Formulation and analysis of a rule-based short-term load forecasting algorithm

The formulation of rules for the rule base and the application of such rules are discussed. The classification of the load forecast parameters into weather-sensitive and nonweather-sensitive categories is described. The rationale underlying the development of rules for both the one-day and seven-day...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the IEEE Ročník 78; číslo 5; s. 805 - 816
Hlavní autor: Rahman, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.05.1990
Institute of Electrical and Electronics Engineers
Témata:
ISSN:0018-9219
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The formulation of rules for the rule base and the application of such rules are discussed. The classification of the load forecast parameters into weather-sensitive and nonweather-sensitive categories is described. The rationale underlying the development of rules for both the one-day and seven-day forecast is presented. This exercise leads to the identification and estimation of parameters relating load, weather variables, day types, and seasons. Sample rules that are the product of identifiable statistical relationships and expert knowledge are examined. A self-learning process is described which shows how rules governing the electric utility load can be updated. Results from both the one-day and seven-day forecast algorithms are presented, where the seven-day forecast is generated using both accurate and predicted weather information. The monthly average load forecast errors range between 2.97% and 10.71% for the seven-day forecasts. For the one-day forecasts, the average seasonal errors range between 1.03% and 1.53%.< >
AbstractList The formulation and analysis of a short-term load forecasting algorithm is presented. The formulation of rules for the rule base and the application of such rules are discussed. The classification of the load forecast parameters into weather- and non-weather-sensitive categories is discussed. The rationale behind the development of rules for both the one-day and seven-day forecast is then presented. This exercise leads to the identification and estimation of parameters relating load, weather variables, day types, and seasons.
The formulation of rules for the rule base and the application of such rules are discussed. The classification of the load forecast parameters into weather-sensitive and nonweather-sensitive categories is described. The rationale underlying the development of rules for both the one-day and seven-day forecast is presented. This exercise leads to the identification and estimation of parameters relating load, weather variables, day types, and seasons. Sample rules that are the product of identifiable statistical relationships and expert knowledge are examined. A self-learning process is described which shows how rules governing the electric utility load can be updated. Results from both the one-day and seven-day forecast algorithms are presented, where the seven-day forecast is generated using both accurate and predicted weather information. The monthly average load forecast errors range between 2.97% and 10.71% for the seven-day forecasts. For the one-day forecasts, the average seasonal errors range between 1.03% and 1.53%.< >
Author Rahman, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Rahman
  fullname: Rahman, S.
  organization: Dept of Electr. Eng., Virginia Polytech. Inst. & State Univ. Blacksburg, VA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5069859$$DView record in Pascal Francis
BookMark eNpt0LFOwzAQBmAPRaItiJnNA4Ip5ZzEbjyiigISggXm6OLYrZETF9sd-vaEtgIJMZxuuE93un9CRr3vNSEXDGaMgbzlM16UACMyBmBVJnMmT8kkxg8AKLgoxuRl6UO3dZis7yn27VDodtFG6g1FGrZOZw1G3dK49iFlSYeOOo8tNT5ohTHZfkXRrXywad2dkRODLurzY5-S9-X92-Ixe359eFrcPWeqEJAylkOhAds5gIamAcO4kQYqXhrWKMk5MwJNXkojdanyqpQNqtYIIecGpaqKKbk-7N0E_7nVMdWdjUo7h73221jnXIhi-H2AV0eIUaEzAXtlY70JtsOwqzkIWXE5sJsDU8HHGLT5EQzq7yhrXu-jHGT2Ryqb9vGlgNb94y8P3mqtf-_uZ19MjIEL
CODEN IEEPAD
CitedBy_id crossref_primary_10_1049_iet_gtd_2015_0209
crossref_primary_10_1016_j_energy_2017_12_083
crossref_primary_10_3390_en13164121
crossref_primary_10_1016_0142_0615_95_00060_7
crossref_primary_10_1016_S0142_0615_96_00048_8
crossref_primary_10_1109_59_331433
crossref_primary_10_1016_S0142_0615_03_00069_3
crossref_primary_10_1080_00207720110067421
crossref_primary_10_1002_cplx_21829
crossref_primary_10_1007_s42107_024_01079_9
crossref_primary_10_1002_er_892
crossref_primary_10_1016_0378_7796_92_90013_Q
crossref_primary_10_1016_0098_1354_92_80049_F
crossref_primary_10_1016_j_ijepes_2006_09_002
crossref_primary_10_1109_59_780894
crossref_primary_10_1016_j_rser_2017_05_134
crossref_primary_10_1080_07313569708955740
crossref_primary_10_1109_59_260833
crossref_primary_10_3390_en16217444
crossref_primary_10_1016_j_energy_2018_07_084
crossref_primary_10_1016_j_jup_2024_101837
crossref_primary_10_3390_en10101547
crossref_primary_10_3390_e20030184
crossref_primary_10_1109_TSG_2016_2547964
crossref_primary_10_1007_s00202_021_01286_6
Cites_doi 10.1109/TPAS.1980.319608
10.1109/59.193840
10.1109/PROC.1987.13927
10.1109/TSMC.1982.4308827
10.1109/59.192889
10.1109/TPAS.1981.316650
10.1057/jors.1982.116
10.1109/59.14540
10.1049/piee.1968.0258
10.1109/59.32476
ContentType Journal Article
Copyright 1992 INIST-CNRS
Copyright_xml – notice: 1992 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/5.53400
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EndPage 816
ExternalDocumentID 5069859
10_1109_5_53400
53400
GroupedDBID -DZ
-~X
.DC
0R~
123
1OL
29P
3EH
4.4
6IK
85S
9M8
AAJGR
AAWTH
ABAZT
ABFSI
ABJNI
ABQJQ
ABVLG
ACBEA
ACGFS
AENEX
AETEA
AETIX
AFOGA
AGNAY
AGQYO
AGSQL
AHBIQ
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
FA8
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MVM
O9-
OCL
RIE
RIU
RNS
TAE
TN5
TWZ
UDY
UHB
UKR
UQL
VOH
WHG
XJT
XOL
YNT
ZCA
ZXP
ZY4
~02
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c360t-1203e0ad700e0bb0f15f9f0854f1bc9551f6af249f9e4c2849bacdf6697fa9c83
IEDL.DBID RIE
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1109_5_53400&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9219
IngestDate Thu Oct 02 10:56:39 EDT 2025
Mon Jul 21 09:10:55 EDT 2025
Tue Nov 18 21:15:15 EST 2025
Sat Nov 29 05:59:10 EST 2025
Wed Aug 27 02:43:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Short term
Hourly average
Error analysis
Demand forecasting
Expert system
Daily variation
Monthly variation
Load control
Electrical network
Seasonal variation
Daily average
Energy management
Algorithm analysis
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-1203e0ad700e0bb0f15f9f0854f1bc9551f6af249f9e4c2849bacdf6697fa9c83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 25663534
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_25663534
pascalfrancis_primary_5069859
crossref_primary_10_1109_5_53400
ieee_primary_53400
crossref_citationtrail_10_1109_5_53400
PublicationCentury 1900
PublicationDate 1990-05-01
PublicationDateYYYYMMDD 1990-05-01
PublicationDate_xml – month: 05
  year: 1990
  text: 1990-05-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Proceedings of the IEEE
PublicationTitleAbbrev JPROC
PublicationYear 1990
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref11
bhatnagar (ref4) 1986
ref10
ref2
ref1
fildes (ref9) 1979; 30
ref7
ref3
ref6
ref5
bunn (ref8) 1985
References_xml – ident: ref5
  doi: 10.1109/TPAS.1980.319608
– ident: ref13
  doi: 10.1109/59.193840
– ident: ref7
  doi: 10.1109/PROC.1987.13927
– ident: ref11
  doi: 10.1109/TSMC.1982.4308827
– ident: ref2
  doi: 10.1109/59.192889
– ident: ref6
  doi: 10.1109/TPAS.1981.316650
– ident: ref1
  doi: 10.1057/jors.1982.116
– volume: 30
  start-page: 691
  year: 1979
  ident: ref9
  article-title: Quantitative forecasting?The state of the art: Explorative models
  publication-title: J Opt Res Soc
– ident: ref3
  doi: 10.1109/59.14540
– start-page: 60
  year: 1986
  ident: ref4
  article-title: Application of knowledge based algorithms in electric utility load forecasting
  publication-title: Proc IEEE Southeastcon
– year: 1985
  ident: ref8
  publication-title: Comparative Models for Electrical Load Forecasting
– ident: ref10
  doi: 10.1049/piee.1968.0258
– ident: ref12
  doi: 10.1109/59.32476
SSID ssj0003563
Score 1.551695
Snippet The formulation of rules for the rule base and the application of such rules are discussed. The classification of the load forecast parameters into...
The formulation and analysis of a short-term load forecasting algorithm is presented. The formulation of rules for the rule base and the application of such...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 805
SubjectTerms Algorithm design and analysis
Applied sciences
Distributed power generation
Economic forecasting
Electrical engineering. Electrical power engineering
Electrical power engineering
Exact sciences and technology
Load forecasting
Operation. Load control. Reliability
Power generation
Power industry
Power networks and lines
Power system modeling
Predictive models
Pricing
Weather forecasting
Title Formulation and analysis of a rule-based short-term load forecasting algorithm
URI https://ieeexplore.ieee.org/document/53400
https://www.proquest.com/docview/25663534
Volume 78
WOSCitedRecordID wos10_1109_5_53400&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 0018-9219
  databaseCode: RIE
  dateStart: 19630101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0003563
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYAMcDAG1GeHhBbwKnz8ogQFQOqGACxRX6caaWSoDz4_ZydtIBgYYgUxU6U3PnuPsfn-wg5T7KQG2lUwGMQQRSBDYQEBHKM2VBJEyWekuX5Ph2Ps5cX8dCXyfF7YQDAJ5_BpTv1a_mm1K37VXYVcxxxy2Q5TdNup9bC5_K450wL0XzRCLvtsa6a5lV86W_7EXc8kYpLg5Q1SsJ2FBa_vLEPMaPN_7zcFtnogSS97jS_TZag2CHr38oL7pLxCAFpT89FZWHw6CqQ0NJSSat2BoGLYobWE0ThgfPSdFZKQxHJgpa1S4mmcvZaVtNm8rZHnka3jzd3Qc-fEGiesCYIh4wDkwblDkwpFH5shUWMFaEatECsZBNpcf5lBUQa45RQUhubJCK1UuiM75OVoizggFDDMcQNFTNDoyKuQGU4DwkxkknEb1nEB-RiLt1c98XFHcfFLPeTDCbyOPcCGhC66Pje1dP43WXbSXfR3F88-aGsr1aWiCwWA3I2V16OBuJWPWQBZVvniOkQVPHo8K_HHpE19xVdBuMxWWmqFk7Iqv5opnV16sfYJySd0aI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RWqlwoKW0Ynn6UPUWcNZOiI8IsVrEsuoBELfIjzEgbZNqs9vf37GTXUBw4RApip0omfHMfI7H8wH8zItUOO1MIjJUiZToE6WRgBznPjXayTxSstyOTsbj4u5O_e7K5MS9MIgYk8_wKJzGtXxX23n4VXacCRpxH-BjJmU_bfdqLb2uyDrWtJQMmMyw3SAb6mkeZ0fxxheRJ1KphERI3ZAsfEti8cofxyAz-PKe1_sKGx2UZKet7jdhBatvsP6swOAWjAcESTuCLqYrR0dbg4TVnmk2nU8wCXHMseaBcHgS_DSb1NoxwrJodROSopme3NfTx9nDn-9wMzi_PhsmHYNCYkXOZ0na5wK5diR55MaQ-DOvPKEsSYqwitCSz7WnGZhXKC1FKmW0dT7P1YnXyhbiB6xWdYXbwJygINc33PWdkcKgKWgmklIs04TgCil68Gsh3dJ25cUDy8WkjNMMrsqsjALqAVt2_NtW1HjdZTNId9ncXdx_oaynVp6rIlM9OFworyQTCeseusJ63pSE6ghWCbnz1mMP4fPw-mpUji7Gl7uwFr6ozWfcg9XZdI778Mn-mz0204M43v4DMFTU6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formulation+and+analysis+of+a+rule-based+short-term+load+forecasting+algorithm&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Rahman%2C+S.&rft.date=1990-05-01&rft.pub=IEEE&rft.issn=0018-9219&rft.volume=78&rft.issue=5&rft.spage=805&rft.epage=816&rft_id=info:doi/10.1109%2F5.53400&rft.externalDocID=53400
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon