking kernel Linear, Poly and RBF. SVM showed better results than MNB by having precision of 70%, recall of 76.5%, F1 Score of 69.5% and overall Accuracy of 69.2%. |
|---|---|
| AbstractList | Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation. Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annotating the text, feature engineering is performed using techniques like term frequency/inverse document frequency (TF/IDF) and Bag of words (BOW). The relevant features are supplied to support vector machine (SVM) and Multinomial Naïve Bayesian (MNB) classifiers. The fine tuning of SVM is being done by taking kernel Linear, Poly and RBF. SVM showed better results than MNB by having precision of 70%, recall of 76.5%, F1 Score of 69.5% and overall Accuracy of 69.2%. |
| Author | Khanday, Akib Mohi Ud Din Rabani, Syed Tanzeel Khan, Qamar Rayees |
| Author_xml | – sequence: 1 givenname: Akib Mohi Ud Din orcidid: 0000-0001-6804-4905 surname: Khanday fullname: Khanday, Akib Mohi Ud Din – sequence: 2 givenname: Qamar Rayees surname: Khan fullname: Khan, Qamar Rayees – sequence: 3 givenname: Syed Tanzeel surname: Rabani fullname: Rabani, Syed Tanzeel |
| BookMark | eNp9kM1OwzAQhC1UJErpE3DJCyR4bcexL0io_FUqgkN7tja207oKSXFSCd6etIULB067mt0Zjb5LMmraxhNyDTRjAIzflN02Y5RBBiqDjILWZ2TMBEBaaCVHw04LlSop8wsy7bpQUhCggTE5Jrf3vve2D806WfrPfo918hbbHa6xcZisusPhBe0mND5ZeIzN6dNumvCx990VOa-w7vz0Z07I6vFhOXtOF69P89ndIrVc0j7lOXesqrxT1mnrSqmsYNI7Nqiy0oVTopBS5UoWQlmmlRZeWLTUWiYcr_iEzE-5rsWt2cXwjvHLtBjMUWjj2mDsg629AVk6wUvNBTpRQIW5d4BUWwAvlWNDlj5l2dh2XfSVsaHHPrRNHzHUBqg5cjUDV3PgakAZMAeug5f_8f52-c_1DQAcfpU |
| CitedBy_id | crossref_primary_10_1007_s10115_023_01984_6 crossref_primary_10_3390_app13148356 crossref_primary_10_47164_ijngc_v13i3_870 crossref_primary_10_3390_su151813384 crossref_primary_10_3390_su15021249 crossref_primary_10_1016_j_susoc_2022_03_001 crossref_primary_10_1371_journal_pone_0302583 crossref_primary_10_3390_app15158160 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.21123/bsj.2021.18.1.0199 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2411-7986 |
| ExternalDocumentID | oai_doaj_org_article_16bd43b934ad471fa5ed1a09c11e68d2 10_21123_bsj_2021_18_1_0199 |
| GroupedDBID | .4S AAYXX ADBBV AFWDF ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV CITATION H13 GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c360t-353d2ffed8cd9cdb68c426ed2d2f6f97d847668586748c29894e4cac0cc24d3f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000648758500025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2078-8665 |
| IngestDate | Fri Oct 03 12:43:57 EDT 2025 Sat Nov 29 08:06:29 EST 2025 Tue Nov 18 21:56:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c360t-353d2ffed8cd9cdb68c426ed2d2f6f97d847668586748c29894e4cac0cc24d3f3 |
| ORCID | 0000-0001-6804-4905 |
| OpenAccessLink | https://doaj.org/article/16bd43b934ad471fa5ed1a09c11e68d2 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_16bd43b934ad471fa5ed1a09c11e68d2 crossref_citationtrail_10_21123_bsj_2021_18_1_0199 crossref_primary_10_21123_bsj_2021_18_1_0199 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Majallat Baghdād lil-ʻulūm |
| PublicationYear | 2021 |
| Publisher | University of Baghdad, College of Science for Women |
| Publisher_xml | – name: University of Baghdad, College of Science for Women |
| SSID | ssib014191226 ssj0002013441 ssib044752010 ssib012089588 ssib060617717 |
| Score | 2.2223551 |
| Snippet | Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 199 |
| SubjectTerms | Social Networks, Disinformation, Propaganda, Term Frequency, Bag of Words |
| Title | Detecting Textual Propaganda Using Machine Learning Techniques |
| URI | https://doaj.org/article/16bd43b934ad471fa5ed1a09c11e68d2 |
| Volume | 18 |
| WOSCitedRecordID | wos000648758500025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2411-7986 dateEnd: 20241231 omitProxy: false ssIdentifier: ssib060617717 issn: 2078-8665 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2411-7986 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044752010 issn: 2078-8665 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMctVDGwIBAgyksZGEkbx05iL0g8WjHQqkNB3SzHD0SFCuqDkc_OnZPSTLCwRIrlWPHp5PPfPv2OkEsrmSuFEbEVqY25KXUMsrmIIXIjO4QVNCSPPz8Ww6GYTOSoUeoLc8IqPHBluC7NS8tZKRnXFhZSrzNnqU6kodTlwobVNylkQ0yBJ9E0ETLbgLgoB1nS2Ggg5Q6vgdfvOQbytbCZhus5yngoewmDixihcBWyCPRSyrrlYgrSMqUdKjq0k1Tk2E1Ya9D_Q5jq75Hden8Z3VTz2idbbnZAru8d3hVAlIrGsBivoMNoDmr5BY8RopA1EA1CVqWLauAq9qzprotD8tTvje8e4rpwQmxYnixjljGbeu-wMpE0tsyFgUDsbAqtuZeFhZCUI3geK42YwGB33GiTGJNyyzw7Iq3Z-8wdk0gLsL4QrkDumjNOZjox0mvBDc-9922SruetTE0Vx-IWbwrURTCWAmMpNJaiQlGFxmqTq5-PPiqoxu_db9GgP12RiB0awE9U7SfqLz85-Y9BTskO_lp1BHNGWsv5yp2TbfO5fF3ML4ILwnPw1fsGGKrXgw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Textual+Propaganda+Using+Machine+Learning+Techniques&rft.jtitle=Majallat+Baghd%C4%81d+lil-%CA%BBul%C5%ABm&rft.au=Akib+Mohi+Ud+Din+Khanday&rft.au=Qamar+Rayees+Khan&rft.au=Syed+Tanzeel+Rabani&rft.date=2021-01-01&rft.pub=University+of+Baghdad%2C+College+of+Science+for+Women&rft.issn=2078-8665&rft.eissn=2411-7986&rft.volume=18&rft.issue=1&rft_id=info:doi/10.21123%2Fbsj.2021.18.1.0199&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_16bd43b934ad471fa5ed1a09c11e68d2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-8665&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-8665&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-8665&client=summon |