Android Malware Characterization Using Metadata and Machine Learning Techniques

Android malware has emerged as a consequence of the increasing popularity of smartphones and tablets. While most previous work focuses on inherent characteristics of Android apps to detect malware, this study analyses indirect features and metadata to identify patterns in malware applications. Our e...

Full description

Saved in:
Bibliographic Details
Published in:Security and communication networks Vol. 2018; no. 2018; pp. 1 - 11
Main Authors: Guzmán, Antonio, Muñoz, Alfonso, Hernández, José Alberto, Martín, Ignacio
Format: Journal Article
Language:English
Published: Cairo, Egypt Hindawi Publishing Corporation 01.01.2018
Hindawi
John Wiley & Sons, Inc
Subjects:
ISSN:1939-0114, 1939-0122
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Android malware has emerged as a consequence of the increasing popularity of smartphones and tablets. While most previous work focuses on inherent characteristics of Android apps to detect malware, this study analyses indirect features and metadata to identify patterns in malware applications. Our experiments show the following: (1) the permissions used by an application offer only moderate performance results; (2) other features publicly available at Android markets are more relevant in detecting malware, such as the application developer and certificate issuer; and (3) compact and efficient classifiers can be constructed for the early detection of malware applications prior to code inspection or sandboxing.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1939-0114
1939-0122
DOI:10.1155/2018/5749481