Formulation and analysis of a rule-based short-term load forecasting algorithm
The formulation of rules for the rule base and the application of such rules are discussed. The classification of the load forecast parameters into weather-sensitive and nonweather-sensitive categories is described. The rationale underlying the development of rules for both the one-day and seven-day...
Uloženo v:
| Vydáno v: | Proceedings of the IEEE Ročník 78; číslo 5; s. 805 - 816 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.05.1990
Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 0018-9219 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The formulation of rules for the rule base and the application of such rules are discussed. The classification of the load forecast parameters into weather-sensitive and nonweather-sensitive categories is described. The rationale underlying the development of rules for both the one-day and seven-day forecast is presented. This exercise leads to the identification and estimation of parameters relating load, weather variables, day types, and seasons. Sample rules that are the product of identifiable statistical relationships and expert knowledge are examined. A self-learning process is described which shows how rules governing the electric utility load can be updated. Results from both the one-day and seven-day forecast algorithms are presented, where the seven-day forecast is generated using both accurate and predicted weather information. The monthly average load forecast errors range between 2.97% and 10.71% for the seven-day forecasts. For the one-day forecasts, the average seasonal errors range between 1.03% and 1.53%.< > |
|---|---|
| AbstractList | The formulation and analysis of a short-term load forecasting algorithm is presented. The formulation of rules for the rule base and the application of such rules are discussed. The classification of the load forecast parameters into weather- and non-weather-sensitive categories is discussed. The rationale behind the development of rules for both the one-day and seven-day forecast is then presented. This exercise leads to the identification and estimation of parameters relating load, weather variables, day types, and seasons. The formulation of rules for the rule base and the application of such rules are discussed. The classification of the load forecast parameters into weather-sensitive and nonweather-sensitive categories is described. The rationale underlying the development of rules for both the one-day and seven-day forecast is presented. This exercise leads to the identification and estimation of parameters relating load, weather variables, day types, and seasons. Sample rules that are the product of identifiable statistical relationships and expert knowledge are examined. A self-learning process is described which shows how rules governing the electric utility load can be updated. Results from both the one-day and seven-day forecast algorithms are presented, where the seven-day forecast is generated using both accurate and predicted weather information. The monthly average load forecast errors range between 2.97% and 10.71% for the seven-day forecasts. For the one-day forecasts, the average seasonal errors range between 1.03% and 1.53%.< > |
| Author | Rahman, S. |
| Author_xml | – sequence: 1 givenname: S. surname: Rahman fullname: Rahman, S. organization: Dept of Electr. Eng., Virginia Polytech. Inst. & State Univ. Blacksburg, VA, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5069859$$DView record in Pascal Francis |
| BookMark | eNpt0LFOwzAQBmAPRaItiJnNA4Ip5ZzEbjyiigISggXm6OLYrZETF9sd-vaEtgIJMZxuuE93un9CRr3vNSEXDGaMgbzlM16UACMyBmBVJnMmT8kkxg8AKLgoxuRl6UO3dZis7yn27VDodtFG6g1FGrZOZw1G3dK49iFlSYeOOo8tNT5ohTHZfkXRrXywad2dkRODLurzY5-S9-X92-Ixe359eFrcPWeqEJAylkOhAds5gIamAcO4kQYqXhrWKMk5MwJNXkojdanyqpQNqtYIIecGpaqKKbk-7N0E_7nVMdWdjUo7h73221jnXIhi-H2AV0eIUaEzAXtlY70JtsOwqzkIWXE5sJsDU8HHGLT5EQzq7yhrXu-jHGT2Ryqb9vGlgNb94y8P3mqtf-_uZ19MjIEL |
| CODEN | IEEPAD |
| CitedBy_id | crossref_primary_10_1049_iet_gtd_2015_0209 crossref_primary_10_1016_j_energy_2017_12_083 crossref_primary_10_3390_en13164121 crossref_primary_10_1016_0142_0615_95_00060_7 crossref_primary_10_1016_S0142_0615_96_00048_8 crossref_primary_10_1109_59_331433 crossref_primary_10_1016_S0142_0615_03_00069_3 crossref_primary_10_1080_00207720110067421 crossref_primary_10_1002_cplx_21829 crossref_primary_10_1007_s42107_024_01079_9 crossref_primary_10_1002_er_892 crossref_primary_10_1016_0378_7796_92_90013_Q crossref_primary_10_1016_0098_1354_92_80049_F crossref_primary_10_1016_j_ijepes_2006_09_002 crossref_primary_10_1109_59_780894 crossref_primary_10_1016_j_rser_2017_05_134 crossref_primary_10_1080_07313569708955740 crossref_primary_10_1109_59_260833 crossref_primary_10_3390_en16217444 crossref_primary_10_1016_j_energy_2018_07_084 crossref_primary_10_1016_j_jup_2024_101837 crossref_primary_10_3390_en10101547 crossref_primary_10_3390_e20030184 crossref_primary_10_1109_TSG_2016_2547964 crossref_primary_10_1007_s00202_021_01286_6 |
| Cites_doi | 10.1109/TPAS.1980.319608 10.1109/59.193840 10.1109/PROC.1987.13927 10.1109/TSMC.1982.4308827 10.1109/59.192889 10.1109/TPAS.1981.316650 10.1057/jors.1982.116 10.1109/59.14540 10.1049/piee.1968.0258 10.1109/59.32476 |
| ContentType | Journal Article |
| Copyright | 1992 INIST-CNRS |
| Copyright_xml | – notice: 1992 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/5.53400 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EndPage | 816 |
| ExternalDocumentID | 5069859 10_1109_5_53400 53400 |
| GroupedDBID | -DZ -~X .DC 0R~ 123 1OL 29P 3EH 4.4 6IK 85S 9M8 AAJGR AAWTH ABAZT ABFSI ABJNI ABQJQ ABVLG ACBEA ACGFS AENEX AETEA AETIX AFOGA AGNAY AGQYO AGSQL AHBIQ AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD FA8 HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MVM O9- OCL RIE RIU RNS TAE TN5 TWZ UDY UHB UKR UQL VOH WHG XJT XOL YNT ZCA ZXP ZY4 ~02 AAYXX CITATION IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c360t-1203e0ad700e0bb0f15f9f0854f1bc9551f6af249f9e4c2849bacdf6697fa9c83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1109_5_53400&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9219 |
| IngestDate | Thu Oct 02 10:56:39 EDT 2025 Mon Jul 21 09:10:55 EDT 2025 Tue Nov 18 21:15:15 EST 2025 Sat Nov 29 05:59:10 EST 2025 Wed Aug 27 02:43:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Short term Hourly average Error analysis Demand forecasting Expert system Daily variation Monthly variation Load control Electrical network Seasonal variation Daily average Energy management Algorithm analysis |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c360t-1203e0ad700e0bb0f15f9f0854f1bc9551f6af249f9e4c2849bacdf6697fa9c83 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 25663534 |
| PQPubID | 23500 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_25663534 pascalfrancis_primary_5069859 crossref_primary_10_1109_5_53400 ieee_primary_53400 crossref_citationtrail_10_1109_5_53400 |
| PublicationCentury | 1900 |
| PublicationDate | 1990-05-01 |
| PublicationDateYYYYMMDD | 1990-05-01 |
| PublicationDate_xml | – month: 05 year: 1990 text: 1990-05-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | Proceedings of the IEEE |
| PublicationTitleAbbrev | JPROC |
| PublicationYear | 1990 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 ref11 bhatnagar (ref4) 1986 ref10 ref2 ref1 fildes (ref9) 1979; 30 ref7 ref3 ref6 ref5 bunn (ref8) 1985 |
| References_xml | – ident: ref5 doi: 10.1109/TPAS.1980.319608 – ident: ref13 doi: 10.1109/59.193840 – ident: ref7 doi: 10.1109/PROC.1987.13927 – ident: ref11 doi: 10.1109/TSMC.1982.4308827 – ident: ref2 doi: 10.1109/59.192889 – ident: ref6 doi: 10.1109/TPAS.1981.316650 – ident: ref1 doi: 10.1057/jors.1982.116 – volume: 30 start-page: 691 year: 1979 ident: ref9 article-title: Quantitative forecasting?The state of the art: Explorative models publication-title: J Opt Res Soc – ident: ref3 doi: 10.1109/59.14540 – start-page: 60 year: 1986 ident: ref4 article-title: Application of knowledge based algorithms in electric utility load forecasting publication-title: Proc IEEE Southeastcon – year: 1985 ident: ref8 publication-title: Comparative Models for Electrical Load Forecasting – ident: ref10 doi: 10.1049/piee.1968.0258 – ident: ref12 doi: 10.1109/59.32476 |
| SSID | ssj0003563 |
| Score | 1.551695 |
| Snippet | The formulation of rules for the rule base and the application of such rules are discussed. The classification of the load forecast parameters into... The formulation and analysis of a short-term load forecasting algorithm is presented. The formulation of rules for the rule base and the application of such... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 805 |
| SubjectTerms | Algorithm design and analysis Applied sciences Distributed power generation Economic forecasting Electrical engineering. Electrical power engineering Electrical power engineering Exact sciences and technology Load forecasting Operation. Load control. Reliability Power generation Power industry Power networks and lines Power system modeling Predictive models Pricing Weather forecasting |
| Title | Formulation and analysis of a rule-based short-term load forecasting algorithm |
| URI | https://ieeexplore.ieee.org/document/53400 https://www.proquest.com/docview/25663534 |
| Volume | 78 |
| WOSCitedRecordID | wos10_1109_5_53400&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) issn: 0018-9219 databaseCode: RIE dateStart: 19630101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://ieeexplore.ieee.org/ omitProxy: false ssIdentifier: ssj0003563 providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYAMcDAG1GeHhBbwKnz8ogQFQOqGACxRX6caaWSoDz4_ZydtIBgYYgUxU6U3PnuPsfn-wg5T7KQG2lUwGMQQRSBDYQEBHKM2VBJEyWekuX5Ph2Ps5cX8dCXyfF7YQDAJ5_BpTv1a_mm1K37VXYVcxxxy2Q5TdNup9bC5_K450wL0XzRCLvtsa6a5lV86W_7EXc8kYpLg5Q1SsJ2FBa_vLEPMaPN_7zcFtnogSS97jS_TZag2CHr38oL7pLxCAFpT89FZWHw6CqQ0NJSSat2BoGLYobWE0ThgfPSdFZKQxHJgpa1S4mmcvZaVtNm8rZHnka3jzd3Qc-fEGiesCYIh4wDkwblDkwpFH5shUWMFaEatECsZBNpcf5lBUQa45RQUhubJCK1UuiM75OVoizggFDDMcQNFTNDoyKuQGU4DwkxkknEb1nEB-RiLt1c98XFHcfFLPeTDCbyOPcCGhC66Pje1dP43WXbSXfR3F88-aGsr1aWiCwWA3I2V16OBuJWPWQBZVvniOkQVPHo8K_HHpE19xVdBuMxWWmqFk7Iqv5opnV16sfYJySd0aI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RWqlwoKW0Ynn6UPUWcNZOiI8IsVrEsuoBELfIjzEgbZNqs9vf37GTXUBw4RApip0omfHMfI7H8wH8zItUOO1MIjJUiZToE6WRgBznPjXayTxSstyOTsbj4u5O_e7K5MS9MIgYk8_wKJzGtXxX23n4VXacCRpxH-BjJmU_bfdqLb2uyDrWtJQMmMyw3SAb6mkeZ0fxxheRJ1KphERI3ZAsfEti8cofxyAz-PKe1_sKGx2UZKet7jdhBatvsP6swOAWjAcESTuCLqYrR0dbg4TVnmk2nU8wCXHMseaBcHgS_DSb1NoxwrJodROSopme3NfTx9nDn-9wMzi_PhsmHYNCYkXOZ0na5wK5diR55MaQ-DOvPKEsSYqwitCSz7WnGZhXKC1FKmW0dT7P1YnXyhbiB6xWdYXbwJygINc33PWdkcKgKWgmklIs04TgCil68Gsh3dJ25cUDy8WkjNMMrsqsjALqAVt2_NtW1HjdZTNId9ncXdx_oaynVp6rIlM9OFworyQTCeseusJ63pSE6ghWCbnz1mMP4fPw-mpUji7Gl7uwFr6ozWfcg9XZdI778Mn-mz0204M43v4DMFTU6Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formulation+and+analysis+of+a+rule-based+short-term+load+forecasting+algorithm&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Rahman%2C+S.&rft.date=1990-05-01&rft.pub=IEEE&rft.issn=0018-9219&rft.volume=78&rft.issue=5&rft.spage=805&rft.epage=816&rft_id=info:doi/10.1109%2F5.53400&rft.externalDocID=53400 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon |