Validation of a machine learning technique for segmentation and pose estimation in single plane fluoroscopy

Kinematics of total knee replacements (TKR) play an important role in assessing the success of a procedure and would be a valuable addition to clinical practice; however, measuring TKR kinematics is time consuming and labour intensive. Recently, an automatic single‐plane fluoroscopic method utilizin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of orthopaedic research Jg. 41; H. 8; S. 1767 - 1773
Hauptverfasser: Broberg, Jordan S., Chen, Joanna, Jensen, Andrew, Banks, Scott A., Teeter, Matthew G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.08.2023
Schlagworte:
ISSN:0736-0266, 1554-527X, 1554-527X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Kinematics of total knee replacements (TKR) play an important role in assessing the success of a procedure and would be a valuable addition to clinical practice; however, measuring TKR kinematics is time consuming and labour intensive. Recently, an automatic single‐plane fluoroscopic method utilizing machine learning has been developed to facilitate a quick and simple process for measuring TKR kinematics. This study aimed to validate the new automatic single‐plane technique using biplanar radiostereometric analysis (RSA) as the gold standard. Twenty‐four knees were imaged at various angles of flexion in a dedicated RSA lab and 113 image pairs were obtained. Only the lateral RSA images were used for the automatic single‐plane technique to simulate single‐plane fluoroscopy. Two networks helped automate the kinematics measurement process, one segmented implant components and the other generated an initial pose estimate for the optimization algorithm. Kinematics obtained via the automatic single plane and manual biplane techniques were compared using root‐mean‐square error and Bland–Altman plots. Two observers measured the kinematics using the automated technique and results were compared with assess reproducibility. Root‐mean‐square errors were 0.8 mm for anterior–posterior translation, 0.5 mm for superior–inferior translation, 2.6 mm for medial–lateral translation, 1.0° for flexion–extension, 1.2° for abduction–adduction, and 1.7° for internal–external rotation. Reproducibility, reported as root‐mean‐square errors between operator measurements, was submillimeter for in‐plane translations and below 2° for all rotations. Clinical Significance: The advantages of the automated single plane technique should aid in the kinematic measurement process and help researchers and clinicians perform TKR kinematic analyses.
AbstractList Kinematics of total knee replacements (TKR) play an important role in assessing the success of a procedure and would be a valuable addition to clinical practice; however, measuring TKR kinematics is time consuming and labour intensive. Recently, an automatic single-plane fluoroscopic method utilizing machine learning has been developed to facilitate a quick and simple process for measuring TKR kinematics. This study aimed to validate the new automatic single-plane technique using biplanar radiostereometric analysis (RSA) as the gold standard. Twenty-four knees were imaged at various angles of flexion in a dedicated RSA lab and 113 image pairs were obtained. Only the lateral RSA images were used for the automatic single-plane technique to simulate single-plane fluoroscopy. Two networks helped automate the kinematics measurement process, one segmented implant components and the other generated an initial pose estimate for the optimization algorithm. Kinematics obtained via the automatic single plane and manual biplane techniques were compared using root-mean-square error and Bland-Altman plots. Two observers measured the kinematics using the automated technique and results were compared with assess reproducibility. Root-mean-square errors were 0.8 mm for anterior-posterior translation, 0.5 mm for superior-inferior translation, 2.6 mm for medial-lateral translation, 1.0° for flexion-extension, 1.2° for abduction-adduction, and 1.7° for internal-external rotation. Reproducibility, reported as root-mean-square errors between operator measurements, was submillimeter for in-plane translations and below 2° for all rotations. Clinical Significance: The advantages of the automated single plane technique should aid in the kinematic measurement process and help researchers and clinicians perform TKR kinematic analyses.
Kinematics of total knee replacements (TKR) play an important role in assessing the success of a procedure and would be a valuable addition to clinical practice; however, measuring TKR kinematics is time consuming and labour intensive. Recently, an automatic single-plane fluoroscopic method utilizing machine learning has been developed to facilitate a quick and simple process for measuring TKR kinematics. This study aimed to validate the new automatic single-plane technique using biplanar radiostereometric analysis (RSA) as the gold standard. Twenty-four knees were imaged at various angles of flexion in a dedicated RSA lab and 113 image pairs were obtained. Only the lateral RSA images were used for the automatic single-plane technique to simulate single-plane fluoroscopy. Two networks helped automate the kinematics measurement process, one segmented implant components and the other generated an initial pose estimate for the optimization algorithm. Kinematics obtained via the automatic single plane and manual biplane techniques were compared using root-mean-square error and Bland-Altman plots. Two observers measured the kinematics using the automated technique and results were compared with assess reproducibility. Root-mean-square errors were 0.8 mm for anterior-posterior translation, 0.5 mm for superior-inferior translation, 2.6 mm for medial-lateral translation, 1.0° for flexion-extension, 1.2° for abduction-adduction, and 1.7° for internal-external rotation. Reproducibility, reported as root-mean-square errors between operator measurements, was submillimeter for in-plane translations and below 2° for all rotations. Clinical Significance: The advantages of the automated single plane technique should aid in the kinematic measurement process and help researchers and clinicians perform TKR kinematic analyses.Kinematics of total knee replacements (TKR) play an important role in assessing the success of a procedure and would be a valuable addition to clinical practice; however, measuring TKR kinematics is time consuming and labour intensive. Recently, an automatic single-plane fluoroscopic method utilizing machine learning has been developed to facilitate a quick and simple process for measuring TKR kinematics. This study aimed to validate the new automatic single-plane technique using biplanar radiostereometric analysis (RSA) as the gold standard. Twenty-four knees were imaged at various angles of flexion in a dedicated RSA lab and 113 image pairs were obtained. Only the lateral RSA images were used for the automatic single-plane technique to simulate single-plane fluoroscopy. Two networks helped automate the kinematics measurement process, one segmented implant components and the other generated an initial pose estimate for the optimization algorithm. Kinematics obtained via the automatic single plane and manual biplane techniques were compared using root-mean-square error and Bland-Altman plots. Two observers measured the kinematics using the automated technique and results were compared with assess reproducibility. Root-mean-square errors were 0.8 mm for anterior-posterior translation, 0.5 mm for superior-inferior translation, 2.6 mm for medial-lateral translation, 1.0° for flexion-extension, 1.2° for abduction-adduction, and 1.7° for internal-external rotation. Reproducibility, reported as root-mean-square errors between operator measurements, was submillimeter for in-plane translations and below 2° for all rotations. Clinical Significance: The advantages of the automated single plane technique should aid in the kinematic measurement process and help researchers and clinicians perform TKR kinematic analyses.
Author Broberg, Jordan S.
Jensen, Andrew
Teeter, Matthew G.
Chen, Joanna
Banks, Scott A.
Author_xml – sequence: 1
  givenname: Jordan S.
  orcidid: 0000-0001-8923-8338
  surname: Broberg
  fullname: Broberg, Jordan S.
  email: jbroberg@uwo.ca
  organization: Lawson Health Research Institute
– sequence: 2
  givenname: Joanna
  surname: Chen
  fullname: Chen, Joanna
  organization: Western University
– sequence: 3
  givenname: Andrew
  surname: Jensen
  fullname: Jensen, Andrew
  organization: University of Florida
– sequence: 4
  givenname: Scott A.
  orcidid: 0000-0003-0404-6826
  surname: Banks
  fullname: Banks, Scott A.
  organization: University of Florida
– sequence: 5
  givenname: Matthew G.
  orcidid: 0000-0002-3911-3171
  surname: Teeter
  fullname: Teeter, Matthew G.
  organization: Western University and London Health Sciences Centre
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36691875$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1r3DAQhkVJaHa3PeQPBB3Tg3clayXLxxLyVQKB0JbejCyPNkplyZG8hP331dabHgrJaWB43peZZ46OfPCA0CklS0pIuXoKcVlyTuUHNKOcrwteVr-O0IxUTBSkFOIEzVN6IoRUtJQf0QkToqay4jP0-6dytlOjDR4HgxXulX60HrADFb31GzyCfvT2eQvYhIgTbHrw4xRQvsNDSIAhjbafdtbjlGMO8OBU7jFuG2JIOgy7T-jYKJfg82Eu0I-ry-8XN8Xd_fXtxde7QjNBZCGZZNqYmrZaasJaLRgTa96xdd1p0opW8JZ0WkJb17xi69bUsgMuhAJiBKdsgc6n3iGGfHcam94mDW5_T9impqxEzSpBZZ3RswO6bXvomiHmP-KueRWUgS8ToPMTKYL5h1DS7OU3WX7zV35mV_-x2k6mxqisey_xYh3s3q5uvt0_TIk_4OSXSA
CitedBy_id crossref_primary_10_1177_09544119241232271
crossref_primary_10_1016_j_knee_2025_02_014
crossref_primary_10_1016_j_jbiomech_2024_112172
crossref_primary_10_2106_JBJS_OA_24_00151
crossref_primary_10_3390_bioengineering11111108
Cites_doi 10.1016/j.arth.2017.09.064
10.1016/j.arth.2016.12.054
10.5435/JAAOS-D-16-00628
10.1016/j.arth.2021.10.024
10.1097/00003086-199610000-00015
10.1097/01.blo.0000092986.12414.b5
10.1007/s11999-008-0440-z
10.1007/s00167-018-4842-5
10.1109/TMI.2017.2773398
10.1016/j.knee.2019.11.020
10.1109/10.495283
10.1016/j.arth.2019.07.046
10.1016/j.arth.2019.05.037
10.1016/j.knee.2021.05.011
10.1016/j.arth.2017.09.035
10.1109/42.811310
10.1097/00003086-199112000-00036
10.1016/j.gaitpost.2016.03.006
10.1016/j.jbiomech.2010.10.033
10.1016/S0021-9290(01)00028-8
10.1016/j.knee.2020.07.092
10.1016/j.arth.2023.05.029
10.1109/34.385980
10.1109/ICCV.2019.01076
10.3109/17453678909149328
10.1097/01.blo.0000148777.98244.84
10.1109/TMI.2003.820027
10.1073/pnas.1806905115
10.1016/j.jbiomech.2014.02.031
ContentType Journal Article
Copyright 2023 The Authors. ® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.
2023 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.
Copyright_xml – notice: 2023 The Authors. ® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.
– notice: 2023 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.
DBID 24P
AAYXX
CITATION
NPM
7X8
DOI 10.1002/jor.25518
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1554-527X
EndPage 1773
ExternalDocumentID 36691875
10_1002_jor_25518
JOR25518
Genre article
Journal Article
GrantInformation_xml – fundername: Bone and Joint Institute, Western University
– fundername: Canadian Institutes of Health Research
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: RGPIN‐2022‐04423
– fundername: CIHR
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1B1
1KJ
1L6
1OB
1OC
1ZS
1~5
24P
29L
31~
33P
3SF
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
7-5
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8FI
8FJ
8R4
8R5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHQN
AAIPD
AALRI
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABMAC
ABPVW
ABQWH
ABUWG
ABWVN
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIUM
ACMXC
ACPOU
ACRPL
ACSCC
ACVFH
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADCNI
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFPUW
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIGII
AITYG
AIURR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMXJE
BPHCQ
BQCPF
BROTX
BRXPI
BVXVI
BY8
C45
CCPQU
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
DWQXO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FDB
FEDTE
FGOYB
FUBAC
FYUFA
G-S
G.N
GNP
GNUQQ
GODZA
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HMCUK
HVGLF
HZ~
IHE
IX1
J0M
JPC
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M41
M56
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
QB0
QRW
R.K
R2-
RIG
RIWAO
RJQFR
RNS
ROL
RPZ
RWL
RX1
RXW
RYL
SAMSI
SEW
SSZ
SUPJJ
SV3
TAE
TEORI
UB1
UKHRP
UPT
V2E
V8K
W8V
W99
WBKPD
WIB
WIH
WIJ
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXI
WXSBR
WYISQ
X7M
XG1
XV2
YQT
ZGI
ZXP
ZZTAW
~IA
~WT
9DU
AAYXX
AFFHD
AIQQE
CITATION
O8X
PJZUB
PPXIY
3V.
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
NPM
RWI
RWR
WRC
WYB
YCJ
7X8
ID FETCH-LOGICAL-c3608-8383cff91bc8c03bc633645d349dc0b6b65b0dc8eb995734bf98de566ae0f6513
IEDL.DBID 24P
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000922634900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0736-0266
1554-527X
IngestDate Wed Oct 01 14:24:59 EDT 2025
Wed Feb 19 02:22:47 EST 2025
Tue Nov 18 21:23:53 EST 2025
Sat Nov 29 05:33:21 EST 2025
Sun Jul 06 04:45:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords single plane fluoroscopy
kinematics
total knee replacement
machine learning
validation
Language English
License Attribution
2023 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3608-8383cff91bc8c03bc633645d349dc0b6b65b0dc8eb995734bf98de566ae0f6513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0404-6826
0000-0001-8923-8338
0000-0002-3911-3171
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.25518
PMID 36691875
PQID 2769376189
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2769376189
pubmed_primary_36691875
crossref_primary_10_1002_jor_25518
crossref_citationtrail_10_1002_jor_25518
wiley_primary_10_1002_jor_25518_JOR25518
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
2023-Aug
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of orthopaedic research
PublicationTitleAlternate J Orthop Res
PublicationYear 2023
References 1991; 273
1989; 60
2003; 416
1995; 17
2017; 25
2019; 34
2014; 47
2020; 35
2008; 466
2004; 428
2018; 26
2021; 31
2022
1999; 18
2017; 32
2018; 115
2020; 27
2019
2011; 44
2022; 37
1996; 331
2018; 33
2001; 34
1996; 43
2016; 46
2018; 37
2003; 22
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Ronneberger O (e_1_2_7_18_1)
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 466
  start-page: 2491
  issue: 10
  year: 2008
  end-page: 2499
  article-title: Changes in knee kinematics reflect the articular geometry after arthroplasty
  publication-title: Clin Orthop Relat Res
– volume: 22
  start-page: 1561
  issue: 12
  year: 2003
  end-page: 1574
  article-title: A robust method for registration of three‐dimensional knee implant models to two‐dimensional fluoroscopy images
  publication-title: IEEE Trans Med Imaging
– volume: 37
  start-page: 326
  issue: 1
  year: 2018
  end-page: 335
  article-title: Automated registration of 3‐D knee implant models to fluoroscopic images using Lipschitzian optimization
  publication-title: IEEE Trans Med Imaging
– volume: 35
  start-page: 272
  issue: 1
  year: 2020
  end-page: 277
  article-title: Comparison of contact kinematics in posterior‐stabilized and cruciate‐retaining total knee arthroplasty at long‐term follow‐up
  publication-title: J Arthroplast
– volume: 26
  start-page: 3249
  issue: 11
  year: 2018
  end-page: 3256
  article-title: Native rotational knee kinematics are lost in bicruciate‐retaining total knee arthroplasty when the tibial component is replaced
  publication-title: Knee Surg Sports Traumatol Arthrosc
– volume: 416
  start-page: 37
  issue: 416
  year: 2003
  end-page: 57
  article-title: Conventry award paper: multicenter determination of in vivo kinematics after total knee arthroplasty
  publication-title: Clin Orthop Relat Res
– volume: 34
  start-page: 2502
  issue: 10
  year: 2019
  end-page: 2510
  article-title: Total knee arthroplasty kinematics
  publication-title: J Arthroplast
– volume: 27
  start-page: 535
  issue: 2
  year: 2020
  end-page: 542
  article-title: Automated detection & classification of knee arthroplasty using deep learning
  publication-title: Knee
– volume: 60
  start-page: 491
  issue: 4
  year: 1989
  end-page: 503
  article-title: Roentgen stereophotogrammetry. Review of orthopedic applications
  publication-title: Acta Orthop Scand
– volume: 115
  start-page: 11591
  issue: 45
  year: 2018
  end-page: 11596
  article-title: Deep neural network improves fracture detection by clinicians
  publication-title: Proc Natl Acad Sci
– volume: 46
  start-page: 154
  year: 2016
  end-page: 160
  article-title: Effects of soft tissue artifacts on differentiating kinematic differences between natural and replaced knee joints during functional activity
  publication-title: Gait Posture
– volume: 273
  start-page: 253
  year: 1991
  end-page: 260
  article-title: The dominance of cyclic sliding in producing wear in total knee replacements
  publication-title: Clin Orthop Relat Res
– volume: 17
  start-page: 378
  issue: 4
  year: 1995
  end-page: 390
  article-title: Recovering the position and orientation of free‐form objects from image contours using 3D distance maps
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 34
  start-page: 715
  issue: 6
  year: 2001
  end-page: 722
  article-title: Model‐based Roentgen stereophotogrammetry of orthopaedic implants
  publication-title: J Biomech
– volume: 44
  start-page: 784
  issue: 4
  year: 2011
  end-page: 787
  article-title: Accuracy of single‐plane fluoroscopy in determining relative position and orientation of total knee replacement components
  publication-title: J Biomech
– volume: 18
  start-page: 981
  issue: 10
  year: 1999
  end-page: 991
  article-title: A model‐based method for the reconstruction of total knee replacement kinematics
  publication-title: IEEE Trans Med Imaging
– volume: 43
  start-page: 638
  issue: 6
  year: 1996
  end-page: 649
  article-title: Accurate measurement of three‐dimensional knee replacement kinematics using single‐plane fluoroscopy
  publication-title: IEEE Trans Biomed Eng
– volume: 37
  start-page: S98
  issue: 6, Suppl
  year: 2022
  end-page: S104
  article-title: Patient and implant performance of satisfied and dissatisfied total knee arthroplasty patients
  publication-title: J Arthroplast
– year: 2022
– volume: 25
  start-page: S40
  year: 2017
  end-page: S43
  article-title: What postoperative outcome measures link joint stability to patient satisfaction?
  publication-title: J Am Acad Orthop Surg
– volume: 31
  start-page: 86
  year: 2021
  end-page: 96
  article-title: Effect of gap balancing and measured resection techniques on implant migration and contact kinematics of a cementless total knee arthroplasty
  publication-title: Knee
– volume: 47
  start-page: 1682
  issue: 7
  year: 2014
  end-page: 1688
  article-title: Detecting condylar contact loss using single‐plane fluoroscopy: a comparison with in vivo force data and in vitro bi‐plane data
  publication-title: J Biomech
– volume: 33
  start-page: 565
  issue: 2
  year: 2018
  end-page: 571
  article-title: In vivo kinematic comparison of a bicruciate stabilized total knee arthroplasty and the normal knee using fluoroscopy
  publication-title: J Arthroplasty
– volume: 33
  start-page: 740
  issue: 3
  year: 2018
  end-page: 745
  article-title: Contact kinematics correlates to tibial component migration following single radius posterior stabilized knee replacement
  publication-title: J Arthroplast
– volume: 331
  start-page: 107
  year: 1996
  end-page: 117
  article-title: In vivo knee kinematics derived using an inverse perspective technique
  publication-title: Clin Orthop Relat Res
– volume: 32
  start-page: 1834
  issue: 6
  year: 2017
  end-page: 1838
  article-title: Contact kinematic differences between gap balanced vs measured resection techniques for single radius posterior‐stabilized total knee arthroplasty
  publication-title: J Arthroplast
– volume: 428
  start-page: 180
  issue: 428
  year: 2004
  end-page: 189
  article-title: A multicenter analysis of axial femorotibial rotation after total knee arthroplasty
  publication-title: Clin Orthop Relat Res
– start-page: 10662
  year: 2019
  end-page: 10671
– volume: 27
  start-page: 1501
  issue: 5
  year: 2020
  end-page: 1509
  article-title: Contact kinematics of patient‐specific instrumentation versus conventional instrumentation for total knee arthroplasty
  publication-title: Knee
– ident: e_1_2_7_10_1
  doi: 10.1016/j.arth.2017.09.064
– ident: e_1_2_7_30_1
  doi: 10.1016/j.arth.2016.12.054
– ident: e_1_2_7_11_1
  doi: 10.5435/JAAOS-D-16-00628
– ident: e_1_2_7_29_1
  doi: 10.1016/j.arth.2021.10.024
– ident: e_1_2_7_8_1
  doi: 10.1097/00003086-199610000-00015
– ident: e_1_2_7_2_1
  doi: 10.1097/01.blo.0000092986.12414.b5
– ident: e_1_2_7_6_1
  doi: 10.1007/s11999-008-0440-z
– ident: e_1_2_7_5_1
  doi: 10.1007/s00167-018-4842-5
– ident: e_1_2_7_16_1
  doi: 10.1109/TMI.2017.2773398
– ident: e_1_2_7_21_1
  doi: 10.1016/j.knee.2019.11.020
– ident: e_1_2_7_13_1
  doi: 10.1109/10.495283
– ident: e_1_2_7_27_1
  doi: 10.1016/j.arth.2019.07.046
– ident: e_1_2_7_7_1
  doi: 10.1016/j.arth.2019.05.037
– ident: e_1_2_7_31_1
  doi: 10.1016/j.knee.2021.05.011
– ident: e_1_2_7_4_1
  doi: 10.1016/j.arth.2017.09.035
– ident: e_1_2_7_15_1
  doi: 10.1109/42.811310
– ident: e_1_2_7_9_1
  doi: 10.1097/00003086-199112000-00036
– ident: e_1_2_7_12_1
  doi: 10.1016/j.gaitpost.2016.03.006
– ident: e_1_2_7_19_1
– ident: e_1_2_7_26_1
  doi: 10.1016/j.jbiomech.2010.10.033
– ident: e_1_2_7_33_1
  doi: 10.1016/S0021-9290(01)00028-8
– ident: e_1_2_7_28_1
  doi: 10.1016/j.knee.2020.07.092
– ident: e_1_2_7_23_1
  doi: 10.1016/j.arth.2023.05.029
– ident: e_1_2_7_14_1
  doi: 10.1109/34.385980
– ident: e_1_2_7_22_1
  doi: 10.1109/ICCV.2019.01076
– ident: e_1_2_7_24_1
  doi: 10.3109/17453678909149328
– ident: e_1_2_7_3_1
  doi: 10.1097/01.blo.0000148777.98244.84
– ident: e_1_2_7_17_1
  doi: 10.1109/TMI.2003.820027
– ident: e_1_2_7_20_1
  doi: 10.1073/pnas.1806905115
– ident: e_1_2_7_32_1
  doi: 10.1016/j.arth.2023.05.029
– volume-title: U‐Net: Convolutional Networks for Biomedical Image Segmentation. 
  ident: e_1_2_7_18_1
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jbiomech.2014.02.031
SSID ssj0007128
Score 2.4389663
Snippet Kinematics of total knee replacements (TKR) play an important role in assessing the success of a procedure and would be a valuable addition to clinical...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1767
SubjectTerms kinematics
machine learning
single plane fluoroscopy
total knee replacement
validation
Title Validation of a machine learning technique for segmentation and pose estimation in single plane fluoroscopy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.25518
https://www.ncbi.nlm.nih.gov/pubmed/36691875
https://www.proquest.com/docview/2769376189
Volume 41
WOSCitedRecordID wos000922634900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1554-527X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007128
  issn: 0736-0266
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1554-527X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007128
  issn: 0736-0266
  databaseCode: WIN
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZKy2GXDQRs3aDyEAcuYXF-OLY4TWMVTKhUFYXeovhHqkKbVE2LxH_Pe06aqQIkJC5RIjlW4vdsf7bf-z5CXhkFMEAa7gFU9r1I57knosh4sYHpXBnkT8md2EQyGonZTI475O0-F6bmh2g33LBnuPEaO3imqqt70tBv5eZNgHxiD0iPsVCgbkMQjdthOGFOWBVcGKNsOd_TCvnBVfvq4WT0G8I8BKxuxhme_Ne3PiLHDdCk17VnPCYdWzwh378A7K5VlGiZ04yuXCylpY14xJy2nK4U0Cyt7HzVJCcVNCsMXZeVpUjMUWc80kVBcbNhaekao2ZpvtyVyI9Zrn8-JdPh7eeb914jt-DpkPvCE7BYBVtJprTQfqg0D_GM0oSRNNpXXPFY-UYLq6SMkzBSuRTGAhzMrJ_zmIXPSLcoC3uGieC5EjaJtQBXALMrlgU47yUs1kwpv09e79s91Q0XOUpiLNOaRTlIocVS12J98rItuq4JOP5U6HJvvBS6B555wD-XuyoNUOsx4UzIPjmtrdpWE3IuGazX4Guc8f5ef3r3aeJuzv-96AU5Qmn6OljwOeluNzv7gjzUP7aLajNwvgrXZCYGpPduMpx-hKevH0a_ACvR8N4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA7jAnpxwW1co3jwUqdrmoAXEcV1FHG7lclSUcd2mEXw3_te2qmICoK3HtKQ5r3kfU3e-z5CtrUEGCA0cwAqu06o0tThYaidSEM4lxr5U1IrNhE3m_zhQVzVyN6wFqbgh6gO3HBl2P0aFzgeSDc-WUOf8-6uj4RiI2QsBKCBwg33J81qH449q6wKPoxptowNeYVcv1G9-jUafYOYXxGrDTlH0_8b7AyZKqEm3S98Y5bUTDZHXu4AeBc6SjRPaYu-2mxKQ0v5iEdasbpSwLO0Zx5fy_KkjLYyTTt5z1Ck5ihqHulTRvG4oW1oB_Nmadoe5MiQmXfe58nt0eHNwbFTCi44KmAudzj8roK1hCcVV24gFQvwllIHodDKlUyySLpacSOFiOIglKng2gAgbBk3ZZEXLJDRLM_MEpaCp5KbOFIcnAEML72Wj5Ev9iLlSenWyc5w4hNVspGjKEY7KXiU_QRmLLEzVidbVdNOQcHxU6PNofUSWCB46wHfnA96iY9qjzHzuKiTxcKsVTcBY8KDPzYYjbXe7_0np5fX9mH57003yMTxzcV5cn7SPFshkyhUX6QOrpLRfndg1si4eus_9brr1nE_ADkx8Z8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfHiA1_rM4oHL9U-0wS8iLr4YhVR8VY2L1HXtuy6gv_eTNutiAqCtx7SkGYmmS_NzPcBbCthYQBX1LFQ2XVCaYzDwlA5kbLhXCjkTzGF2ETcbrP7e341AvvDWpiSH6L-4YYro9ivcYHrXJm9T9bQp6y36yOh2CiMhSgi04Cxo-vW7UW9E8deoa1qvRgTbSkdMgu5_l798td49A1kfsWsRdBpTf9vuDMwVYFNclB6xyyM6HQOnu8s9C6VlEhmSIe8FPmUmlQCEg-k5nUlFtGSvn54qQqUUtJJFcmzviZIzlFWPZLHlOAPh64mOWbOEtMdZMiRmeXv83DbOr45PHEqyQVHBtRlDrMHVmsv7gnJpBsISQO8p1RByJV0BRU0Eq6STAvOozgIheFMaQsJO9o1NPKCBWikWaqXsBjcCKbjSDLrDtb0wuv4GPtiL5KeEG4TdoYTn8iKjxxlMbpJyaTsJ3bGkmLGmrBVN81LEo6fGm0OrZfYJYL3Hvabs0E_8VHvMaYe401YLM1adxNQyj17ZrOjKaz3e__J2eV18bD896YbMHF11EouTtvnKzCJSvVl7uAqNF57A70G4_Lt9bHfW6889wOwBvJI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+a+machine+learning+technique+for+segmentation+and+pose+estimation+in+single+plane+fluoroscopy&rft.jtitle=Journal+of+orthopaedic+research&rft.au=Broberg%2C+Jordan+S&rft.au=Chen%2C+Joanna&rft.au=Jensen%2C+Andrew&rft.au=Banks%2C+Scott+A&rft.date=2023-08-01&rft.issn=1554-527X&rft.eissn=1554-527X&rft.volume=41&rft.issue=8&rft.spage=1767&rft_id=info:doi/10.1002%2Fjor.25518&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-0266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-0266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-0266&client=summon