An enhancement denoising autoencoder for rolling bearing fault diagnosis
•A novel data preprocessing method is proposed when there is not enough data for the model.•Adjust the regularization parameters appropriately as the number of layers changes.•Improve the parameter norm penalty by combining with elastic net regularization. Denoising autoencoders can automatically le...
Uložené v:
| Vydané v: | Measurement : journal of the International Measurement Confederation Ročník 130; s. 448 - 454 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.12.2018
|
| Predmet: | |
| ISSN: | 0263-2241, 1873-412X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A novel data preprocessing method is proposed when there is not enough data for the model.•Adjust the regularization parameters appropriately as the number of layers changes.•Improve the parameter norm penalty by combining with elastic net regularization.
Denoising autoencoders can automatically learn in-depth features from complex data and extract concise expressions, which are used in fault diagnosis. However, they still have many drawbacks: (1) unsatisfactory results when the input data is not substantial; (2) difficulty in optimising the hyperparameter; (3) inability of existing regularisation methods to combine the advantages of L1 and L2 regularisation. To overcome the aforementioned challenges, here, a new data preprocessing method was proposed to obtain the training data. By reusing the data points between the adjacent samples, the fault identifying rate was significantly improved. Considering the different resilience of each layer after regularisation, the proposed method could alter the hyperparameter by changing the unit numbers of each layer. For a better sparse representation, the norm penalty combined L1 and L2 norm penalties, motivated by the elastic net. Comparison with a normal denoising autoencoder verified the superiority of the proposed method. |
|---|---|
| AbstractList | •A novel data preprocessing method is proposed when there is not enough data for the model.•Adjust the regularization parameters appropriately as the number of layers changes.•Improve the parameter norm penalty by combining with elastic net regularization.
Denoising autoencoders can automatically learn in-depth features from complex data and extract concise expressions, which are used in fault diagnosis. However, they still have many drawbacks: (1) unsatisfactory results when the input data is not substantial; (2) difficulty in optimising the hyperparameter; (3) inability of existing regularisation methods to combine the advantages of L1 and L2 regularisation. To overcome the aforementioned challenges, here, a new data preprocessing method was proposed to obtain the training data. By reusing the data points between the adjacent samples, the fault identifying rate was significantly improved. Considering the different resilience of each layer after regularisation, the proposed method could alter the hyperparameter by changing the unit numbers of each layer. For a better sparse representation, the norm penalty combined L1 and L2 norm penalties, motivated by the elastic net. Comparison with a normal denoising autoencoder verified the superiority of the proposed method. |
| Author | Pan, Zuozhou Zhan, Xuyang Li, Jing Meng, Zong |
| Author_xml | – sequence: 1 givenname: Zong surname: Meng fullname: Meng, Zong email: mzysu@ysu.edu.cn – sequence: 2 givenname: Xuyang orcidid: 0000-0002-5268-7399 surname: Zhan fullname: Zhan, Xuyang – sequence: 3 givenname: Jing surname: Li fullname: Li, Jing email: lj@stumail.ysu.edu.cn – sequence: 4 givenname: Zuozhou surname: Pan fullname: Pan, Zuozhou |
| BookMark | eNqNkNFKwzAUhoNMcJu-Q32A1pOkzdorGUOdMPBGwbuQJqczo0sk6QTf3nTzQrwaHPjhcP4PzjcjE-cdEnJLoaBAxd2u2KOKh4B7dEPBgNYFpKFwQaa0XvC8pOx9QqbABM8ZK-kVmcW4AwDBGzEl66XL0H0op4-EzKDzNlq3zdRh8Oi0Nxiyzocs-L4f9y2qMGanDn26t2rrfLTxmlx2qo9485tz8vb48Lpa55uXp-fVcpNrLmDIGWKpagEp0CxUVaFivGp0UzKKFZTGtLzVHQgUraLINbS1aBa0Kakuu8rwOWlOXB18jAE7-RnsXoVvSUGOSuRO_lEiRyUS0lBI3ft_XW0HNVjvhqBsfxZhdSJgevHLYpBR22QJjQ2oB2m8PYPyA05Gij4 |
| CitedBy_id | crossref_primary_10_1109_JIOT_2023_3307127 crossref_primary_10_1109_TNSE_2022_3174674 crossref_primary_10_1088_1361_6501_acb5b7 crossref_primary_10_1016_j_asoc_2022_108912 crossref_primary_10_1109_JSEN_2023_3236838 crossref_primary_10_1016_j_measurement_2022_112327 crossref_primary_10_3390_s20205734 crossref_primary_10_1016_j_cie_2023_109605 crossref_primary_10_1109_ACCESS_2021_3083646 crossref_primary_10_1016_j_ymssp_2021_108765 crossref_primary_10_1186_s40537_023_00684_w crossref_primary_10_1016_j_measurement_2019_107232 crossref_primary_10_1016_j_eswa_2022_119479 crossref_primary_10_1080_21642583_2021_1992684 crossref_primary_10_1016_j_measurement_2021_110017 crossref_primary_10_1016_j_measurement_2020_108333 crossref_primary_10_1016_j_ymssp_2023_110967 crossref_primary_10_1088_1361_6501_ab8df9 crossref_primary_10_1007_s40799_021_00478_w crossref_primary_10_1088_1361_6501_adf244 crossref_primary_10_1109_TIM_2025_3545169 crossref_primary_10_1016_j_measurement_2020_107929 crossref_primary_10_1016_j_measurement_2019_106893 crossref_primary_10_1088_1361_6501_ad24ba crossref_primary_10_1093_jcde_qwad031 crossref_primary_10_1109_JSEN_2024_3362402 crossref_primary_10_1016_j_ymssp_2019_106587 crossref_primary_10_1088_1361_6501_ab3a59 crossref_primary_10_3390_app10186359 crossref_primary_10_3390_rs13091761 crossref_primary_10_1007_s10845_020_01657_z crossref_primary_10_1016_j_ymssp_2022_109454 crossref_primary_10_1016_j_measurement_2019_06_029 crossref_primary_10_1016_j_measurement_2019_03_079 crossref_primary_10_1088_1361_6501_ad3b29 crossref_primary_10_1088_1361_6501_abf3fb crossref_primary_10_1016_j_ress_2020_107050 crossref_primary_10_1088_1361_6501_abd900 crossref_primary_10_1016_j_measurement_2020_108908 crossref_primary_10_3390_rs14030682 crossref_primary_10_1016_j_isatra_2020_02_031 crossref_primary_10_1016_j_ymssp_2021_108709 crossref_primary_10_32604_cmc_2024_049665 crossref_primary_10_1016_j_eswa_2024_126109 crossref_primary_10_1088_1361_6501_ad4732 crossref_primary_10_1109_JSEN_2024_3462540 crossref_primary_10_1007_s11071_021_06393_4 crossref_primary_10_1016_j_measurement_2021_109452 crossref_primary_10_1016_j_compind_2018_12_016 crossref_primary_10_1016_j_measurement_2020_107741 crossref_primary_10_1016_j_engappai_2024_109020 crossref_primary_10_1121_1_5128327 crossref_primary_10_1016_j_isatra_2021_06_005 crossref_primary_10_1016_j_neucom_2022_06_066 crossref_primary_10_1016_j_measurement_2020_107589 crossref_primary_10_1016_j_rineng_2025_105488 crossref_primary_10_1016_j_measurement_2019_02_072 crossref_primary_10_1016_j_measurement_2020_107748 crossref_primary_10_1109_ACCESS_2019_2926234 crossref_primary_10_1016_j_eswa_2022_117716 crossref_primary_10_1109_TIM_2019_2902806 crossref_primary_10_3390_machines13090807 crossref_primary_10_3390_s23177567 crossref_primary_10_1016_j_ymssp_2020_106752 crossref_primary_10_3390_machines12110792 crossref_primary_10_1016_j_isatra_2021_10_026 crossref_primary_10_1108_ILT_11_2019_0496 crossref_primary_10_1016_j_measurement_2019_106909 crossref_primary_10_1016_j_apacoust_2020_107903 crossref_primary_10_1016_j_engappai_2023_107690 crossref_primary_10_1016_j_ymssp_2022_109789 crossref_primary_10_1007_s00170_021_08427_y crossref_primary_10_1155_2021_9942249 crossref_primary_10_1109_TIM_2023_3341134 crossref_primary_10_1177_10775463231164445 crossref_primary_10_1063_1_5136269 crossref_primary_10_1109_TIA_2022_3223637 crossref_primary_10_1007_s10845_023_02303_0 crossref_primary_10_1016_j_ymssp_2025_112894 crossref_primary_10_1016_j_isatra_2020_02_010 crossref_primary_10_23919_JSEE_2022_000023 crossref_primary_10_3390_app11041564 crossref_primary_10_1016_j_mechmachtheory_2020_103786 crossref_primary_10_1016_j_aei_2024_102959 crossref_primary_10_1016_j_compeleceng_2023_108745 crossref_primary_10_1016_j_measurement_2021_109750 crossref_primary_10_3390_electronics11244110 crossref_primary_10_1016_j_engfailanal_2022_106515 crossref_primary_10_3390_machines13090819 crossref_primary_10_3390_electronics12163515 crossref_primary_10_1007_s11760_021_01939_w crossref_primary_10_1007_s11571_020_09642_1 crossref_primary_10_1016_j_trac_2024_117578 crossref_primary_10_1088_1361_6501_ad2e69 crossref_primary_10_3390_s19040758 crossref_primary_10_1088_1361_6501_ac18d2 crossref_primary_10_1109_ACCESS_2020_3041735 crossref_primary_10_1016_j_engappai_2021_104279 crossref_primary_10_1016_j_apacoust_2022_109188 crossref_primary_10_1109_ACCESS_2019_2923417 crossref_primary_10_1088_1361_6501_ac9854 crossref_primary_10_1088_1361_6501_ab55f8 crossref_primary_10_1016_j_jsv_2019_03_023 crossref_primary_10_1016_j_measurement_2020_108153 crossref_primary_10_3390_en15082796 crossref_primary_10_1016_j_measurement_2022_111943 crossref_primary_10_1016_j_neucom_2020_10_003 crossref_primary_10_1016_j_measurement_2021_109186 crossref_primary_10_3390_machines11111029 crossref_primary_10_1016_j_ymssp_2021_108697 crossref_primary_10_1109_ACCESS_2021_3089251 crossref_primary_10_1016_j_asoc_2025_112785 crossref_primary_10_1109_JSEN_2019_2899396 crossref_primary_10_1016_j_measurement_2019_107419 crossref_primary_10_1007_s42417_022_00757_9 crossref_primary_10_1007_s00521_022_07224_2 crossref_primary_10_1016_j_measurement_2024_115199 crossref_primary_10_1177_1748006X221108598 crossref_primary_10_1007_s13198_022_01843_7 crossref_primary_10_1088_1361_6501_ac8893 crossref_primary_10_1145_3427912 crossref_primary_10_1155_2020_9857839 crossref_primary_10_1007_s10489_021_03107_6 crossref_primary_10_1088_1361_6501_abcefb crossref_primary_10_1016_j_engappai_2023_105970 crossref_primary_10_1016_j_measurement_2022_111577 crossref_primary_10_1016_j_jmsy_2022_11_012 crossref_primary_10_1109_ACCESS_2019_2914731 crossref_primary_10_1016_j_anucene_2022_109267 crossref_primary_10_1177_01423312231171664 crossref_primary_10_1109_ACCESS_2019_2938227 crossref_primary_10_1016_j_measurement_2023_112709 crossref_primary_10_1088_1361_6501_aba4da crossref_primary_10_1016_j_measurement_2020_108636 crossref_primary_10_1016_j_measurement_2021_109885 crossref_primary_10_1016_j_measurement_2020_107667 crossref_primary_10_1109_TIM_2023_3348910 crossref_primary_10_1016_j_measurement_2020_108235 crossref_primary_10_1016_j_ress_2021_108017 crossref_primary_10_1016_j_rineng_2024_103420 crossref_primary_10_1007_s11071_025_11469_6 crossref_primary_10_1016_j_measurement_2021_110596 crossref_primary_10_1016_j_compind_2019_04_013 crossref_primary_10_1049_elp2_12063 crossref_primary_10_1016_j_apacoust_2022_108703 crossref_primary_10_1016_j_measurement_2020_107709 crossref_primary_10_1111_exsy_12819 crossref_primary_10_1177_14759217241305159 crossref_primary_10_1108_AEAT_10_2020_0234 crossref_primary_10_1155_2020_8891905 crossref_primary_10_1109_JSEN_2023_3270880 crossref_primary_10_3390_s22197249 crossref_primary_10_3390_s20010223 crossref_primary_10_1109_JSEN_2019_2911299 crossref_primary_10_3390_s23063157 crossref_primary_10_1016_j_measurement_2020_108371 crossref_primary_10_1016_j_measurement_2020_108523 crossref_primary_10_1108_AA_09_2021_0123 crossref_primary_10_3390_math10213953 crossref_primary_10_1007_s10207_025_01005_3 crossref_primary_10_1016_j_neucom_2021_04_122 crossref_primary_10_1016_j_ymssp_2020_107095 crossref_primary_10_1016_j_asoc_2023_110669 crossref_primary_10_3390_e21020115 crossref_primary_10_1007_s10462_023_10513_4 crossref_primary_10_1016_j_measurement_2021_110460 crossref_primary_10_1109_TIM_2023_3251399 crossref_primary_10_3390_machines11020185 crossref_primary_10_1016_j_asoc_2022_109785 |
| Cites_doi | 10.1109/TIE.2016.2519325 10.1126/science.1127647 10.21437/Interspeech.2013-432 10.1109/ICPHM.2016.7542865 10.1016/j.eswa.2013.12.026 10.1016/j.ins.2015.09.048 10.1038/nature14539 10.1016/j.neunet.2014.09.003 10.1016/j.ymssp.2011.09.011 10.1016/j.ymssp.2010.07.013 10.1016/j.jco.2011.01.003 10.1016/j.measurement.2016.04.007 10.1016/j.neucom.2015.11.044 10.1016/j.knosys.2015.06.017 10.1016/j.measurement.2013.11.012 10.1016/j.sigpro.2014.11.003 10.1016/j.ymssp.2015.10.025 10.1016/j.sigpro.2016.07.028 10.1016/j.ymssp.2010.07.017 10.1109/JSTARS.2016.2621011 10.1016/j.jsv.2016.09.018 10.1016/j.ymssp.2017.03.034 10.1016/j.jco.2015.07.002 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.measurement.2018.08.010 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-412X |
| EndPage | 454 |
| ExternalDocumentID | 10_1016_j_measurement_2018_08_010 S0263224118307474 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c360t-2ee4a860ee4ed7a55ea2359c9421e504ddb3bcf06e6ba1e3c0b86971941c4f5d3 |
| ISICitedReferencesCount | 195 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446464400042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-2241 |
| IngestDate | Tue Nov 18 21:45:07 EST 2025 Sat Nov 29 07:20:45 EST 2025 Fri Feb 23 02:47:33 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fault diagnosis Denoising autoencoder Hyperparameter Elastic net Regularisation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c360t-2ee4a860ee4ed7a55ea2359c9421e504ddb3bcf06e6ba1e3c0b86971941c4f5d3 |
| ORCID | 0000-0002-5268-7399 |
| PageCount | 7 |
| ParticipantIDs | crossref_primary_10_1016_j_measurement_2018_08_010 crossref_citationtrail_10_1016_j_measurement_2018_08_010 elsevier_sciencedirect_doi_10_1016_j_measurement_2018_08_010 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-01 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Measurement : journal of the International Measurement Confederation |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Jia, Lei, Lin, Zhou, Lu (b0075) 2016; 72–73 Barad, Ramaiah, Giridhar, Krishnaiah (b0025) 2012; 27 De Vito, Umanità, Villa (b0120) 2011; 27 R. Memisevic, D. Krueger, Zero-bias autoencoders and the benefits of co-adapting features, in: Proceedings of International Conference on Learning Representations, 2015, pp. 1–11. LeCun, Bengio, Hinton (b0045) 2015; 521 N. Jaitly, G.E. Hinton, “Using an autoencoder with deformable templates to discover features for automated speech recognition.” in INTERSPEECH, Lyon, France, 2013,pp.1737–1740. Shao, Jiang, Zhao, Fu (b0065) 2017; 95 Liu, He, Liu, Liu (b0015) 2016; 385 Lu, Wang, Qin (b0100) 2017; 130 Su, Liu, Xu, Li (b0040) 2015; 112 Wang, Chen (b0020) 2011; 511–518 Tran, AlThobiani, Ball (b0055) 2014; 41 Schmidhuber (b0145) 2015; 61 Worden, Staszewski, Hensman (b0035) 2011; 25 Hinton, Salakhutdinov (b0110) 2006; 313 Zabalza, Ren, Zheng, Zhao, Qing (b0090) 2016; 185 Bengio, Courville (b0150) 2013; 35 Zhang, Wang, Chen (b0030) 2015; 89 Sun, Shao, Zhao, Yan, Zhang (b0135) 2016; 89 Randall, Antoni (b0005) 2011; 25 Jia, Lei, Guo, Lin, Xing (b0060) 2017; 000 Rosa, Yu (b0140) 2016; 364–365 Lei, Jia, Lin (b0155) 2016; 63 Erhan, Bengio, Courville, Manzagol, Vincent, Bengio (b0105) 2010; 11 Shen, Han, Braverman (b0130) 2016; 32 R. Thirukovalluru, S. Dixit, R.K. Sevakula, N.K. Verma, A. Salour, Generating feature sets for fault diagnosis using denoising stacked auto-encoder, in: Proceedings of IEEE Conference on Prognostics and Health Management, 2016, pp. 1–7. Ceng, Ansari (b0125) 2013 Lei, Lin, Zuo, He (b0010) 2014; 48 Li, Du, Samat, Meng, Che (b0080) 2017; 10 Deng (b0050) 2014; 3 Hinton, Zemel, Autoencoders (b0085) 1994 Tran (10.1016/j.measurement.2018.08.010_b0055) 2014; 41 Deng (10.1016/j.measurement.2018.08.010_b0050) 2014; 3 Sun (10.1016/j.measurement.2018.08.010_b0135) 2016; 89 Zabalza (10.1016/j.measurement.2018.08.010_b0090) 2016; 185 Zhang (10.1016/j.measurement.2018.08.010_b0030) 2015; 89 Ceng (10.1016/j.measurement.2018.08.010_b0125) 2013 Hinton (10.1016/j.measurement.2018.08.010_b0110) 2006; 313 LeCun (10.1016/j.measurement.2018.08.010_b0045) 2015; 521 Liu (10.1016/j.measurement.2018.08.010_b0015) 2016; 385 Jia (10.1016/j.measurement.2018.08.010_b0060) 2017; 000 Hinton (10.1016/j.measurement.2018.08.010_b0085) 1994 10.1016/j.measurement.2018.08.010_b0095 10.1016/j.measurement.2018.08.010_b0070 Jia (10.1016/j.measurement.2018.08.010_b0075) 2016; 72–73 Erhan (10.1016/j.measurement.2018.08.010_b0105) 2010; 11 Lei (10.1016/j.measurement.2018.08.010_b0155) 2016; 63 Barad (10.1016/j.measurement.2018.08.010_b0025) 2012; 27 Worden (10.1016/j.measurement.2018.08.010_b0035) 2011; 25 Shao (10.1016/j.measurement.2018.08.010_b0065) 2017; 95 De Vito (10.1016/j.measurement.2018.08.010_b0120) 2011; 27 Shen (10.1016/j.measurement.2018.08.010_b0130) 2016; 32 Schmidhuber (10.1016/j.measurement.2018.08.010_b0145) 2015; 61 Su (10.1016/j.measurement.2018.08.010_b0040) 2015; 112 Randall (10.1016/j.measurement.2018.08.010_b0005) 2011; 25 10.1016/j.measurement.2018.08.010_b0115 Li (10.1016/j.measurement.2018.08.010_b0080) 2017; 10 Rosa (10.1016/j.measurement.2018.08.010_b0140) 2016; 364–365 Lei (10.1016/j.measurement.2018.08.010_b0010) 2014; 48 Lu (10.1016/j.measurement.2018.08.010_b0100) 2017; 130 Bengio (10.1016/j.measurement.2018.08.010_b0150) 2013; 35 Wang (10.1016/j.measurement.2018.08.010_b0020) 2011; 511–518 |
| References_xml | – volume: 185 start-page: 1 year: 2016 end-page: 10 ident: b0090 article-title: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging publication-title: Neurocomputing – volume: 27 start-page: 189 year: 2011 end-page: 203 ident: b0120 article-title: A consistent algorithm to solve Lasso, elastic-net and Tikhonov regularization publication-title: J. Complexity. – reference: R. Thirukovalluru, S. Dixit, R.K. Sevakula, N.K. Verma, A. Salour, Generating feature sets for fault diagnosis using denoising stacked auto-encoder, in: Proceedings of IEEE Conference on Prognostics and Health Management, 2016, pp. 1–7. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0045 article-title: Review: deep learning publication-title: Nature – volume: 72–73 start-page: 303 year: 2016 end-page: 315 ident: b0075 article-title: Deep neural network: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data publication-title: Meth. Syst. Signal Process. – start-page: 3 year: 1994 ident: b0085 article-title: minimum description length, and Helmholtz free energy publication-title: Adv. Neural Inf. Process. Syst. – volume: 000 start-page: 1 year: 2017 end-page: 10 ident: b0060 article-title: A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines publication-title: Neurocomputing – volume: 511–518 year: 2011 ident: b0020 article-title: Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network publication-title: Comput. Ind. Eng. – volume: 95 start-page: 187 year: 2017 end-page: 204 ident: b0065 article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis publication-title: Meth. Syst. Signal Process. – volume: 41 start-page: 4113 year: 2014 end-page: 4122 ident: b0055 article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks publication-title: Expert Syst. Appl. – volume: 48 start-page: 292 year: 2014 end-page: 305 ident: b0010 article-title: Condition monitoring and fault diagnosis of planetary gearboxes: a review publication-title: Measurement – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b0110 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – reference: R. Memisevic, D. Krueger, Zero-bias autoencoders and the benefits of co-adapting features, in: Proceedings of International Conference on Learning Representations, 2015, pp. 1–11. – start-page: 10 year: 2013 end-page: 26 ident: b0125 article-title: and Ching-Feng Wen, Multi-step implicit iterative methods with regularization for minimization problems and fixed point problems publication-title: J. Inequalities Appl. – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: b0150 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans. Software Eng. – volume: 130 start-page: 377 year: 2017 end-page: 388 ident: b0100 article-title: J, Ma, Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification publication-title: Signal Process. – volume: 25 start-page: 4 year: 2011 end-page: 111 ident: b0035 article-title: Natural computing for mechanical systems research: a tutorial overview publication-title: Mech. Syst. Signal Process. – volume: 27 start-page: 729 year: 2012 end-page: 742 ident: b0025 article-title: Neural network approach for a combined performance and mechanical health monitoring of a gas turbine engine publication-title: Mech. Syst. Signal Process. – volume: 32 start-page: 20 year: 2016 end-page: 39 ident: b0130 article-title: Stability of the elastic net estimator publication-title: J. Complexity – volume: 89 start-page: 171 year: 2016 end-page: 178 ident: b0135 article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification publication-title: Measurement – volume: 63 start-page: 3137 year: 2016 end-page: 3147 ident: b0155 article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data publication-title: IEEE Trans. Industry. Electron. – volume: 112 start-page: 43 year: 2015 end-page: 52 ident: b0040 article-title: Sparse auto-encoder based feature learning for human body detection in depth image publication-title: Signal Process. – volume: 25 start-page: 485 year: 2011 end-page: 520 ident: b0005 article-title: Rolling element bearing diagnostics—a tutorial publication-title: Mech. Syst. Signal Process. – volume: 364–365 start-page: 197 year: 2016 end-page: 212 ident: b0140 article-title: Randomized algorithms for nonlinear system identification with deep learning modification publication-title: Inf. Sci. – volume: 89 start-page: 56 year: 2015 end-page: 85 ident: b0030 article-title: Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine publication-title: Knowl.-Based Syst. – volume: 3 year: 2014 ident: b0050 article-title: A tutorial survey of architectures, algorithms, and applications for deep learning publication-title: APSIPA Trans. Signal Inf. Process. – reference: N. Jaitly, G.E. Hinton, “Using an autoencoder with deformable templates to discover features for automated speech recognition.” in INTERSPEECH, Lyon, France, 2013,pp.1737–1740. – volume: 385 start-page: 389 year: 2016 end-page: 401 ident: b0015 article-title: Feature fusion using kernel joint approximate diagonalization of eigen-matrices for rolling bearing fault identification publication-title: J. Sound Vib. – volume: 11 start-page: 625 year: 2010 end-page: 660 ident: b0105 article-title: Why does unsupervised pre-training help deep learning? publication-title: J. Mach. Learn. Res. – volume: 10 start-page: 1068 year: 2017 end-page: 1081 ident: b0080 article-title: Mid-level feature representation via sparse autoencoder for remotely sensed scene classification publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: b0145 article-title: Deep learning in neural networks: an overview publication-title: Neural Networks – volume: 63 start-page: 3137 year: 2016 ident: 10.1016/j.measurement.2018.08.010_b0155 article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data publication-title: IEEE Trans. Industry. Electron. doi: 10.1109/TIE.2016.2519325 – start-page: 10 year: 2013 ident: 10.1016/j.measurement.2018.08.010_b0125 article-title: and Ching-Feng Wen, Multi-step implicit iterative methods with regularization for minimization problems and fixed point problems publication-title: J. Inequalities Appl. – volume: 313 start-page: 504 year: 2006 ident: 10.1016/j.measurement.2018.08.010_b0110 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 000 start-page: 1 year: 2017 ident: 10.1016/j.measurement.2018.08.010_b0060 article-title: A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines publication-title: Neurocomputing – ident: 10.1016/j.measurement.2018.08.010_b0070 doi: 10.21437/Interspeech.2013-432 – ident: 10.1016/j.measurement.2018.08.010_b0115 – ident: 10.1016/j.measurement.2018.08.010_b0095 doi: 10.1109/ICPHM.2016.7542865 – volume: 41 start-page: 4113 year: 2014 ident: 10.1016/j.measurement.2018.08.010_b0055 article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.12.026 – volume: 364–365 start-page: 197 year: 2016 ident: 10.1016/j.measurement.2018.08.010_b0140 article-title: Randomized algorithms for nonlinear system identification with deep learning modification publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.09.048 – volume: 35 start-page: 1798 year: 2013 ident: 10.1016/j.measurement.2018.08.010_b0150 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans. Software Eng. – volume: 11 start-page: 625 year: 2010 ident: 10.1016/j.measurement.2018.08.010_b0105 article-title: Why does unsupervised pre-training help deep learning? publication-title: J. Mach. Learn. Res. – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.measurement.2018.08.010_b0045 article-title: Review: deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 3 year: 1994 ident: 10.1016/j.measurement.2018.08.010_b0085 article-title: minimum description length, and Helmholtz free energy publication-title: Adv. Neural Inf. Process. Syst. – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.measurement.2018.08.010_b0145 article-title: Deep learning in neural networks: an overview publication-title: Neural Networks doi: 10.1016/j.neunet.2014.09.003 – volume: 27 start-page: 729 year: 2012 ident: 10.1016/j.measurement.2018.08.010_b0025 article-title: Neural network approach for a combined performance and mechanical health monitoring of a gas turbine engine publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2011.09.011 – volume: 25 start-page: 4 year: 2011 ident: 10.1016/j.measurement.2018.08.010_b0035 article-title: Natural computing for mechanical systems research: a tutorial overview publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2010.07.013 – volume: 27 start-page: 189 year: 2011 ident: 10.1016/j.measurement.2018.08.010_b0120 article-title: A consistent algorithm to solve Lasso, elastic-net and Tikhonov regularization publication-title: J. Complexity. doi: 10.1016/j.jco.2011.01.003 – volume: 3 year: 2014 ident: 10.1016/j.measurement.2018.08.010_b0050 article-title: A tutorial survey of architectures, algorithms, and applications for deep learning publication-title: APSIPA Trans. Signal Inf. Process. – volume: 89 start-page: 171 year: 2016 ident: 10.1016/j.measurement.2018.08.010_b0135 article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification publication-title: Measurement doi: 10.1016/j.measurement.2016.04.007 – volume: 185 start-page: 1 year: 2016 ident: 10.1016/j.measurement.2018.08.010_b0090 article-title: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.044 – volume: 89 start-page: 56 year: 2015 ident: 10.1016/j.measurement.2018.08.010_b0030 article-title: Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.06.017 – volume: 48 start-page: 292 year: 2014 ident: 10.1016/j.measurement.2018.08.010_b0010 article-title: Condition monitoring and fault diagnosis of planetary gearboxes: a review publication-title: Measurement doi: 10.1016/j.measurement.2013.11.012 – volume: 112 start-page: 43 year: 2015 ident: 10.1016/j.measurement.2018.08.010_b0040 article-title: Sparse auto-encoder based feature learning for human body detection in depth image publication-title: Signal Process. doi: 10.1016/j.sigpro.2014.11.003 – volume: 511–518 year: 2011 ident: 10.1016/j.measurement.2018.08.010_b0020 article-title: Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network publication-title: Comput. Ind. Eng. – volume: 72–73 start-page: 303 year: 2016 ident: 10.1016/j.measurement.2018.08.010_b0075 article-title: Deep neural network: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data publication-title: Meth. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.10.025 – volume: 130 start-page: 377 year: 2017 ident: 10.1016/j.measurement.2018.08.010_b0100 article-title: J, Ma, Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.07.028 – volume: 25 start-page: 485 year: 2011 ident: 10.1016/j.measurement.2018.08.010_b0005 article-title: Rolling element bearing diagnostics—a tutorial publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2010.07.017 – volume: 10 start-page: 1068 year: 2017 ident: 10.1016/j.measurement.2018.08.010_b0080 article-title: Mid-level feature representation via sparse autoencoder for remotely sensed scene classification publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2621011 – volume: 385 start-page: 389 year: 2016 ident: 10.1016/j.measurement.2018.08.010_b0015 article-title: Feature fusion using kernel joint approximate diagonalization of eigen-matrices for rolling bearing fault identification publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.09.018 – volume: 95 start-page: 187 year: 2017 ident: 10.1016/j.measurement.2018.08.010_b0065 article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis publication-title: Meth. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.03.034 – volume: 32 start-page: 20 year: 2016 ident: 10.1016/j.measurement.2018.08.010_b0130 article-title: Stability of the elastic net estimator publication-title: J. Complexity doi: 10.1016/j.jco.2015.07.002 |
| SSID | ssj0006396 |
| Score | 2.593616 |
| Snippet | •A novel data preprocessing method is proposed when there is not enough data for the model.•Adjust the regularization parameters appropriately as the number of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 448 |
| SubjectTerms | Denoising autoencoder Elastic net Fault diagnosis Hyperparameter Regularisation |
| Title | An enhancement denoising autoencoder for rolling bearing fault diagnosis |
| URI | https://dx.doi.org/10.1016/j.measurement.2018.08.010 |
| Volume | 130 |
| WOSCitedRecordID | wos000446464400042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBah3Ub3MLZuY90NDfY2PHyRZQn6EkZHV7bShw7CXowsyzQltUtil7b_pv-0Rxfb6i60G-zFCQdJiX2-HJ0cffqE0HsWkkqGZRwkokwDUiZpwAvOAlESGlWMU5FJc9hEtr_PZjN-MJlc9XthzhZZXbPzc376X10NNnC23jr7F-4eBgUDvAenwxXcDtc7OX5af1D1kXamWeeHuNLMTUFAdG2jZSu1eoQmFy6dHncBT8DwKUW3aHUxVnPv5is_bf02VhJNDcHTmxjZl31Z0W9sNhRqcU9_vV8zac2iSOOmTVe41rZZdyFG61fDNdibj5YD2-xH11weNZ1fs4iYx_-woS2mSaCThxtx2C3Q2EhKrACnm5SJVZr-Jd7b0sPxx5PxzjRdjxlZVseXvaGx_dPcNzASe7Lbce4Nleuhcn1Mp97Etx5nKYfAuT79sjPbG6Z7SPGoLeTZW3qA3o0kwj98r98nQV5ic_gYPXL_SPDUIukJmqh6Ez30dCo30X3DE5arp2h3WmMPXXhAF_bQhQFd2KELO3Rhgy48oOsZ-v555_DTbuAO4whkQsM2iJUigtEQXlSZiTRVIk5SLjmJI5WGpCyLpJBVSBUtRKQSGRaM8iziJJKkSsvkOVqrm1q9QJjGkPeKrIKWRq-O80woiAtMwiBFybYQ659OLp1SvT4wZZHf6qUtFA9dT61cy106bfcuyF3eafPJHGB2e_eX__KZr9DG-MN4jdbaZafeoHvyrJ2vlm8dxq4Bgn6wqg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+enhancement+denoising+autoencoder+for+rolling+bearing+fault+diagnosis&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Meng%2C+Zong&rft.au=Zhan%2C+Xuyang&rft.au=Li%2C+Jing&rft.au=Pan%2C+Zuozhou&rft.date=2018-12-01&rft.issn=0263-2241&rft.volume=130&rft.spage=448&rft.epage=454&rft_id=info:doi/10.1016%2Fj.measurement.2018.08.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2018_08_010 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |