Tucker Tensor Analysis of Matérn Functions in Spatial Statistics

In this work, we describe advanced numerical tools for working with multivariate functions and for the analysis of large data sets. These tools will drastically reduce the required computing time and the storage cost, and, therefore, will allow us to consider much larger data sets or finer meshes. C...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational methods in applied mathematics Vol. 19; no. 1; pp. 101 - 122
Main Authors: Litvinenko, Alexander, Keyes, David, Khoromskaia, Venera, Khoromskij, Boris N., Matthies, Hermann G.
Format: Journal Article
Language:English
Published: Minsk De Gruyter 01.01.2019
Walter de Gruyter GmbH
Subjects:
ISSN:1609-4840, 1609-9389
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this work, we describe advanced numerical tools for working with multivariate functions and for the analysis of large data sets. These tools will drastically reduce the required computing time and the storage cost, and, therefore, will allow us to consider much larger data sets or finer meshes. Covariance matrices are crucial in spatio-temporal statistical tasks, but are often very expensive to compute and store, especially in three dimensions. Therefore, we approximate covariance functions by cheap surrogates in a low-rank tensor format. We apply the Tucker and canonical tensor decompositions to a family of Matérn- and Slater-type functions with varying parameters and demonstrate numerically that their approximations exhibit exponentially fast convergence. We prove the exponential convergence of the Tucker and canonical approximations in tensor rank parameters. Several statistical operations are performed in this low-rank tensor format, including evaluating the conditional covariance matrix, spatially averaged estimation variance, computing a quadratic form, determinant, trace, loglikelihood, inverse, and Cholesky decomposition of a large covariance matrix. Low-rank tensor approximations reduce the computing and storage costs essentially. For example, the storage cost is reduced from an exponential to a linear scaling , where is the spatial dimension, is the number of mesh points in one direction, and is the tensor rank. Prerequisites for applicability of the proposed techniques are the assumptions that the data, locations, and measurements lie on a tensor (axes-parallel) grid and that the covariance function depends on a distance,
AbstractList In this work, we describe advanced numerical tools for working with multivariate functions and for the analysis of large data sets. These tools will drastically reduce the required computing time and the storage cost, and, therefore, will allow us to consider much larger data sets or finer meshes. Covariance matrices are crucial in spatio-temporal statistical tasks, but are often very expensive to compute and store, especially in three dimensions. Therefore, we approximate covariance functions by cheap surrogates in a low-rank tensor format. We apply the Tucker and canonical tensor decompositions to a family of Matérn- and Slater-type functions with varying parameters and demonstrate numerically that their approximations exhibit exponentially fast convergence. We prove the exponential convergence of the Tucker and canonical approximations in tensor rank parameters. Several statistical operations are performed in this low-rank tensor format, including evaluating the conditional covariance matrix, spatially averaged estimation variance, computing a quadratic form, determinant, trace, loglikelihood, inverse, and Cholesky decomposition of a large covariance matrix. Low-rank tensor approximations reduce the computing and storage costs essentially. For example, the storage cost is reduced from an exponential ⁢ ( n d ) {\mathcal{O}(n^{d})} to a linear scaling ⁢ ( d ⁢ r ⁢ n ) {\mathcal{O}(drn)} , where d is the spatial dimension, n is the number of mesh points in one direction, and r is the tensor rank. Prerequisites for applicability of the proposed techniques are the assumptions that the data, locations, and measurements lie on a tensor (axes-parallel) grid and that the covariance function depends on a distance, ∥ x - y ∥ {\|x-y\|} .
In this work, we describe advanced numerical tools for working with multivariate functions and for the analysis of large data sets. These tools will drastically reduce the required computing time and the storage cost, and, therefore, will allow us to consider much larger data sets or finer meshes. Covariance matrices are crucial in spatio-temporal statistical tasks, but are often very expensive to compute and store, especially in three dimensions. Therefore, we approximate covariance functions by cheap surrogates in a low-rank tensor format. We apply the Tucker and canonical tensor decompositions to a family of Matérn- and Slater-type functions with varying parameters and demonstrate numerically that their approximations exhibit exponentially fast convergence. We prove the exponential convergence of the Tucker and canonical approximations in tensor rank parameters. Several statistical operations are performed in this low-rank tensor format, including evaluating the conditional covariance matrix, spatially averaged estimation variance, computing a quadratic form, determinant, trace, loglikelihood, inverse, and Cholesky decomposition of a large covariance matrix. Low-rank tensor approximations reduce the computing and storage costs essentially. For example, the storage cost is reduced from an exponential to a linear scaling , where is the spatial dimension, is the number of mesh points in one direction, and is the tensor rank. Prerequisites for applicability of the proposed techniques are the assumptions that the data, locations, and measurements lie on a tensor (axes-parallel) grid and that the covariance function depends on a distance,
In this work, we describe advanced numerical tools for working with multivariate functions and for theanalysis of large data sets. These tools will drastically reduce the required computing time and thestorage cost, and, therefore, will allow us to consider much larger data sets or finer meshes.Covariance matrices are crucial in spatio-temporal statistical tasks, but are often very expensive tocompute and store, especially in three dimensions. Therefore, we approximate covariance functions by cheap surrogatesin a low-rank tensor format. We apply the Tucker and canonical tensor decompositions to a family ofMatérn- and Slater-type functions with varying parameters and demonstrate numericallythat their approximations exhibit exponentially fast convergence.We prove the exponential convergence of the Tucker and canonical approximations in tensorrank parameters.Several statistical operations are performed in this low-rank tensor format, including evaluating theconditional covariance matrix, spatially averagedestimation variance, computing a quadratic form, determinant, trace, loglikelihood, inverse,and Cholesky decomposition of a large covariance matrix.Low-rank tensor approximations reduce the computing and storage costs essentially.For example, the storage costis reduced from an exponential ð'ª⁢(nd){\mathcal{O}(n^{d})} to a linear scaling ð'ª⁢(d⁢r⁢n){\mathcal{O}(drn)},where d is the spatial dimension, n is the number of mesh points in one direction,and r is the tensor rank.Prerequisites for applicability of the proposed techniques are the assumptions that the data, locations,and measurements lie on a tensor (axes-parallel) grid and that the covariancefunction depends on a distance, ∥x-y∥{\|x-y\|}.
Author Khoromskaia, Venera
Matthies, Hermann G.
Khoromskij, Boris N.
Litvinenko, Alexander
Keyes, David
Author_xml – sequence: 1
  givenname: Alexander
  orcidid: 0000-0001-5427-3598
  surname: Litvinenko
  fullname: Litvinenko, Alexander
  email: alexander.litvinenko@kaust.edu.sa
  organization: Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal-Jeddah, Saudi Arabia
– sequence: 2
  givenname: David
  surname: Keyes
  fullname: Keyes, David
  email: david.keyes@kaust.edu.sa
  organization: Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal-Jeddah, Saudi Arabia
– sequence: 3
  givenname: Venera
  surname: Khoromskaia
  fullname: Khoromskaia, Venera
  email: vekh@mis.mpg.de
  organization: Max-Planck Institute for Mathematics in the Sciences, 4103Leipzig; and Max-Planck Institute for Dynamics of Complex Technical Systems, 9106 Magdeburg, Germany
– sequence: 4
  givenname: Boris N.
  surname: Khoromskij
  fullname: Khoromskij, Boris N.
  email: bokh@mis.mpg.de
  organization: Max-Planck Institute for Mathematics in the Sciences, 4103Leipzig, Germany
– sequence: 5
  givenname: Hermann G.
  surname: Matthies
  fullname: Matthies, Hermann G.
  email: wire@tu-braunschweig.de
  organization: Institute of Scientific Computing, TU Braunschweig, 8106Braunschweig, Germany
BookMark eNp1kM1KAzEUhYNUsNZuXQdcT83fdBJwU4pVoeKidT2kmTsSnSY1ySB9JJ_DF3OGFgTR1TmL813OPedo4LwDhC4pmdCc5tdmq7cZI1RmhDB2goZ0SlSmuFSDoxdSkDM0jtFuCJGMMlHQIZqtW_MGAa_BRR_wzOlmH23EvsaPOn19BocXrTPJehexdXi108nqBq9SpzFZEy_Qaa2bCOOjjtDz4nY9v8-WT3cP89kyM3xKUsaEACU2PM_zioEGxQFqruoiF7QqNqyiuQHguhKFKiq5gVpKqTkoNuWa1YqP0NXh7i749xZiKl99G7q-sWRdhiqpCtmlJoeUCT7GAHW5C3arw76kpOyXKvulyn6psl-qA8QvwNj-N-9S0Lb5H7s5YB-6SRAqeAntvjM_pf4GqaKUUP4NxbCDjQ
CitedBy_id crossref_primary_10_1007_s10444_022_09979_7
crossref_primary_10_1016_j_jcp_2024_112883
crossref_primary_10_3389_fams_2022_826988
crossref_primary_10_1016_j_jcp_2019_108998
crossref_primary_10_1134_S0965542521050110
crossref_primary_10_1177_10812865251348030
crossref_primary_10_1515_cmam_2018_0014
Cites_doi 10.1029/2008JD010201
10.1016/j.cageo.2011.08.008
10.1137/140972536
10.1016/j.ejor.2011.01.030
10.1007/s11004-009-9245-1
10.1017/CBO9780511626166
10.1016/0196-6774(90)90014-6
10.1007/978-1-4612-2706-9
10.1002/0470845899
10.1007/s006070050015
10.1080/00401706.1993.10485354
10.1007/978-1-4615-7892-5
10.5194/hess-8-220-2004
10.2478/cmam-2010-0012
10.1016/j.advwatres.2008.01.017
10.1051/proc/201448001
10.1002/0470012110
10.1007/978-3-662-47324-5
10.1137/090752286
10.1137/17M1116477
10.1007/s00607-004-0086-y
10.1016/j.geoderma.2004.01.025
10.1016/j.aop.2010.09.012
10.1016/j.cpc.2011.12.016
10.1007/PL00021408
10.1007/BF02289464
10.7551/mitpress/3206.001.0001
10.1137/080730408
10.2478/s11533-007-0018-0
10.1137/S0895479800368354
10.1175/2011JCLI4199.1
10.1080/10618600.2014.914946
10.1016/j.chemolab.2011.09.001
10.1137/110834469
10.1007/s00477-009-0334-y
10.1002/nla.1976
10.1007/978-3-642-28027-6
10.2516/ogst/2012064
10.1002/nla.2023
10.1046/j.1369-7412.2003.05512.x
10.1090/S0025-5718-04-01703-X
10.1007/s00607-008-0018-3
10.1002/9780470316993
10.1038/1781207a0
10.1007/s11004-013-9453-6
10.1007/s00607-005-0145-z
10.1007/978-3-540-74958-5_8
10.1002/sapm192761164
10.2478/cmam-2006-0010
10.1007/s10596-013-9364-0
10.1007/s00607-005-0144-0
10.1007/978-3-642-61609-9
10.1137/07070111X
10.1080/10618600.2014.975230
10.1007/s00041-012-9227-4
10.1093/biomet/asr029
10.1137/S0895479896305696
10.1002/gamm.201310004
ContentType Journal Article
Copyright 2018 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2018 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1515/cmam-2018-0022
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1609-9389
EndPage 122
ExternalDocumentID 10_1515_cmam_2018_0022
10_1515_cmam_2018_0022191101
GroupedDBID 0R~
2WC
4.4
8FE
8FG
AAAEU
AAAVF
AACIX
AADQG
AAFPC
AAGVJ
AAILP
AAJBH
AAKDD
AALGR
AAOUV
AAPJK
AAQCX
AARVR
AASOL
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABJCF
ABJNI
ABMBZ
ABPLS
ABSOE
ABUVI
ABWLS
ABXMZ
ABYKJ
ACDEB
ACEFL
ACGFS
ACHNZ
ACIPV
ACIWK
ACMKP
ACONX
ACPMA
ACUND
ACZBO
ADEQT
ADGQD
ADGYE
ADJVZ
ADNPR
ADOZN
AECWL
AEDGQ
AEGVQ
AEICA
AEJQW
AEKEB
AEMOE
AENEX
AEQDQ
AEQLX
AERZL
AEXIE
AFBAA
AFBDD
AFBQV
AFCXV
AFFHD
AFKRA
AFQUK
AFYRI
AGBEV
AGQYU
AHCWZ
AHVWV
AHXUK
AIERV
AIKXB
AIWOI
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
ALWYM
AMVHM
ARAPS
ASYPN
BAKPI
BBCWN
BCIFA
BENPR
BGLVJ
CCPQU
CFGNV
DASCH
DSRVY
EBS
EJD
FSTRU
HCIFZ
HZ~
IY9
J9A
K.~
K6V
K7-
KDIRW
L6V
M7S
O9-
P2P
P62
PHGZM
PHGZT
PQGLB
PTHSS
QD8
SA.
SLJYH
TR2
UK5
WTRAM
AAYXX
CITATION
AZQEC
DWQXO
GNUQQ
JQ2
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c360t-244e94b3555d2eae93eef39f7541d7b2d15cee3ad4797d8bef888a3e9263a2f93
IEDL.DBID M7S
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455265700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1609-4840
IngestDate Wed Aug 13 07:29:24 EDT 2025
Sat Nov 29 04:47:01 EST 2025
Tue Nov 18 22:22:53 EST 2025
Sat Nov 29 01:30:15 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-244e94b3555d2eae93eef39f7541d7b2d15cee3ad4797d8bef888a3e9263a2f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5427-3598
OpenAccessLink http://www.degruyter.com/downloadpdf/j/cmam.2019.19.issue-1/cmam-2018-0022/cmam-2018-0022.xml
PQID 2263198978
PQPubID 2038872
PageCount 22
ParticipantIDs proquest_journals_2263198978
crossref_primary_10_1515_cmam_2018_0022
crossref_citationtrail_10_1515_cmam_2018_0022
walterdegruyter_journals_10_1515_cmam_2018_0022191101
PublicationCentury 2000
PublicationDate 2019-01-01
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Minsk
PublicationPlace_xml – name: Minsk
PublicationTitle Journal of computational methods in applied mathematics
PublicationYear 2019
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References Boys, S. F.; Cook, G. B.; Reeves, C. M.; Shavitt, I. (j_cmam-2018-0022_ref_005_w2aab3b7d369b1b6b1ab2ab5Aa) 1956; 178
Kolda, T. G.; Bader, B. W. (j_cmam-2018-0022_ref_041_w2aab3b7d369b1b6b1ab2ac41Aa) 2009; 51
Quiñonero Candela, J.; Rasmussen, C. E. (j_cmam-2018-0022_ref_054_w2aab3b7d369b1b6b1ab2ac54Aa) 2005; 6
Khoromskij, B. N.; Litvinenko, A.; Matthies, H. G. (j_cmam-2018-0022_ref_038_w2aab3b7d369b1b6b1ab2ac38Aa) 2009; 84
Oseledets, I. V. (j_cmam-2018-0022_ref_053_w2aab3b7d369b1b6b1ab2ac53Aa) 2011; 33
Shah, R.; Reed, P. (j_cmam-2018-0022_ref_058_w2aab3b7d369b1b6b1ab2ac58Aa) 2011; 211
Spöck, G.; Pilz, J. (j_cmam-2018-0022_ref_060_w2aab3b7d369b1b6b1ab2ac60Aa) 2010; 24
Kollat, J. B.; Reed, P. M.; Kasprzyk, J. R. (j_cmam-2018-0022_ref_042_w2aab3b7d369b1b6b1ab2ac42Aa) 2008; 31
Grasedyck, L.; Kressner, D.; Tobler, C. (j_cmam-2018-0022_ref_018_w2aab3b7d369b1b6b1ab2ac18Aa) 2013; 36
Khoromskij, B. N. (j_cmam-2018-0022_ref_033_w2aab3b7d369b1b6b1ab2ac33Aa) 2006; 6
Stein, M. L.; Chen, J.; Anitescu, M. (j_cmam-2018-0022_ref_061_w2aab3b7d369b1b6b1ab2ac61Aa) 2012; 33
Hackbusch, W. (j_cmam-2018-0022_ref_019_w2aab3b7d369b1b6b1ab2ac19Aa) 1999; 62
Furrer, R.; Genton, M. G. (j_cmam-2018-0022_ref_015_w2aab3b7d369b1b6b1ab2ac15Aa) 2011; 98
Bertoglio, C.; Khoromskij, B. N. (j_cmam-2018-0022_ref_003_w2aab3b7d369b1b6b1ab2ab3Aa) 2012; 183
Haylock, M. R.; Hofstra, N.; Klein Tank, A. M.; Klok, E. J.; Jones, P. D.; New, M. (j_cmam-2018-0022_ref_028_w2aab3b7d369b1b6b1ab2ac28Aa) 2008; 113
Finke, P. A.; Brus, D. J.; Bierkens, M. F. P.; Hoogland, T.; Knotters, M.; De Vries, F. (j_cmam-2018-0022_ref_014_w2aab3b7d369b1b6b1ab2ac14Aa) 2004; 123
Khoromskij, B. N.; Khoromskaia, V. (j_cmam-2018-0022_ref_036_w2aab3b7d369b1b6b1ab2ac36Aa) 2007; 5
Dolgov, S.; Khoromskij, B. N.; Litvinenko, A.; Matthies, H. G. (j_cmam-2018-0022_ref_012_w2aab3b7d369b1b6b1ab2ac12Aa) 2015; 3
Kolda, T. G. (j_cmam-2018-0022_ref_040_w2aab3b7d369b1b6b1ab2ac40Aa) 2001; 23
Wesson, S. M.; Pegram, G. G. S. (j_cmam-2018-0022_ref_066_w2aab3b7d369b1b6b1ab2ac66Aa) 2004; 8
Nowak, W. (j_cmam-2018-0022_ref_050_w2aab3b7d369b1b6b1ab2ac50Aa) 2010; 42
Nowak, W.; Litvinenko, A. (j_cmam-2018-0022_ref_051_w2aab3b7d369b1b6b1ab2ac51Aa) 2013; 45
De Lathauwer, L.; De Moor, B.; Vandewalle, J. (j_cmam-2018-0022_ref_010_w2aab3b7d369b1b6b1ab2ac10Aa) 2000; 21
Stein, M. L.; Chi, Z.; Welty, L. J. (j_cmam-2018-0022_ref_062_w2aab3b7d369b1b6b1ab2ac62Aa) 2004; 66
Tucker, L. R. (j_cmam-2018-0022_ref_065_w2aab3b7d369b1b6b1ab2ac65Aa) 1966; 31
Gavrilyuk, I. P.; Hackbusch, W.; Khoromskij, B. N. (j_cmam-2018-0022_ref_016_w2aab3b7d369b1b6b1ab2ac16Aa) 2005; 74
Khoromskaia, V. (j_cmam-2018-0022_ref_031_w2aab3b7d369b1b6b1ab2ac31Aa) 2010; 10
Gavrilyuk, I. P.; Hackbusch, W.; Khoromskij, B. N. (j_cmam-2018-0022_ref_017_w2aab3b7d369b1b6b1ab2ac17Aa) 2005; 74
Saibaba, A. K.; Ambikasaran, S.; Yue Li, J.; Kitanidis, P. K.; Darve, E. F. (j_cmam-2018-0022_ref_056_w2aab3b7d369b1b6b1ab2ac56Aa) 2012; 67
De Iaco, S.; Maggio, S.; Palma, M.; Posa, D. (j_cmam-2018-0022_ref_009_w2aab3b7d369b1b6b1ab2ab9Aa) 2011; 41
Khoromskij, B. N. (j_cmam-2018-0022_ref_034_w2aab3b7d369b1b6b1ab2ac34Aa) 2011; 110
Nychka, D.; Bandyopadhyay, S.; Hammerling, D.; Lindgren, F.; Sain, S. (j_cmam-2018-0022_ref_052_w2aab3b7d369b1b6b1ab2ac52Aa) 2015; 24
Ambikasaran, S.; Li, J. Y.; Kitanidis, P. K.; Darve, E. (j_cmam-2018-0022_ref_001_w2aab3b7d369b1b6b1ab2ab1Aa) 2013; 17
Hackbusch, W.; Khoromskij, B. N. (j_cmam-2018-0022_ref_024_w2aab3b7d369b1b6b1ab2ac24Aa) 2006; 76
Khoromskij, B. N.; Khoromskaia, V. (j_cmam-2018-0022_ref_037_w2aab3b7d369b1b6b1ab2ac37Aa) 2009; 31
Minden, V.; Damle, A.; Ho, K. L.; Ying, L. (j_cmam-2018-0022_ref_047_w2aab3b7d369b1b6b1ab2ac47Aa) 2017; 15
Sun, Y.; Stein, M. L. (j_cmam-2018-0022_ref_064_w2aab3b7d369b1b6b1ab2ac64Aa) 2016; 25
North, G. R.; Wang, J.; Genton, M. G. (j_cmam-2018-0022_ref_049_w2aab3b7d369b1b6b1ab2ac49Aa) 2011; 24
Dolgov, S.; Khoromskij, B. N.; Savostyanov, D. (j_cmam-2018-0022_ref_013_w2aab3b7d369b1b6b1ab2ac13Aa) 2012; 18
Hackbusch, W.; Khoromskij, B. N. (j_cmam-2018-0022_ref_023_w2aab3b7d369b1b6b1ab2ac23Aa) 2006; 76
Hackbusch, W.; Khoromskij, B. N. (j_cmam-2018-0022_ref_022_w2aab3b7d369b1b6b1ab2ac22Aa) 2000; 64
Handcock, M. S.; Stein, M. L. (j_cmam-2018-0022_ref_025_w2aab3b7d369b1b6b1ab2ac25Aa) 1993; 35
Schollwöck, U. (j_cmam-2018-0022_ref_057_w2aab3b7d369b1b6b1ab2ac57Aa) 2011; 326
Harbrecht, H.; Peters, M.; Siebenmorgen, M. (j_cmam-2018-0022_ref_026_w2aab3b7d369b1b6b1ab2ac26Aa) 2015; 22
Håstad, J. (j_cmam-2018-0022_ref_027_w2aab3b7d369b1b6b1ab2ac27Aa) 1990; 11
Khoromskaia, V.; Khoromskij, B. N. (j_cmam-2018-0022_ref_032_w2aab3b7d369b1b6b1ab2ac32Aa) 2016; 23
Hitchcock, F. L. (j_cmam-2018-0022_ref_029_w2aab3b7d369b1b6b1ab2ac29Aa) 1927; 6
2023033110133742831_j_cmam-2018-0022_ref_009_w2aab3b7d369b1b6b1ab2ab9Aa
2023033110133742831_j_cmam-2018-0022_ref_061_w2aab3b7d369b1b6b1ab2ac61Aa
2023033110133742831_j_cmam-2018-0022_ref_032_w2aab3b7d369b1b6b1ab2ac32Aa
2023033110133742831_j_cmam-2018-0022_ref_025_w2aab3b7d369b1b6b1ab2ac25Aa
2023033110133742831_j_cmam-2018-0022_ref_054_w2aab3b7d369b1b6b1ab2ac54Aa
2023033110133742831_j_cmam-2018-0022_ref_010_w2aab3b7d369b1b6b1ab2ac10Aa
2023033110133742831_j_cmam-2018-0022_ref_001_w2aab3b7d369b1b6b1ab2ab1Aa
2023033110133742831_j_cmam-2018-0022_ref_019_w2aab3b7d369b1b6b1ab2ac19Aa
2023033110133742831_j_cmam-2018-0022_ref_047_w2aab3b7d369b1b6b1ab2ac47Aa
2023033110133742831_j_cmam-2018-0022_ref_033_w2aab3b7d369b1b6b1ab2ac33Aa
2023033110133742831_j_cmam-2018-0022_ref_026_w2aab3b7d369b1b6b1ab2ac26Aa
2023033110133742831_j_cmam-2018-0022_ref_055_w2aab3b7d369b1b6b1ab2ac55Aa
2023033110133742831_j_cmam-2018-0022_ref_056_w2aab3b7d369b1b6b1ab2ac56Aa
2023033110133742831_j_cmam-2018-0022_ref_060_w2aab3b7d369b1b6b1ab2ac60Aa
2023033110133742831_j_cmam-2018-0022_ref_048_w2aab3b7d369b1b6b1ab2ac48Aa
2023033110133742831_j_cmam-2018-0022_ref_011_w2aab3b7d369b1b6b1ab2ac11Aa
2023033110133742831_j_cmam-2018-0022_ref_063_w2aab3b7d369b1b6b1ab2ac63Aa
2023033110133742831_j_cmam-2018-0022_ref_004_w2aab3b7d369b1b6b1ab2ab4Aa
2023033110133742831_j_cmam-2018-0022_ref_018_w2aab3b7d369b1b6b1ab2ac18Aa
2023033110133742831_j_cmam-2018-0022_ref_012_w2aab3b7d369b1b6b1ab2ac12Aa
2023033110133742831_j_cmam-2018-0022_ref_041_w2aab3b7d369b1b6b1ab2ac41Aa
2023033110133742831_j_cmam-2018-0022_ref_057_w2aab3b7d369b1b6b1ab2ac57Aa
2023033110133742831_j_cmam-2018-0022_ref_028_w2aab3b7d369b1b6b1ab2ac28Aa
2023033110133742831_j_cmam-2018-0022_ref_034_w2aab3b7d369b1b6b1ab2ac34Aa
2023033110133742831_j_cmam-2018-0022_ref_051_w2aab3b7d369b1b6b1ab2ac51Aa
2023033110133742831_j_cmam-2018-0022_ref_003_w2aab3b7d369b1b6b1ab2ab3Aa
2023033110133742831_j_cmam-2018-0022_ref_064_w2aab3b7d369b1b6b1ab2ac64Aa
2023033110133742831_j_cmam-2018-0022_ref_013_w2aab3b7d369b1b6b1ab2ac13Aa
2023033110133742831_j_cmam-2018-0022_ref_042_w2aab3b7d369b1b6b1ab2ac42Aa
2023033110133742831_j_cmam-2018-0022_ref_049_w2aab3b7d369b1b6b1ab2ac49Aa
2023033110133742831_j_cmam-2018-0022_ref_058_w2aab3b7d369b1b6b1ab2ac58Aa
2023033110133742831_j_cmam-2018-0022_ref_002_w2aab3b7d369b1b6b1ab2ab2Aa
2023033110133742831_j_cmam-2018-0022_ref_027_w2aab3b7d369b1b6b1ab2ac27Aa
2023033110133742831_j_cmam-2018-0022_ref_065_w2aab3b7d369b1b6b1ab2ac65Aa
2023033110133742831_j_cmam-2018-0022_ref_020_w2aab3b7d369b1b6b1ab2ac20Aa
2023033110133742831_j_cmam-2018-0022_ref_050_w2aab3b7d369b1b6b1ab2ac50Aa
2023033110133742831_j_cmam-2018-0022_ref_035_w2aab3b7d369b1b6b1ab2ac35Aa
2023033110133742831_j_cmam-2018-0022_ref_059_w2aab3b7d369b1b6b1ab2ac59Aa
2023033110133742831_j_cmam-2018-0022_ref_014_w2aab3b7d369b1b6b1ab2ac14Aa
2023033110133742831_j_cmam-2018-0022_ref_043_w2aab3b7d369b1b6b1ab2ac43Aa
2023033110133742831_j_cmam-2018-0022_ref_036_w2aab3b7d369b1b6b1ab2ac36Aa
2023033110133742831_j_cmam-2018-0022_ref_066_w2aab3b7d369b1b6b1ab2ac66Aa
2023033110133742831_j_cmam-2018-0022_ref_005_w2aab3b7d369b1b6b1ab2ab5Aa
2023033110133742831_j_cmam-2018-0022_ref_021_w2aab3b7d369b1b6b1ab2ac21Aa
2023033110133742831_j_cmam-2018-0022_ref_008_w2aab3b7d369b1b6b1ab2ab8Aa
2023033110133742831_j_cmam-2018-0022_ref_015_w2aab3b7d369b1b6b1ab2ac15Aa
2023033110133742831_j_cmam-2018-0022_ref_044_w2aab3b7d369b1b6b1ab2ac44Aa
2023033110133742831_j_cmam-2018-0022_ref_037_w2aab3b7d369b1b6b1ab2ac37Aa
2023033110133742831_j_cmam-2018-0022_ref_029_w2aab3b7d369b1b6b1ab2ac29Aa
2023033110133742831_j_cmam-2018-0022_ref_022_w2aab3b7d369b1b6b1ab2ac22Aa
2023033110133742831_j_cmam-2018-0022_ref_023_w2aab3b7d369b1b6b1ab2ac23Aa
2023033110133742831_j_cmam-2018-0022_ref_052_w2aab3b7d369b1b6b1ab2ac52Aa
2023033110133742831_j_cmam-2018-0022_ref_007_w2aab3b7d369b1b6b1ab2ab7Aa
2023033110133742831_j_cmam-2018-0022_ref_030_w2aab3b7d369b1b6b1ab2ac30Aa
2023033110133742831_j_cmam-2018-0022_ref_039_w2aab3b7d369b1b6b1ab2ac39Aa
2023033110133742831_j_cmam-2018-0022_ref_017_w2aab3b7d369b1b6b1ab2ac17Aa
2023033110133742831_j_cmam-2018-0022_ref_045_w2aab3b7d369b1b6b1ab2ac45Aa
2023033110133742831_j_cmam-2018-0022_ref_040_w2aab3b7d369b1b6b1ab2ac40Aa
2023033110133742831_j_cmam-2018-0022_ref_024_w2aab3b7d369b1b6b1ab2ac24Aa
2023033110133742831_j_cmam-2018-0022_ref_053_w2aab3b7d369b1b6b1ab2ac53Aa
2023033110133742831_j_cmam-2018-0022_ref_062_w2aab3b7d369b1b6b1ab2ac62Aa
2023033110133742831_j_cmam-2018-0022_ref_031_w2aab3b7d369b1b6b1ab2ac31Aa
2023033110133742831_j_cmam-2018-0022_ref_038_w2aab3b7d369b1b6b1ab2ac38Aa
2023033110133742831_j_cmam-2018-0022_ref_046_w2aab3b7d369b1b6b1ab2ac46Aa
2023033110133742831_j_cmam-2018-0022_ref_016_w2aab3b7d369b1b6b1ab2ac16Aa
2023033110133742831_j_cmam-2018-0022_ref_006_w2aab3b7d369b1b6b1ab2ab6Aa
References_xml – volume: 51
  start-page: 455
  issue: 3
  year: 2009
  end-page: 500
  ident: j_cmam-2018-0022_ref_041_w2aab3b7d369b1b6b1ab2ac41Aa
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
– volume: 25
  start-page: 187
  issue: 1
  year: 2016
  end-page: 208
  ident: j_cmam-2018-0022_ref_064_w2aab3b7d369b1b6b1ab2ac64Aa
  article-title: Statistically and computationally efficient estimating equations for large spatial datasets
  publication-title: J. Comput. Graph. Statist.
– volume: 76
  start-page: 177
  issue: 3–4
  year: 2006
  end-page: 202
  ident: j_cmam-2018-0022_ref_023_w2aab3b7d369b1b6b1ab2ac23Aa
  article-title: Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators. I. Separable approximation of multi-variate functions
  publication-title: Computing
– volume: 10
  start-page: 204
  issue: 2
  year: 2010
  end-page: 218
  ident: j_cmam-2018-0022_ref_031_w2aab3b7d369b1b6b1ab2ac31Aa
  article-title: Computation of the Hartree–Fock exchange by the tensor-structured methods
  publication-title: Comput. Methods Appl. Math.
– volume: 5
  start-page: 523
  issue: 3
  year: 2007
  end-page: 550
  ident: j_cmam-2018-0022_ref_036_w2aab3b7d369b1b6b1ab2ac36Aa
  article-title: Low rank Tucker-type tensor approximation to classical potentials
  publication-title: Cent. Eur. J. Math.
– volume: 23
  start-page: 243
  issue: 1
  year: 2001
  end-page: 255
  ident: j_cmam-2018-0022_ref_040_w2aab3b7d369b1b6b1ab2ac40Aa
  article-title: Orthogonal tensor decompositions
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 31
  start-page: 279
  year: 1966
  end-page: 311
  ident: j_cmam-2018-0022_ref_065_w2aab3b7d369b1b6b1ab2ac65Aa
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika
– volume: 24
  start-page: 579
  issue: 2
  year: 2015
  end-page: 599
  ident: j_cmam-2018-0022_ref_052_w2aab3b7d369b1b6b1ab2ac52Aa
  article-title: A multiresolution Gaussian process model for the analysis of large spatial datasets
  publication-title: J. Comput. Graph. Statist.
– volume: 24
  start-page: 5850
  year: 2011
  end-page: 5862
  ident: j_cmam-2018-0022_ref_049_w2aab3b7d369b1b6b1ab2ac49Aa
  article-title: Correlation models for temperature fields
  publication-title: J. Climate
– volume: 31
  start-page: 828
  issue: 5
  year: 2008
  end-page: 845
  ident: j_cmam-2018-0022_ref_042_w2aab3b7d369b1b6b1ab2ac42Aa
  article-title: A new epsilon-dominance hierarchical bayesian optimization algorithm for large multiobjective monitoring network design problems
  publication-title: Adv. Water Res.
– volume: 8
  start-page: 8220
  issue: 2
  year: 2004
  end-page: 8234
  ident: j_cmam-2018-0022_ref_066_w2aab3b7d369b1b6b1ab2ac66Aa
  article-title: Radar rainfall image repair techniques
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 17
  start-page: 913
  issue: 6
  year: 2013
  end-page: 927
  ident: j_cmam-2018-0022_ref_001_w2aab3b7d369b1b6b1ab2ab1Aa
  article-title: Large-scale stochastic linear inversion using hierarchical matrices
  publication-title: Comput. Geosci.
– volume: 183
  start-page: 904
  issue: 4
  year: 2012
  end-page: 912
  ident: j_cmam-2018-0022_ref_003_w2aab3b7d369b1b6b1ab2ab3Aa
  article-title: Low-rank quadrature-based tensor approximation of the Galerkin projected Newton/Yukawa kernels
  publication-title: Comput. Phys. Commun.
– volume: 326
  start-page: 96
  issue: 1
  year: 2011
  end-page: 192
  ident: j_cmam-2018-0022_ref_057_w2aab3b7d369b1b6b1ab2ac57Aa
  article-title: The density-matrix renormalization group in the age of matrix product states
  publication-title: Ann. Physics
– volume: 24
  start-page: 463
  year: 2010
  end-page: 482
  ident: j_cmam-2018-0022_ref_060_w2aab3b7d369b1b6b1ab2ac60Aa
  article-title: Spatial sampling design and covariance-robust minimax prediction based on convex design ideas
  publication-title: Stoch. Environmental Res. Risk Assess.
– volume: 45
  start-page: 411
  issue: 4
  year: 2013
  end-page: 435
  ident: j_cmam-2018-0022_ref_051_w2aab3b7d369b1b6b1ab2ac51Aa
  article-title: Kriging and spatial design accelerated by orders of magnitude: Combining low-rank covariance approximations with FFT-techniques
  publication-title: Math. Geosci.
– volume: 178
  start-page: 1207
  year: 1956
  end-page: 1209
  ident: j_cmam-2018-0022_ref_005_w2aab3b7d369b1b6b1ab2ab5Aa
  article-title: Automatic fundamental calculations of molecular structure
  publication-title: Nature
– volume: 22
  start-page: 596
  issue: 4
  year: 2015
  end-page: 617
  ident: j_cmam-2018-0022_ref_026_w2aab3b7d369b1b6b1ab2ac26Aa
  article-title: Efficient approximation of random fields for numerical applications
  publication-title: Numer. Linear Algebra Appl.
– volume: 11
  start-page: 644
  issue: 4
  year: 1990
  end-page: 654
  ident: j_cmam-2018-0022_ref_027_w2aab3b7d369b1b6b1ab2ac27Aa
  article-title: Tensor rank is NP-complete
  publication-title: J. Algorithms
– volume: 110
  start-page: 1
  issue: 1
  year: 2011
  end-page: 19
  ident: j_cmam-2018-0022_ref_034_w2aab3b7d369b1b6b1ab2ac34Aa
  article-title: Tensors-structured numerical methods in scientific computing: Survey on recent advances
  publication-title: Chemometr. Intell. Laboratory Syst.
– volume: 76
  start-page: 203
  issue: 3–4
  year: 2006
  end-page: 225
  ident: j_cmam-2018-0022_ref_024_w2aab3b7d369b1b6b1ab2ac24Aa
  article-title: Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators. II. HKT representation of certain operators
  publication-title: Computing
– volume: 33
  start-page: 52
  issue: 1
  year: 2012
  end-page: 72
  ident: j_cmam-2018-0022_ref_061_w2aab3b7d369b1b6b1ab2ac61Aa
  article-title: Difference filter preconditioning for large covariance matrices
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 33
  start-page: 2295
  issue: 5
  year: 2011
  end-page: 2317
  ident: j_cmam-2018-0022_ref_053_w2aab3b7d369b1b6b1ab2ac53Aa
  article-title: Tensor-train decomposition
  publication-title: SIAM J. Sci. Comput.
– volume: 211
  start-page: 466
  issue: 3
  year: 2011
  end-page: 479
  ident: j_cmam-2018-0022_ref_058_w2aab3b7d369b1b6b1ab2ac58Aa
  article-title: Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective d-dimensional knapsack problems
  publication-title: European J. Oper. Res.
– volume: 3
  start-page: 1109
  issue: 1
  year: 2015
  end-page: 1135
  ident: j_cmam-2018-0022_ref_012_w2aab3b7d369b1b6b1ab2ac12Aa
  article-title: Polynomial chaos expansion of random coefficients and the solution of stochastic partial differential equations in the tensor train format
  publication-title: SIAM/ASA J. Uncertain. Quantif.
– volume: 31
  start-page: 3002
  issue: 4
  year: 2009
  end-page: 3026
  ident: j_cmam-2018-0022_ref_037_w2aab3b7d369b1b6b1ab2ac37Aa
  article-title: Multigrid accelerated tensor approximation of function related multidimensional arrays
  publication-title: SIAM J. Sci. Comput.
– volume: 6
  start-page: 164
  year: 1927
  end-page: 189
  ident: j_cmam-2018-0022_ref_029_w2aab3b7d369b1b6b1ab2ac29Aa
  article-title: The expression of a tensor or a polyadic as a sum of products
  publication-title: J. Math. Phys.
– volume: 84
  start-page: 49
  issue: 1–2
  year: 2009
  end-page: 67
  ident: j_cmam-2018-0022_ref_038_w2aab3b7d369b1b6b1ab2ac38Aa
  article-title: Application of hierarchical matrices for computing the Karhunen–Loève expansion
  publication-title: Computing
– volume: 35
  start-page: 403
  year: 1993
  end-page: 410
  ident: j_cmam-2018-0022_ref_025_w2aab3b7d369b1b6b1ab2ac25Aa
  article-title: A Bayesian analysis of Kriging
  publication-title: Technometrics
– volume: 74
  start-page: 681
  issue: 250
  year: 2005
  end-page: 708
  ident: j_cmam-2018-0022_ref_016_w2aab3b7d369b1b6b1ab2ac16Aa
  article-title: Data-sparse approximation to a class of operator-valued functions
  publication-title: Math. Comp.
– volume: 6
  start-page: 194
  issue: 2
  year: 2006
  end-page: 220
  ident: j_cmam-2018-0022_ref_033_w2aab3b7d369b1b6b1ab2ac33Aa
  article-title: Structured rank-(R1,…,RD)(R_{1},\dots,R_{D}) decomposition of function-related tensors in ℝD\mathbb{R}^{D}
  publication-title: Comput. Methods Appl. Math.
– volume: 74
  start-page: 131
  issue: 2
  year: 2005
  end-page: 157
  ident: j_cmam-2018-0022_ref_017_w2aab3b7d369b1b6b1ab2ac17Aa
  article-title: Hierarchical tensor-product approximation to the inverse and related operators for high-dimensional elliptic problems
  publication-title: Computing
– volume: 6
  start-page: 1939
  year: 2005
  end-page: 1959
  ident: j_cmam-2018-0022_ref_054_w2aab3b7d369b1b6b1ab2ac54Aa
  article-title: A unifying view of sparse approximate Gaussian process regression
  publication-title: J. Mach. Learn. Res.
– volume: 67
  start-page: 857
  issue: 5
  year: 2012
  end-page: 875
  ident: j_cmam-2018-0022_ref_056_w2aab3b7d369b1b6b1ab2ac56Aa
  article-title: Application of hierarchical matrices to linear inverse problems in geostatistics
  publication-title: Oil Gas Sci. Technol. Rev. IFP Energ. Nouv.
– volume: 62
  start-page: 89
  issue: 2
  year: 1999
  end-page: 108
  ident: j_cmam-2018-0022_ref_019_w2aab3b7d369b1b6b1ab2ac19Aa
  article-title: A sparse matrix arithmetic based on ℋ\mathscr{H}-matrices. I. Introduction to ℋ\mathscr{H}-matrices
  publication-title: Computing
– volume: 64
  start-page: 21
  issue: 1
  year: 2000
  end-page: 47
  ident: j_cmam-2018-0022_ref_022_w2aab3b7d369b1b6b1ab2ac22Aa
  article-title: A sparse ℋ\mathscr{H}-matrix arithmetic. II. Application to multi-dimensional problems
  publication-title: Computing
– volume: 66
  start-page: 275
  issue: 2
  year: 2004
  end-page: 296
  ident: j_cmam-2018-0022_ref_062_w2aab3b7d369b1b6b1ab2ac62Aa
  article-title: Approximating likelihoods for large spatial data sets
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 113
  year: 2008
  ident: j_cmam-2018-0022_ref_028_w2aab3b7d369b1b6b1ab2ac28Aa
  article-title: A european daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006
  publication-title: J. Geophys. Res.
  doi: 10.1029/2008JD010201
– volume: 23
  start-page: 249
  issue: 2
  year: 2016
  end-page: 271
  ident: j_cmam-2018-0022_ref_032_w2aab3b7d369b1b6b1ab2ac32Aa
  article-title: Fast tensor method for summation of long-range potentials on 3D lattices with defects
  publication-title: Numer. Linear Algebra Appl.
– volume: 123
  start-page: 23
  issue: 1
  year: 2004
  end-page: 39
  ident: j_cmam-2018-0022_ref_014_w2aab3b7d369b1b6b1ab2ac14Aa
  article-title: Mapping groundwater dynamics using multiple sources of exhaustive high resolution data
  publication-title: Geoderma
– volume: 36
  start-page: 53
  issue: 1
  year: 2013
  end-page: 78
  ident: j_cmam-2018-0022_ref_018_w2aab3b7d369b1b6b1ab2ac18Aa
  article-title: A literature survey of low-rank tensor approximation techniques
  publication-title: GAMM-Mitt.
– volume: 98
  start-page: 615
  issue: 3
  year: 2011
  end-page: 631
  ident: j_cmam-2018-0022_ref_015_w2aab3b7d369b1b6b1ab2ac15Aa
  article-title: Aggregation-cokriging for highly multivariate spatial data
  publication-title: Biometrika
– volume: 18
  start-page: 915
  issue: 5
  year: 2012
  end-page: 953
  ident: j_cmam-2018-0022_ref_013_w2aab3b7d369b1b6b1ab2ac13Aa
  article-title: Superfast Fourier transform using QTT approximation
  publication-title: J. Fourier Anal. Appl.
– volume: 42
  start-page: 199
  issue: 2
  year: 2010
  end-page: 221
  ident: j_cmam-2018-0022_ref_050_w2aab3b7d369b1b6b1ab2ac50Aa
  article-title: Measures of parameter uncertainty in geostatistical estimation and geostatistical optimal design
  publication-title: Math. Geosci
– volume: 21
  start-page: 1253
  issue: 4
  year: 2000
  end-page: 1278
  ident: j_cmam-2018-0022_ref_010_w2aab3b7d369b1b6b1ab2ac10Aa
  article-title: A multilinear singular value decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 41
  year: 2011
  ident: j_cmam-2018-0022_ref_009_w2aab3b7d369b1b6b1ab2ab9Aa
  article-title: Toward an automatic procedure for modeling multivariate space-time data
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.08.008
– volume: 15
  start-page: 1584
  issue: 4
  year: 2017
  end-page: 1611
  ident: j_cmam-2018-0022_ref_047_w2aab3b7d369b1b6b1ab2ac47Aa
  article-title: Fast spatial Gaussian process maximum likelihood estimation via skeletonization factorizations
  publication-title: Multiscale Model. Simul.
– ident: 2023033110133742831_j_cmam-2018-0022_ref_012_w2aab3b7d369b1b6b1ab2ac12Aa
  doi: 10.1137/140972536
– ident: 2023033110133742831_j_cmam-2018-0022_ref_044_w2aab3b7d369b1b6b1ab2ac44Aa
– ident: 2023033110133742831_j_cmam-2018-0022_ref_058_w2aab3b7d369b1b6b1ab2ac58Aa
  doi: 10.1016/j.ejor.2011.01.030
– ident: 2023033110133742831_j_cmam-2018-0022_ref_050_w2aab3b7d369b1b6b1ab2ac50Aa
  doi: 10.1007/s11004-009-9245-1
– ident: 2023033110133742831_j_cmam-2018-0022_ref_039_w2aab3b7d369b1b6b1ab2ac39Aa
  doi: 10.1017/CBO9780511626166
– ident: 2023033110133742831_j_cmam-2018-0022_ref_027_w2aab3b7d369b1b6b1ab2ac27Aa
  doi: 10.1016/0196-6774(90)90014-6
– ident: 2023033110133742831_j_cmam-2018-0022_ref_063_w2aab3b7d369b1b6b1ab2ac63Aa
  doi: 10.1007/978-1-4612-2706-9
– ident: 2023033110133742831_j_cmam-2018-0022_ref_008_w2aab3b7d369b1b6b1ab2ab8Aa
  doi: 10.1002/0470845899
– ident: 2023033110133742831_j_cmam-2018-0022_ref_054_w2aab3b7d369b1b6b1ab2ac54Aa
– ident: 2023033110133742831_j_cmam-2018-0022_ref_019_w2aab3b7d369b1b6b1ab2ac19Aa
  doi: 10.1007/s006070050015
– ident: 2023033110133742831_j_cmam-2018-0022_ref_025_w2aab3b7d369b1b6b1ab2ac25Aa
  doi: 10.1080/00401706.1993.10485354
– ident: 2023033110133742831_j_cmam-2018-0022_ref_045_w2aab3b7d369b1b6b1ab2ac45Aa
  doi: 10.1007/978-1-4615-7892-5
– ident: 2023033110133742831_j_cmam-2018-0022_ref_066_w2aab3b7d369b1b6b1ab2ac66Aa
  doi: 10.5194/hess-8-220-2004
– ident: 2023033110133742831_j_cmam-2018-0022_ref_031_w2aab3b7d369b1b6b1ab2ac31Aa
  doi: 10.2478/cmam-2010-0012
– ident: 2023033110133742831_j_cmam-2018-0022_ref_042_w2aab3b7d369b1b6b1ab2ac42Aa
  doi: 10.1016/j.advwatres.2008.01.017
– ident: 2023033110133742831_j_cmam-2018-0022_ref_035_w2aab3b7d369b1b6b1ab2ac35Aa
  doi: 10.1051/proc/201448001
– ident: 2023033110133742831_j_cmam-2018-0022_ref_059_w2aab3b7d369b1b6b1ab2ac59Aa
  doi: 10.1002/0470012110
– ident: 2023033110133742831_j_cmam-2018-0022_ref_021_w2aab3b7d369b1b6b1ab2ac21Aa
  doi: 10.1007/978-3-662-47324-5
– ident: 2023033110133742831_j_cmam-2018-0022_ref_048_w2aab3b7d369b1b6b1ab2ac48Aa
– ident: 2023033110133742831_j_cmam-2018-0022_ref_053_w2aab3b7d369b1b6b1ab2ac53Aa
  doi: 10.1137/090752286
– ident: 2023033110133742831_j_cmam-2018-0022_ref_047_w2aab3b7d369b1b6b1ab2ac47Aa
  doi: 10.1137/17M1116477
– ident: 2023033110133742831_j_cmam-2018-0022_ref_017_w2aab3b7d369b1b6b1ab2ac17Aa
  doi: 10.1007/s00607-004-0086-y
– ident: 2023033110133742831_j_cmam-2018-0022_ref_014_w2aab3b7d369b1b6b1ab2ac14Aa
  doi: 10.1016/j.geoderma.2004.01.025
– ident: 2023033110133742831_j_cmam-2018-0022_ref_057_w2aab3b7d369b1b6b1ab2ac57Aa
  doi: 10.1016/j.aop.2010.09.012
– ident: 2023033110133742831_j_cmam-2018-0022_ref_003_w2aab3b7d369b1b6b1ab2ab3Aa
  doi: 10.1016/j.cpc.2011.12.016
– ident: 2023033110133742831_j_cmam-2018-0022_ref_022_w2aab3b7d369b1b6b1ab2ac22Aa
  doi: 10.1007/PL00021408
– ident: 2023033110133742831_j_cmam-2018-0022_ref_002_w2aab3b7d369b1b6b1ab2ab2Aa
– ident: 2023033110133742831_j_cmam-2018-0022_ref_065_w2aab3b7d369b1b6b1ab2ac65Aa
  doi: 10.1007/BF02289464
– ident: 2023033110133742831_j_cmam-2018-0022_ref_055_w2aab3b7d369b1b6b1ab2ac55Aa
  doi: 10.7551/mitpress/3206.001.0001
– ident: 2023033110133742831_j_cmam-2018-0022_ref_037_w2aab3b7d369b1b6b1ab2ac37Aa
  doi: 10.1137/080730408
– ident: 2023033110133742831_j_cmam-2018-0022_ref_030_w2aab3b7d369b1b6b1ab2ac30Aa
– ident: 2023033110133742831_j_cmam-2018-0022_ref_036_w2aab3b7d369b1b6b1ab2ac36Aa
  doi: 10.2478/s11533-007-0018-0
– ident: 2023033110133742831_j_cmam-2018-0022_ref_040_w2aab3b7d369b1b6b1ab2ac40Aa
  doi: 10.1137/S0895479800368354
– ident: 2023033110133742831_j_cmam-2018-0022_ref_049_w2aab3b7d369b1b6b1ab2ac49Aa
  doi: 10.1175/2011JCLI4199.1
– ident: 2023033110133742831_j_cmam-2018-0022_ref_052_w2aab3b7d369b1b6b1ab2ac52Aa
  doi: 10.1080/10618600.2014.914946
– ident: 2023033110133742831_j_cmam-2018-0022_ref_034_w2aab3b7d369b1b6b1ab2ac34Aa
  doi: 10.1016/j.chemolab.2011.09.001
– ident: 2023033110133742831_j_cmam-2018-0022_ref_061_w2aab3b7d369b1b6b1ab2ac61Aa
  doi: 10.1137/110834469
– ident: 2023033110133742831_j_cmam-2018-0022_ref_060_w2aab3b7d369b1b6b1ab2ac60Aa
  doi: 10.1007/s00477-009-0334-y
– ident: 2023033110133742831_j_cmam-2018-0022_ref_026_w2aab3b7d369b1b6b1ab2ac26Aa
  doi: 10.1002/nla.1976
– ident: 2023033110133742831_j_cmam-2018-0022_ref_020_w2aab3b7d369b1b6b1ab2ac20Aa
  doi: 10.1007/978-3-642-28027-6
– ident: 2023033110133742831_j_cmam-2018-0022_ref_046_w2aab3b7d369b1b6b1ab2ac46Aa
– ident: 2023033110133742831_j_cmam-2018-0022_ref_056_w2aab3b7d369b1b6b1ab2ac56Aa
  doi: 10.2516/ogst/2012064
– ident: 2023033110133742831_j_cmam-2018-0022_ref_032_w2aab3b7d369b1b6b1ab2ac32Aa
  doi: 10.1002/nla.2023
– ident: 2023033110133742831_j_cmam-2018-0022_ref_062_w2aab3b7d369b1b6b1ab2ac62Aa
  doi: 10.1046/j.1369-7412.2003.05512.x
– ident: 2023033110133742831_j_cmam-2018-0022_ref_016_w2aab3b7d369b1b6b1ab2ac16Aa
  doi: 10.1090/S0025-5718-04-01703-X
– ident: 2023033110133742831_j_cmam-2018-0022_ref_009_w2aab3b7d369b1b6b1ab2ab9Aa
  doi: 10.1016/j.cageo.2011.08.008
– ident: 2023033110133742831_j_cmam-2018-0022_ref_028_w2aab3b7d369b1b6b1ab2ac28Aa
  doi: 10.1029/2008JD010201
– ident: 2023033110133742831_j_cmam-2018-0022_ref_038_w2aab3b7d369b1b6b1ab2ac38Aa
  doi: 10.1007/s00607-008-0018-3
– ident: 2023033110133742831_j_cmam-2018-0022_ref_007_w2aab3b7d369b1b6b1ab2ab7Aa
  doi: 10.1002/9780470316993
– ident: 2023033110133742831_j_cmam-2018-0022_ref_005_w2aab3b7d369b1b6b1ab2ab5Aa
  doi: 10.1038/1781207a0
– ident: 2023033110133742831_j_cmam-2018-0022_ref_011_w2aab3b7d369b1b6b1ab2ac11Aa
– ident: 2023033110133742831_j_cmam-2018-0022_ref_051_w2aab3b7d369b1b6b1ab2ac51Aa
  doi: 10.1007/s11004-013-9453-6
– ident: 2023033110133742831_j_cmam-2018-0022_ref_024_w2aab3b7d369b1b6b1ab2ac24Aa
  doi: 10.1007/s00607-005-0145-z
– ident: 2023033110133742831_j_cmam-2018-0022_ref_004_w2aab3b7d369b1b6b1ab2ab4Aa
  doi: 10.1007/978-3-540-74958-5_8
– ident: 2023033110133742831_j_cmam-2018-0022_ref_029_w2aab3b7d369b1b6b1ab2ac29Aa
  doi: 10.1002/sapm192761164
– ident: 2023033110133742831_j_cmam-2018-0022_ref_033_w2aab3b7d369b1b6b1ab2ac33Aa
  doi: 10.2478/cmam-2006-0010
– ident: 2023033110133742831_j_cmam-2018-0022_ref_001_w2aab3b7d369b1b6b1ab2ab1Aa
  doi: 10.1007/s10596-013-9364-0
– ident: 2023033110133742831_j_cmam-2018-0022_ref_023_w2aab3b7d369b1b6b1ab2ac23Aa
  doi: 10.1007/s00607-005-0144-0
– ident: 2023033110133742831_j_cmam-2018-0022_ref_006_w2aab3b7d369b1b6b1ab2ab6Aa
  doi: 10.1007/978-3-642-61609-9
– ident: 2023033110133742831_j_cmam-2018-0022_ref_041_w2aab3b7d369b1b6b1ab2ac41Aa
  doi: 10.1137/07070111X
– ident: 2023033110133742831_j_cmam-2018-0022_ref_043_w2aab3b7d369b1b6b1ab2ac43Aa
– ident: 2023033110133742831_j_cmam-2018-0022_ref_064_w2aab3b7d369b1b6b1ab2ac64Aa
  doi: 10.1080/10618600.2014.975230
– ident: 2023033110133742831_j_cmam-2018-0022_ref_013_w2aab3b7d369b1b6b1ab2ac13Aa
  doi: 10.1007/s00041-012-9227-4
– ident: 2023033110133742831_j_cmam-2018-0022_ref_015_w2aab3b7d369b1b6b1ab2ac15Aa
  doi: 10.1093/biomet/asr029
– ident: 2023033110133742831_j_cmam-2018-0022_ref_010_w2aab3b7d369b1b6b1ab2ac10Aa
  doi: 10.1137/S0895479896305696
– ident: 2023033110133742831_j_cmam-2018-0022_ref_018_w2aab3b7d369b1b6b1ab2ac18Aa
  doi: 10.1002/gamm.201310004
SSID ssib008212471
ssj0033936
ssib006285865
Score 2.2370887
Snippet In this work, we describe advanced numerical tools for working with multivariate functions and for the analysis of large data sets. These tools will...
In this work, we describe advanced numerical tools for working with multivariate functions and for theanalysis of large data sets. These tools will drastically...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101
SubjectTerms 60H15
60H35
65N25
Bayesian Update
Computing costs
Computing time
Convergence
Covariance matrix
Datasets
Decomposition
Economic models
Format
Fourier Transform
Geostatistical Optimal Design
Hilbert Tensor
Kalman Filter
Kriging
Loglikelihood Surrogate
Low-Rank Tensor Approximation
Matérn Covariance
Parameters
Quadratic forms
Tensor analysis
Tensors
Title Tucker Tensor Analysis of Matérn Functions in Spatial Statistics
URI https://www.degruyter.com/doi/10.1515/cmam-2018-0022
https://www.proquest.com/docview/2263198978
Volume 19
WOSCitedRecordID wos000455265700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1609-9389
  dateEnd: 20200731
  omitProxy: false
  ssIdentifier: ssj0033936
  issn: 1609-4840
  databaseCode: P5Z
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1609-9389
  dateEnd: 20200731
  omitProxy: false
  ssIdentifier: ssj0033936
  issn: 1609-4840
  databaseCode: K7-
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1609-9389
  dateEnd: 20200731
  omitProxy: false
  ssIdentifier: ssj0033936
  issn: 1609-4840
  databaseCode: M7S
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1609-9389
  dateEnd: 20200731
  omitProxy: false
  ssIdentifier: ssj0033936
  issn: 1609-4840
  databaseCode: BENPR
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4V6IEeKOWhboGVD0icLDaxHcenCipWlRCrVaES4hI58RhVKlnILqD-pP6O_rGO89gtiPbSS04TS5mZzMMz-j6AfWlilKHJQVVYLpU33CYGeeHzgbCps0q7mmxCj0bp5aUZtxdu03atsouJdaB2kyLckR9SmSDCfo9OP97e8cAaFaarLYXGEqwElISoXt07X_hTnKr0jyleSnFa6vkKiBCmphCMksC0Rp1OC-pIKf6wuLE35EFRykOWe5q0FpXo2mM903Z4Xd3_mHUz1Do1Dd_-70etw1pblLKjxovewSssN-DN2RzRdboJR80CBrugtndSsQ7LhE08I7lfP6uSDSlF1l7MvpUsUB2Ta7NQzDZY0FvwdXhy8ekzb-kXeCGSwYxT4kcjcypIlIvRohGIXhivlYyczmMXKcqwwjqpjXZpjp66aSvQ0EfZ2BuxDcvlpMT3wKgrwQiNFy5BqUySJ4kceBuqPe2sxB7wTr9Z0WKTB4qM71noUcgeWbBHFuyRBXv04GAuf9ugcvxVcrfTfNb-ndNsofYeqGcmXEi9fCD1txTFPvz72B1YpRdMc1WzC8uz6h734HXxQBqv-rByfDIaf-nD0qnm_dpl6TlWV78Buxvwbw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqFgk4lLdYKOADiJPVTWzH9gFVFbBqte2KwyL1Fpx4XCHRbMluqfqTeuFP8Mc6k8cuIODWA_eJlXienz2Zj7GXyqWgCOSALr1QOjrhMweijMVQehu8NqEhmzCTiT06ch_W2Pf-Xxhqq-xjYhOow6ykM_JtLBMk9fcYu3P6VRBrFN2u9hQarVmM4eIcIdv8zf471O-rNB29n77dEx2rgChlNlwIzGfgVIF5VocUPDgJEKWLRqskmCINicbEIX1QxplgC4gIEr0Ehy_g00jDlzDkbyhpDfnV2IiV_aZW259uDS3mBWWWLSdSuoayMMmI2Q2RVTdEEkuK7fLEn6DFJlZQVv01Sa4q383z5g49wHF9drHo72ybVDi6879t4l222RXdfLf1kntsDar77PbhcmLt_AHbbRtM-BRh_azm_awWPosc5X5c1hUfYQnQeCn_XHGickbX5VSst7OuH7KP1_INj9h6NavgMeOIuiABF2XIQGmXFVmmhtFTNWuCVzBgotdnXnaz14kC5EtOGAz1n5P-c9J_TvofsNdL-dN26shfJbd6Tedd9JnnKzUPmP7NZFZSf14Q8TtG6Sf_XvYFu7k3PTzID_Yn46fsFj7s2mOpLba-qM_gGbtRfsPdr583DsLZp-s2pivwvkrv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tucker+Tensor+Analysis+of+Mat%C3%A9rn+Functions+in+Spatial+Statistics&rft.jtitle=Journal+of+computational+methods+in+applied+mathematics&rft.au=Litvinenko%2C+Alexander&rft.au=Keyes%2C+David&rft.au=Khoromskaia%2C+Venera&rft.au=Khoromskij%2C+Boris+N.&rft.date=2019-01-01&rft.pub=De+Gruyter&rft.issn=1609-4840&rft.eissn=1609-9389&rft.volume=19&rft.issue=1&rft.spage=101&rft.epage=122&rft_id=info:doi/10.1515%2Fcmam-2018-0022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_cmam_2018_0022191101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1609-4840&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1609-4840&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1609-4840&client=summon