Geometric programming problem with single-term exponents subject to max-product fuzzy relational equations
In this paper, an optimization model for minimizing an objective function with single-term exponents subject to fuzzy relational equations specified in max-product composition is presented. The solution set of such a fuzzy relational equation is a non-convex set. First, we present some properties fo...
Uloženo v:
| Vydáno v: | Mathematical and computer modelling Ročník 53; číslo 1; s. 55 - 62 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier Ltd
2011
Elsevier |
| Témata: | |
| ISSN: | 0895-7177, 1872-9479 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, an optimization model for minimizing an objective function with single-term exponents subject to fuzzy relational equations specified in max-product composition is presented. The solution set of such a fuzzy relational equation is a non-convex set. First, we present some properties for the optimization problem under the assumptions of both negative and nonnegative exponents in the objective function. Second, an efficient procedure is developed to find an optimal solution without looking for all the potential minimal solutions and without using the value matrix. An example is provided to illustrate the procedure. |
|---|---|
| AbstractList | In this paper, an optimization model for minimizing an objective function with single-term exponents subject to fuzzy relational equations specified in max-product composition is presented. The solution set of such a fuzzy relational equation is a non-convex set. First, we present some properties for the optimization problem under the assumptions of both negative and nonnegative exponents in the objective function. Second, an efficient procedure is developed to find an optimal solution without looking for all the potential minimal solutions and without using the value matrix. An example is provided to illustrate the procedure. |
| Author | Ahat, Rashida Zhou, XueGang |
| Author_xml | – sequence: 1 givenname: XueGang surname: Zhou fullname: Zhou, XueGang email: xgzhou@yahoo.cn organization: Department of Applied Mathematics, GuangDong University of Finance, Guangzhou, Guangdong, 510521, China – sequence: 2 givenname: Rashida surname: Ahat fullname: Ahat, Rashida organization: School of Mathematics and System Science of Xinjiang University, Wulumuqi, Xinjiang, 830046, China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23404519$$DView record in Pascal Francis |
| BookMark | eNp9kE1PJCEQhslGkx0_fsDeuJh46RGapoF42hh1NzHxomdC09UuHegegfbr18s4Zg8ePFUVeZ-i8hygvWmeAKFflKwpoe3ZuA42rGtSZiLWhMofaEWlqCvVCLWHVkQqXgkqxE90kNJICOGKyBUar2EOkKOzeBPnh2hCcNPDtu88BPzs8j-cyouHKkMMGF425eMpJ5yWbgSbcZ5xMC9VIfqljMPy9vaKI3iT3TwZj-Fx-WjTEdofjE9w_FkP0f3V5d3Fn-rm9vrvxe-byrKW5IrVvKnbgXeMNUTZ3rTcyhq4BGiMpFy1Sg0GJFcchOwEF7Rng21Ux7puYB07RKe7veWkxwVS1sElC96bCeYlaSoY47RpGS3Rk8-oSdb4IZrJuqQ30QUTX3VdLmg4VSVHdzkb55QiDP8jlOitfz3q4l9v_WsidPFfGPGFsS5_mMjROP8teb4joVh6chB1sg4mC72LxbjuZ_cN_Q5g66QW |
| CitedBy_id | crossref_primary_10_1155_2018_1610349 crossref_primary_10_1016_j_fss_2021_08_007 crossref_primary_10_1186_s13660_016_1056_6 crossref_primary_10_1016_j_fss_2024_108944 crossref_primary_10_1016_j_ins_2015_07_058 crossref_primary_10_1016_j_ins_2015_07_015 crossref_primary_10_1007_s13042_016_0527_x crossref_primary_10_1109_ACCESS_2019_2958205 crossref_primary_10_1109_TFUZZ_2015_2428716 crossref_primary_10_3233_JIFS_151820 crossref_primary_10_1016_j_cie_2020_106537 crossref_primary_10_1007_s12351_015_0216_7 crossref_primary_10_1155_2019_4960638 crossref_primary_10_1109_ACCESS_2018_2878748 crossref_primary_10_1016_j_fss_2019_08_012 crossref_primary_10_1007_s40815_015_0083_7 crossref_primary_10_1016_j_cie_2014_03_024 crossref_primary_10_1016_j_proeng_2012_06_400 crossref_primary_10_1016_j_ins_2013_12_018 crossref_primary_10_26599_FIE_2024_9270047 |
| Cites_doi | 10.1109/91.784204 10.1007/s00500-001-0157-3 10.1023/A:1020955112523 10.1016/0165-0114(91)90170-U 10.1016/j.fss.2005.02.010 10.1007/s10700-009-9059-0 10.1016/0022-247X(91)90222-L 10.1016/j.fss.2004.09.010 10.1023/A:1022800330844 10.1016/0165-0114(91)90171-L 10.1023/B:FODM.0000036862.45420.ea 10.1016/j.amc.2005.04.021 10.1016/0165-0114(84)90026-5 10.1016/0165-0114(82)90043-4 10.1016/S0165-0114(98)00471-0 10.1007/s11424-009-9146-x 10.1016/j.mcm.2007.04.010 10.1002/mcda.4020040103 10.1016/0165-0114(91)90173-N 10.1016/0022-247X(85)90329-4 10.1016/j.amc.2005.11.069 10.1016/S0165-0114(97)00184-X 10.1016/S0165-0114(01)00052-5 10.1016/0165-0114(93)90198-Q 10.1016/S0019-9958(76)90446-0 10.1007/s10700-008-9029-y 10.1016/j.amc.2005.12.027 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2010 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | 6I. AAFTH AAYXX CITATION IQODW 7S9 L.6 |
| DOI | 10.1016/j.mcm.2010.07.018 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1872-9479 |
| EndPage | 62 |
| ExternalDocumentID | 23404519 10_1016_j_mcm_2010_07_018 S0895717710003493 |
| GroupedDBID | --K --M -DZ -~X .DC .~1 0R~ 0SF 186 1B1 1RT 1~. 1~5 29M 4.4 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABFNM ABMAC ABUCO ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q HAMUX HVGLF HZ~ IHE IXB J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SSB SSD SST SSW SSZ T5K T9H TN5 VOH WUQ XPP XSW YNT YQT ZMT 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION EFKBS ~HD AFXIZ AGCQF AGRNS IQODW SSH 7S9 L.6 |
| ID | FETCH-LOGICAL-c360t-325426f5b33409cda65c82e58ee4a8159699fae8595e78b7571d3fc49b3bbf3b3 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000284659800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0895-7177 |
| IngestDate | Thu Oct 02 07:41:23 EDT 2025 Mon Jul 21 09:16:36 EDT 2025 Tue Nov 18 22:26:25 EST 2025 Sat Nov 29 06:30:25 EST 2025 Fri Feb 23 02:22:47 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Fuzzy relational equations Fuzzy optimization Max-product composition Geometric programming Convex set Optimization method Numerical analysis Applied mathematics Optimal solution Variational calculus Mathematical model Computer aided analysis Mathematical programming |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c360t-325426f5b33409cda65c82e58ee4a8159699fae8595e78b7571d3fc49b3bbf3b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.mcm.2010.07.018 |
| PQID | 1733514631 |
| PQPubID | 24069 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1733514631 pascalfrancis_primary_23404519 crossref_primary_10_1016_j_mcm_2010_07_018 crossref_citationtrail_10_1016_j_mcm_2010_07_018 elsevier_sciencedirect_doi_10_1016_j_mcm_2010_07_018 |
| PublicationCentury | 2000 |
| PublicationDate | 2011 2011-01-00 20110101 |
| PublicationDateYYYYMMDD | 2011-01-01 |
| PublicationDate_xml | – year: 2011 text: 2011 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Mathematical and computer modelling |
| PublicationYear | 2011 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Czogala, Drewniak, Pedrycz (br000020) 1982; 7 Ghodousian, Khorram (br000125) 2006; 180 Gupta, Qi (br000055) 1991; 40 Wang (br000100) 1995; 4 Chen, Wang (br000035) 2002; 6 Peeva (br000095) 1994 Markovskii (br000030) 2005; 153 Gupta, Qi (br000050) 1991; 40 Lu, Fang (br000105) 2001; 119 Ghodousian, Khorram (br000115) 2006; 178 Li, Fang (br000135) 2008; 7 Pedrycz (br000010) 1985; 107 Wu, Guu (br000070) 2005; 150 Wang, Fang, Nuttle (br000040) 2003; 2 Higashi, Klir (br000025) 1984; 13 Li, Fang (br000045) 2009; 8 Fang, Li (br000065) 1999; 103 Pedrycz (br000060) 1993; 59 Khorram, Ghodousian (br000120) 2006; 173 Loetamonphong, Fang, Young (br000110) 2002; 127 Wu (br000145) 2008; 47 J.H. Yang, B.Y. Cao, Geometric programming with fuzzy relation equation constraints, in: Proceedings of IEEE International Conference on Fuzzy Systems, 2005, pp. 557–560. Li, Fang (br000130) 2009; 22 Wu, Guu (br000085) 2004; 3 Loetamonphong, Fang (br000075) 1999; 7 Wang, Zhang, Sanchez, Lee (br000090) 1991; 159 Di Nola, Sessa, Pedrycz, Sanchez (br000015) 1989 Di Nola, Sessa, Pedrycz, Sanchez (br000150) 1991; 40 Guu, Wu (br000080) 2002; 1 Sanchez (br000005) 1976; 30 Gupta (10.1016/j.mcm.2010.07.018_br000055) 1991; 40 Loetamonphong (10.1016/j.mcm.2010.07.018_br000110) 2002; 127 Ghodousian (10.1016/j.mcm.2010.07.018_br000125) 2006; 180 Loetamonphong (10.1016/j.mcm.2010.07.018_br000075) 1999; 7 Peeva (10.1016/j.mcm.2010.07.018_br000095) 1994 Wu (10.1016/j.mcm.2010.07.018_br000145) 2008; 47 Wang (10.1016/j.mcm.2010.07.018_br000040) 2003; 2 Wu (10.1016/j.mcm.2010.07.018_br000070) 2005; 150 Gupta (10.1016/j.mcm.2010.07.018_br000050) 1991; 40 Wang (10.1016/j.mcm.2010.07.018_br000090) 1991; 159 Di Nola (10.1016/j.mcm.2010.07.018_br000150) 1991; 40 Li (10.1016/j.mcm.2010.07.018_br000130) 2009; 22 Ghodousian (10.1016/j.mcm.2010.07.018_br000115) 2006; 178 Li (10.1016/j.mcm.2010.07.018_br000045) 2009; 8 Guu (10.1016/j.mcm.2010.07.018_br000080) 2002; 1 Lu (10.1016/j.mcm.2010.07.018_br000105) 2001; 119 10.1016/j.mcm.2010.07.018_br000140 Markovskii (10.1016/j.mcm.2010.07.018_br000030) 2005; 153 Fang (10.1016/j.mcm.2010.07.018_br000065) 1999; 103 Higashi (10.1016/j.mcm.2010.07.018_br000025) 1984; 13 Li (10.1016/j.mcm.2010.07.018_br000135) 2008; 7 Wu (10.1016/j.mcm.2010.07.018_br000085) 2004; 3 Wang (10.1016/j.mcm.2010.07.018_br000100) 1995; 4 Khorram (10.1016/j.mcm.2010.07.018_br000120) 2006; 173 Sanchez (10.1016/j.mcm.2010.07.018_br000005) 1976; 30 Chen (10.1016/j.mcm.2010.07.018_br000035) 2002; 6 Pedrycz (10.1016/j.mcm.2010.07.018_br000010) 1985; 107 Di Nola (10.1016/j.mcm.2010.07.018_br000015) 1989 Pedrycz (10.1016/j.mcm.2010.07.018_br000060) 1993; 59 Czogala (10.1016/j.mcm.2010.07.018_br000020) 1982; 7 |
| References_xml | – year: 1989 ident: br000015 article-title: Fuzzy Relation Equations and their Applications in Knowledge Engineering – volume: 30 start-page: 38 year: 1976 end-page: 48 ident: br000005 article-title: Resolution of composite fuzzy relational equations publication-title: Information and Control – volume: 107 start-page: 520 year: 1985 end-page: 536 ident: br000010 article-title: On generalized fuzzy relational equations and their applications publication-title: Journal of Mathematical Analysis and Applications – volume: 2 start-page: 41 year: 2003 end-page: 60 ident: br000040 article-title: Solution sets of interval-valued fuzzy relational equations publication-title: Fuzzy Optimization and Decision Making – volume: 127 start-page: 141 year: 2002 end-page: 164 ident: br000110 article-title: Multi-objective optimization problems with fuzzy relation equation constraints publication-title: Fuzzy Sets and Systems – volume: 7 start-page: 441 year: 1999 end-page: 445 ident: br000075 article-title: An efficient solution procedure for fuzzy relational equations with max-product composition publication-title: IEEE Transactions on Fuzzy Systems – volume: 119 start-page: 1 year: 2001 end-page: 20 ident: br000105 article-title: Solving nonlinear optimization problems with fuzzy relation equations constraints publication-title: Fuzzy Sets and Systems – volume: 40 start-page: 431 year: 1991 end-page: 450 ident: br000055 article-title: Theory of publication-title: Fuzzy Sets and Systems – volume: 7 start-page: 89 year: 1982 end-page: 101 ident: br000020 article-title: Fuzzy relation equations on a finite set publication-title: Fuzzy Sets and Systems – volume: 153 start-page: 261 year: 2005 end-page: 273 ident: br000030 article-title: On the relation between equations with max-product composition and the covering problem publication-title: Fuzzy Sets and Systems – volume: 40 start-page: 415 year: 1991 end-page: 429 ident: br000150 article-title: Fuzzy relation equations theory as a basis of fuzzy modeling: an overview publication-title: Fuzzy Sets and Systems – volume: 13 start-page: 65 year: 1984 end-page: 82 ident: br000025 article-title: Resolution of finite fuzzy relation equations publication-title: Fuzzy Sets and Systems – volume: 8 start-page: 179 year: 2009 end-page: 229 ident: br000045 article-title: A survey on fuzzy relational equations, part I: classification and solvability publication-title: Fuzzy Optimization and Decision Making – start-page: 83 year: 1994 end-page: 101 ident: br000095 article-title: Systems of fuzzy equations and inequalities for fuzzy optimization publication-title: Fuzzy Optimization, Recent Advances – volume: 178 start-page: 502 year: 2006 end-page: 509 ident: br000115 article-title: An algorithm for optimizing the linear function with fuzzy relation equation constraints regarding max-prod composition publication-title: Applied Mathematics and Computation – volume: 22 start-page: 49 year: 2009 end-page: 62 ident: br000130 article-title: Minimizing a linear fractional function subject to a system of sup- publication-title: Journal of Systems Science and Complexity – volume: 103 start-page: 107 year: 1999 end-page: 113 ident: br000065 article-title: Solving fuzzy relation equations with a linear objective function publication-title: Fuzzy Sets and Systems – volume: 7 start-page: 169 year: 2008 end-page: 214 ident: br000135 article-title: On the resolution and optimization of a system of fuzzy relational equations with sup- publication-title: Fuzzy Optimization and Decision Making – volume: 1 start-page: 347 year: 2002 end-page: 360 ident: br000080 article-title: Minimizing a linear objective function with fuzzy relation equation constraints publication-title: Fuzzy Optimization and Decision Making – volume: 47 start-page: 352 year: 2008 end-page: 362 ident: br000145 article-title: Optimizing the geometric programming problem with single-term exponents subject to max–min fuzzy relational equation constraints publication-title: Mathematical and Computer Modelling – volume: 173 start-page: 872 year: 2006 end-page: 886 ident: br000120 article-title: Linear objective function optimization with fuzzy relation equation constraints regarding maxCav composition publication-title: Applied Mathematics and Computation – volume: 150 start-page: 147 year: 2005 end-page: 162 ident: br000070 article-title: Minimizing a linear function under a fuzzy max–min relational equation constraint publication-title: Fuzzy Sets and Systems – volume: 159 start-page: 72 year: 1991 end-page: 87 ident: br000090 article-title: Latticized linear programming and fuzzy relation inequalities publication-title: Journal of Mathematical Analysis and Applications – volume: 4 start-page: 23 year: 1995 end-page: 35 ident: br000100 article-title: A multi-objective mathematical programming problem with fuzzy relation constraints publication-title: Journal of Multi-Criteria Decision Analysis – volume: 59 start-page: 189 year: 1993 end-page: 195 ident: br000060 publication-title: Fuzzy Sets and Systems – volume: 6 start-page: 428 year: 2002 end-page: 435 ident: br000035 article-title: Fuzzy relation equations (I): the general and specialized solving algorithms publication-title: Soft Computing – reference: J.H. Yang, B.Y. Cao, Geometric programming with fuzzy relation equation constraints, in: Proceedings of IEEE International Conference on Fuzzy Systems, 2005, pp. 557–560. – volume: 3 start-page: 271 year: 2004 end-page: 278 ident: br000085 article-title: A note on fuzzy relation programming problems with max-strict- publication-title: Fuzzy Optimization and Decision Making – volume: 40 start-page: 473 year: 1991 end-page: 489 ident: br000050 article-title: Design of fuzzy logic controllers based on generalized publication-title: Fuzzy Sets and Systems – volume: 180 start-page: 411 year: 2006 end-page: 418 ident: br000125 article-title: Solving a linear programming problem with the convex combination of the max–min and the max-average fuzzy relation equations publication-title: Applied Mathematics and Computation – volume: 7 start-page: 441 issue: 4 year: 1999 ident: 10.1016/j.mcm.2010.07.018_br000075 article-title: An efficient solution procedure for fuzzy relational equations with max-product composition publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/91.784204 – volume: 6 start-page: 428 year: 2002 ident: 10.1016/j.mcm.2010.07.018_br000035 article-title: Fuzzy relation equations (I): the general and specialized solving algorithms publication-title: Soft Computing doi: 10.1007/s00500-001-0157-3 – volume: 1 start-page: 347 issue: 4 year: 2002 ident: 10.1016/j.mcm.2010.07.018_br000080 article-title: Minimizing a linear objective function with fuzzy relation equation constraints publication-title: Fuzzy Optimization and Decision Making doi: 10.1023/A:1020955112523 – volume: 40 start-page: 415 year: 1991 ident: 10.1016/j.mcm.2010.07.018_br000150 article-title: Fuzzy relation equations theory as a basis of fuzzy modeling: an overview publication-title: Fuzzy Sets and Systems doi: 10.1016/0165-0114(91)90170-U – volume: 153 start-page: 261 year: 2005 ident: 10.1016/j.mcm.2010.07.018_br000030 article-title: On the relation between equations with max-product composition and the covering problem publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2005.02.010 – volume: 8 start-page: 179 year: 2009 ident: 10.1016/j.mcm.2010.07.018_br000045 article-title: A survey on fuzzy relational equations, part I: classification and solvability publication-title: Fuzzy Optimization and Decision Making doi: 10.1007/s10700-009-9059-0 – volume: 159 start-page: 72 year: 1991 ident: 10.1016/j.mcm.2010.07.018_br000090 article-title: Latticized linear programming and fuzzy relation inequalities publication-title: Journal of Mathematical Analysis and Applications doi: 10.1016/0022-247X(91)90222-L – volume: 150 start-page: 147 year: 2005 ident: 10.1016/j.mcm.2010.07.018_br000070 article-title: Minimizing a linear function under a fuzzy max–min relational equation constraint publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2004.09.010 – volume: 2 start-page: 41 issue: 1 year: 2003 ident: 10.1016/j.mcm.2010.07.018_br000040 article-title: Solution sets of interval-valued fuzzy relational equations publication-title: Fuzzy Optimization and Decision Making doi: 10.1023/A:1022800330844 – volume: 40 start-page: 431 year: 1991 ident: 10.1016/j.mcm.2010.07.018_br000055 article-title: Theory of T-norms and fuzzy inference publication-title: Fuzzy Sets and Systems doi: 10.1016/0165-0114(91)90171-L – volume: 3 start-page: 271 year: 2004 ident: 10.1016/j.mcm.2010.07.018_br000085 article-title: A note on fuzzy relation programming problems with max-strict-t-norm composition publication-title: Fuzzy Optimization and Decision Making doi: 10.1023/B:FODM.0000036862.45420.ea – volume: 173 start-page: 872 year: 2006 ident: 10.1016/j.mcm.2010.07.018_br000120 article-title: Linear objective function optimization with fuzzy relation equation constraints regarding maxCav composition publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2005.04.021 – volume: 13 start-page: 65 year: 1984 ident: 10.1016/j.mcm.2010.07.018_br000025 article-title: Resolution of finite fuzzy relation equations publication-title: Fuzzy Sets and Systems doi: 10.1016/0165-0114(84)90026-5 – volume: 7 start-page: 89 year: 1982 ident: 10.1016/j.mcm.2010.07.018_br000020 article-title: Fuzzy relation equations on a finite set publication-title: Fuzzy Sets and Systems doi: 10.1016/0165-0114(82)90043-4 – volume: 119 start-page: 1 year: 2001 ident: 10.1016/j.mcm.2010.07.018_br000105 article-title: Solving nonlinear optimization problems with fuzzy relation equations constraints publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(98)00471-0 – volume: 22 start-page: 49 year: 2009 ident: 10.1016/j.mcm.2010.07.018_br000130 article-title: Minimizing a linear fractional function subject to a system of sup-T equations with a continuous Archimedean triangular norm publication-title: Journal of Systems Science and Complexity doi: 10.1007/s11424-009-9146-x – volume: 47 start-page: 352 year: 2008 ident: 10.1016/j.mcm.2010.07.018_br000145 article-title: Optimizing the geometric programming problem with single-term exponents subject to max–min fuzzy relational equation constraints publication-title: Mathematical and Computer Modelling doi: 10.1016/j.mcm.2007.04.010 – volume: 4 start-page: 23 year: 1995 ident: 10.1016/j.mcm.2010.07.018_br000100 article-title: A multi-objective mathematical programming problem with fuzzy relation constraints publication-title: Journal of Multi-Criteria Decision Analysis doi: 10.1002/mcda.4020040103 – volume: 40 start-page: 473 year: 1991 ident: 10.1016/j.mcm.2010.07.018_br000050 article-title: Design of fuzzy logic controllers based on generalized T-operators publication-title: Fuzzy Sets and Systems doi: 10.1016/0165-0114(91)90173-N – volume: 107 start-page: 520 year: 1985 ident: 10.1016/j.mcm.2010.07.018_br000010 article-title: On generalized fuzzy relational equations and their applications publication-title: Journal of Mathematical Analysis and Applications doi: 10.1016/0022-247X(85)90329-4 – volume: 178 start-page: 502 year: 2006 ident: 10.1016/j.mcm.2010.07.018_br000115 article-title: An algorithm for optimizing the linear function with fuzzy relation equation constraints regarding max-prod composition publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2005.11.069 – start-page: 83 year: 1994 ident: 10.1016/j.mcm.2010.07.018_br000095 article-title: Systems of fuzzy equations and inequalities for fuzzy optimization – volume: 103 start-page: 107 year: 1999 ident: 10.1016/j.mcm.2010.07.018_br000065 article-title: Solving fuzzy relation equations with a linear objective function publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(97)00184-X – volume: 127 start-page: 141 year: 2002 ident: 10.1016/j.mcm.2010.07.018_br000110 article-title: Multi-objective optimization problems with fuzzy relation equation constraints publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(01)00052-5 – volume: 59 start-page: 189 year: 1993 ident: 10.1016/j.mcm.2010.07.018_br000060 article-title: s–t fuzzy relational equations publication-title: Fuzzy Sets and Systems doi: 10.1016/0165-0114(93)90198-Q – ident: 10.1016/j.mcm.2010.07.018_br000140 – year: 1989 ident: 10.1016/j.mcm.2010.07.018_br000015 – volume: 30 start-page: 38 year: 1976 ident: 10.1016/j.mcm.2010.07.018_br000005 article-title: Resolution of composite fuzzy relational equations publication-title: Information and Control doi: 10.1016/S0019-9958(76)90446-0 – volume: 7 start-page: 169 issue: 2 year: 2008 ident: 10.1016/j.mcm.2010.07.018_br000135 article-title: On the resolution and optimization of a system of fuzzy relational equations with sup-T composition publication-title: Fuzzy Optimization and Decision Making doi: 10.1007/s10700-008-9029-y – volume: 180 start-page: 411 year: 2006 ident: 10.1016/j.mcm.2010.07.018_br000125 article-title: Solving a linear programming problem with the convex combination of the max–min and the max-average fuzzy relation equations publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2005.12.027 |
| SSID | ssj0005908 |
| Score | 2.0941293 |
| Snippet | In this paper, an optimization model for minimizing an objective function with single-term exponents subject to fuzzy relational equations specified in... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 55 |
| SubjectTerms | Calculus of variations and optimal control Convex and discrete geometry equations Exact sciences and technology Fuzzy optimization Fuzzy relational equations Geometric programming Geometry Mathematical analysis Mathematics Max-product composition Methods of scientific computing (including symbolic computation, algebraic computation) Numerical analysis Numerical analysis. Scientific computation Numerical methods in mathematical programming, optimization and calculus of variations Numerical methods in optimization and calculus of variations Sciences and techniques of general use system optimization |
| Title | Geometric programming problem with single-term exponents subject to max-product fuzzy relational equations |
| URI | https://dx.doi.org/10.1016/j.mcm.2010.07.018 https://www.proquest.com/docview/1733514631 |
| Volume | 53 |
| WOSCitedRecordID | wos000284659800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9479 dateEnd: 20131231 omitProxy: false ssIdentifier: ssj0005908 issn: 0895-7177 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwMTQnyKDpiMxBPIUxo7cfxYoTHgYUIwpL5FjuMIqiYpSzN1--s5x3bSMjEBElIVtVbduP79dHe-3AdCr_JpHOeSUhJlmSSs4AWRgWakAG2Vw_EDNI5tNsFPT5P5XHwajS59LszFkldVstmI1X-FGsYAbJM6-xdw9z8KA_AeQIcrwA7XPwL-RNelaZOlfOxVaRPOu8YxLiQdRpaaGKlsSvzXVZfm1rSZccoYa7SUG7KytWDfFO3V1aXLeenchvpHu-Xm892g-vKvrviAcu0ibK-dpdeQnY-6bg2y81afyGF49k12CuGzae_k_AS5968O3jGfITOEI3VCTEQEjoxWqWorZBMeEsFsExkvhW3J4B22WZFqq_g65Wwl9zWxbz0Qi6NSlS5ajx8FTq7vVtP-YhZk1jO1pXnoLbQX8kgkY7Q3-3A8_zjEB4munWH_B_wj8S448Jcb_c6oubuSDWx7YXukXFP3nQ1zdh_dc4cPPLOkeYBGunqI9rdKUsKnAcjmEVr0ZMJbZMKOTNiQCW-RCfdkwo5MeF3jLTLhjkx4IBPuyfQYfX13fPb2PXHdOYiicbAmNIzAuiuijFIWCJXLOFJJqKNEayYTsJJjIQqpTf08zZOMw67ntFBMZDTLCprRJ2hcwZqeIhzLMGeS00jFEYN5CaNBDoYn2OpcJSKcoMBvb6pc6XrTQWWZ-hjFRQqIpAaRNOApIDJBr_spK1u35aYvM49Z6gxPa1CmQLCbph3u4NvfKIQdMWWbJuilBzwFqW0exclK122TTjk1KTQxnR78272foTv26YZ5PUfj9XmrX6Db6mL9vTk_dFz-CXx1w9U |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+programming+problem+with+single-term+exponents+subject+to+max-product+fuzzy+relational+equations&rft.jtitle=Mathematical+and+computer+modelling&rft.au=Zhou%2C+XueGang&rft.au=Ahat%2C+Rashida&rft.date=2011&rft.pub=Elsevier+Ltd&rft.issn=0895-7177&rft.eissn=1872-9479&rft.volume=53&rft.issue=1&rft.spage=55&rft.epage=62&rft_id=info:doi/10.1016%2Fj.mcm.2010.07.018&rft.externalDocID=S0895717710003493 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-7177&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-7177&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-7177&client=summon |