New homotopy analysis transform method for solving multidimensional fractional diffusion equations
In this paper, we introduce a new semi-analytical method called the homotopy analysis Shehu transform method (HASTM) for solving multidimensional fractional diffusion equations. The proposed technique is a combination of the homotopy analysis method and the Laplace-type integral transform called the...
Uložené v:
| Vydané v: | Arab journal of basic and applied sciences Ročník 27; číslo 1; s. 27 - 44 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Taylor & Francis
01.01.2020
Taylor & Francis Group |
| Predmet: | |
| ISSN: | 2576-5299, 2576-5299 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we introduce a new semi-analytical method called the homotopy analysis Shehu transform method (HASTM) for solving multidimensional fractional diffusion equations. The proposed technique is a combination of the homotopy analysis method and the Laplace-type integral transform called the Shehu transform which is a generalization of the Laplace and the Sumudu integral transforms. Shehu transform is user-friendly, and its visualization is easier than the Sumudu, and the natural transforms. The convergence analysis of the method is proved, and we provide some applications of the fractional diffusion equations to validate the efficiency and the high accuracy of the technique. The results obtained using the HASTM are in complete agreement with the results of the existing techniques. |
|---|---|
| AbstractList | In this paper, we introduce a new semi-analytical method called the homotopy analysis Shehu transform method (HASTM) for solving multidimensional fractional diffusion equations. The proposed technique is a combination of the homotopy analysis method and the Laplace-type integral transform called the Shehu transform which is a generalization of the Laplace and the Sumudu integral transforms. Shehu transform is user-friendly, and its visualization is easier than the Sumudu, and the natural transforms. The convergence analysis of the method is proved, and we provide some applications of the fractional diffusion equations to validate the efficiency and the high accuracy of the technique. The results obtained using the HASTM are in complete agreement with the results of the existing techniques. |
| Author | Zhao, Weidong Maitama, Shehu |
| Author_xml | – sequence: 1 givenname: Shehu orcidid: 0000-0002-8490-0588 surname: Maitama fullname: Maitama, Shehu organization: School of Mathematics, Shandong University – sequence: 2 givenname: Weidong surname: Zhao fullname: Zhao, Weidong organization: School of Mathematics, Shandong University |
| BookMark | eNqFkN1KAzEQhYMoqLWPIOQFWpPsJtngjSL-QdEbvQ6z-WkjuxtNtkrf3l1bQbzQqzmc4RxmvmO038XOIXRKyZySipwxLgVnSs0ZoWpOJRGsKPfQ0ejPxsX-D32Ipjm_EEIYKSvF5RGqH9wHXsU29vF1g6GDZpNDxn2CLvuYWty6fhUtHjTOsXkP3RK366YPNrSuyyEOCewTmH4rbfB-PdrYva1hNPMJOvDQZDfdzQl6vrl-urqbLR5v768uFzNTCFLOCmOU4iWwipiSMmeNcNIKwinlsvSmdhYKzoDXlhoLQgoPxpNq-NuQyshigu63vTbCi35NoYW00RGC_jJiWmpIfTCN05JWyg0N1tRQMqBVUUpRKwdSEMXs2HW-7TIp5pyc1yb0X-8MZEKjKdEjff1NX4_09Y7-kOa_0t_X_Je72OZCN7KHj5gaq3vYNDENjDsTsi7-rvgEzgWgFQ |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0313860 crossref_primary_10_1007_s40819_023_01596_2 crossref_primary_10_1142_S0218348X25400699 crossref_primary_10_1155_jama_7007124 crossref_primary_10_1080_13873954_2025_2546531 crossref_primary_10_1088_1402_4896_ac0dfd crossref_primary_10_1007_s11082_022_04488_9 crossref_primary_10_1186_s13661_020_01426_0 crossref_primary_10_1186_s13661_024_01851_5 crossref_primary_10_1007_s40819_021_01233_w |
| Cites_doi | 10.1177/1558925019872200 10.1016/j.physleta.2007.05.094 10.1016/j.chaos.2016.02.012 10.1016/j.amc.2018.04.025 10.1007/s00521-017-2924-9 10.1111/j.1365-246X.1967.tb02303.x 10.1016/j.chaos.2005.08.199 10.1016/j.cnsns.2009.02.016 10.2298/TSCI1904351W 10.2298/TSCI170804285Y 10.2298/TSCI1504167Z 10.1016/j.chaos.2019.06.002 10.1016/j.jaubas.2014.02.002 10.1140/epjp/i2017-11437-5 10.22436/jmcs.020.02.03 10.2298/TSCI1904163W 10.1142/S0218348X19500476 10.1142/S0218348X19501342 10.1142/S0219876218500172 10.1016/j.cnsns.2009.09.002 10.1016/j.amc.2005.12.031 10.1016/j.cnsns.2008.05.008 10.18576/pfda/020402 10.1002/num.20460 10.2298/TSCI1904131H 10.1016/j.cnsns.2010.12.040 10.2298/TSCI16S3639Y 10.1016/j.molliq.2018.10.038 10.1016/j.physleta.2008.08.002 10.2298/TSCI11S1145H 10.1016/j.rinp.2018.06.011 10.1016/j.camwa.2006.12.070 10.1142/S0218348X1850086X 10.1016/j.physleta.2007.05.118 10.1016/0020-7462(94)00054-E 10.1098/rsos.140511 10.1002/mma.3267 10.1140/epjp/i2017-11755-6 10.1002/9783527617609 10.1016/j.cnsns.2011.03.031 10.1201/9780203491164 10.2298/TSCI180110160M 10.1090/trans2/015/01 10.1023/A:1016601312158 10.1142/S0218348X19500178 10.1155/2016/2371837 10.1016/S0045-7825(99)00018-3 10.1006/jmaa.2000.7194 10.2298/TSCI160111018A 10.1016/j.cam.2006.07.010 |
| ContentType | Journal Article |
| Copyright | 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of the University of Bahrain. 2019 |
| Copyright_xml | – notice: 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of the University of Bahrain. 2019 |
| DBID | 0YH AAYXX CITATION DOA |
| DOI | 10.1080/25765299.2019.1706234 |
| DatabaseName | Taylor & Francis Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2576-5299 |
| EndPage | 44 |
| ExternalDocumentID | oai_doaj_org_article_7189e676dcba42a183476b9ea76092d7 10_1080_25765299_2019_1706234 1706234 |
| Genre | Research Article |
| GroupedDBID | 0YH ADBBV ALMA_UNASSIGNED_HOLDINGS AQTUD BCNDV EBS GROUPED_DOAJ M4Z M~E TDBHL TFW AAYXX CITATION EJD |
| ID | FETCH-LOGICAL-c3604-3cc9954a280c412edc6e7d60511574fcbeda352a5bd1cda676facf08201c08c73 |
| IEDL.DBID | TFW |
| ISSN | 2576-5299 |
| IngestDate | Fri Oct 03 12:53:34 EDT 2025 Tue Nov 18 21:07:30 EST 2025 Sat Nov 29 02:54:31 EST 2025 Mon Oct 20 23:48:09 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3604-3cc9954a280c412edc6e7d60511574fcbeda352a5bd1cda676facf08201c08c73 |
| ORCID | 0000-0002-8490-0588 |
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/25765299.2019.1706234 |
| PageCount | 18 |
| ParticipantIDs | crossref_citationtrail_10_1080_25765299_2019_1706234 crossref_primary_10_1080_25765299_2019_1706234 doaj_primary_oai_doaj_org_article_7189e676dcba42a183476b9ea76092d7 informaworld_taylorfrancis_310_1080_25765299_2019_1706234 |
| PublicationCentury | 2000 |
| PublicationDate | 1/1/2020 2020-01-00 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 1/1/2020 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Arab journal of basic and applied sciences |
| PublicationYear | 2020 |
| Publisher | Taylor & Francis Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
| References | e_1_3_4_3_1 e_1_3_4_61_1 e_1_3_4_63_1 e_1_3_4_7_1 e_1_3_4_40_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_46_1 e_1_3_4_21_1 e_1_3_4_44_1 e_1_3_4_27_1 e_1_3_4_65_1 e_1_3_4_25_1 e_1_3_4_48_1 Rawashdeh M. S. (e_1_3_4_43_1) 2015; 13 Watugala G. K. (e_1_3_4_60_1) 1998; 6 Belgacem F. B. M. (e_1_3_4_8_1) 2012; 1493 Samko S. G. (e_1_3_4_45_1) 1993 Belgacem R. (e_1_3_4_9_1) 2019; 17 e_1_3_4_53_1 e_1_3_4_30_1 e_1_3_4_51_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_59_1 e_1_3_4_55_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_17_1 e_1_3_4_15_1 e_1_3_4_36_1 e_1_3_4_57_1 Feynman R. (e_1_3_4_19_1) 1964 Caputo M. (e_1_3_4_12_1) 2015; 2 e_1_3_4_4_1 Spiegel M. R. (e_1_3_4_52_1) 1965 e_1_3_4_2_1 Losada J. (e_1_3_4_35_1) 2015; 2 e_1_3_4_62_1 e_1_3_4_64_1 e_1_3_4_20_1 e_1_3_4_6_1 e_1_3_4_24_1 e_1_3_4_22_1 Oldham K. B. (e_1_3_4_41_1) 1974 e_1_3_4_28_1 e_1_3_4_49_1 e_1_3_4_26_1 e_1_3_4_47_1 Khan Z. H. (e_1_3_4_29_1) 2008; 1 Maitama S. (e_1_3_4_38_1) 2019; 17 Podlubny I. (e_1_3_4_42_1) 1999 e_1_3_4_31_1 e_1_3_4_50_1 e_1_3_4_58_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_54_1 e_1_3_4_16_1 e_1_3_4_39_1 e_1_3_4_14_1 e_1_3_4_37_1 e_1_3_4_56_1 e_1_3_4_18_1 |
| References_xml | – ident: e_1_3_4_18_1 doi: 10.1177/1558925019872200 – volume-title: The fractional calculus year: 1974 ident: e_1_3_4_41_1 – ident: e_1_3_4_7_1 doi: 10.1016/j.physleta.2007.05.094 – volume: 17 start-page: 917 issue: 6 year: 2019 ident: e_1_3_4_9_1 article-title: Shehu transform and application to caputo-fractional differential equations publication-title: International Journal of Analysis and Applications – ident: e_1_3_4_6_1 doi: 10.1016/j.chaos.2016.02.012 – ident: e_1_3_4_50_1 doi: 10.1016/j.amc.2018.04.025 – ident: e_1_3_4_64_1 doi: 10.1007/s00521-017-2924-9 – ident: e_1_3_4_11_1 doi: 10.1111/j.1365-246X.1967.tb02303.x – volume: 1493 start-page: 106 volume-title: AIP Conference Proceedings year: 2012 ident: e_1_3_4_8_1 – ident: e_1_3_4_13_1 doi: 10.1016/j.chaos.2005.08.199 – ident: e_1_3_4_51_1 doi: 10.1016/j.cnsns.2009.02.016 – ident: e_1_3_4_56_1 doi: 10.2298/TSCI1904351W – volume-title: Fractional integrals and derivatives: Theory and applications year: 1993 ident: e_1_3_4_45_1 – ident: e_1_3_4_63_1 doi: 10.2298/TSCI170804285Y – ident: e_1_3_4_65_1 doi: 10.2298/TSCI1504167Z – start-page: 41 year: 1964 ident: e_1_3_4_19_1 article-title: The Brownian movement publication-title: The Feynman Lectures of Physics – volume: 1 start-page: 127 issue: 1 year: 2008 ident: e_1_3_4_29_1 article-title: N-transform-properties and applications publication-title: NUST Journal of Engineering Sciences – ident: e_1_3_4_5_1 doi: 10.1016/j.chaos.2019.06.002 – ident: e_1_3_4_30_1 doi: 10.1016/j.jaubas.2014.02.002 – ident: e_1_3_4_48_1 doi: 10.1140/epjp/i2017-11437-5 – ident: e_1_3_4_10_1 doi: 10.22436/jmcs.020.02.03 – ident: e_1_3_4_55_1 doi: 10.2298/TSCI1904163W – ident: e_1_3_4_58_1 doi: 10.1142/S0218348X19500476 – ident: e_1_3_4_54_1 doi: 10.1142/S0218348X19501342 – ident: e_1_3_4_31_1 – ident: e_1_3_4_47_1 doi: 10.1142/S0219876218500172 – volume-title: Fractional differential equations year: 1999 ident: e_1_3_4_42_1 – ident: e_1_3_4_34_1 doi: 10.1016/j.cnsns.2009.09.002 – ident: e_1_3_4_26_1 doi: 10.1016/j.amc.2005.12.031 – ident: e_1_3_4_28_1 doi: 10.1016/j.cnsns.2008.05.008 – ident: e_1_3_4_36_1 doi: 10.18576/pfda/020402 – ident: e_1_3_4_14_1 doi: 10.1002/num.20460 – ident: e_1_3_4_25_1 doi: 10.2298/TSCI1904131H – ident: e_1_3_4_16_1 doi: 10.1016/j.cnsns.2010.12.040 – ident: e_1_3_4_62_1 doi: 10.2298/TSCI16S3639Y – volume: 2 start-page: 87 issue: 1 year: 2015 ident: e_1_3_4_35_1 article-title: Properties of the new fractional derivative without singular kernel publication-title: Progress in Fractional Differentiation and Applications – ident: e_1_3_4_3_1 doi: 10.1016/j.molliq.2018.10.038 – ident: e_1_3_4_53_1 doi: 10.1016/j.physleta.2008.08.002 – ident: e_1_3_4_23_1 doi: 10.2298/TSCI11S1145H – ident: e_1_3_4_24_1 doi: 10.1016/j.rinp.2018.06.011 – volume: 17 start-page: 167 issue: 2 year: 2019 ident: e_1_3_4_38_1 article-title: New integral transform: Shehu transform a generalization of Sumudu and Laplace transform for solving differential equations publication-title: International Journal of Analysis and Applications – ident: e_1_3_4_21_1 doi: 10.1016/j.camwa.2006.12.070 – volume: 2 start-page: 731 year: 2015 ident: e_1_3_4_12_1 article-title: A new definition of fractional derivative without singular kernel publication-title: Progress in Fractional Differentiation and Applications – ident: e_1_3_4_57_1 doi: 10.1142/S0218348X1850086X – volume-title: Theory and problems of Laplace transform. Schaum’s Outline Series year: 1965 ident: e_1_3_4_52_1 – ident: e_1_3_4_27_1 doi: 10.1016/j.physleta.2007.05.118 – ident: e_1_3_4_32_1 doi: 10.1016/0020-7462(94)00054-E – ident: e_1_3_4_49_1 doi: 10.1098/rsos.140511 – ident: e_1_3_4_44_1 doi: 10.1002/mma.3267 – ident: e_1_3_4_46_1 doi: 10.1140/epjp/i2017-11755-6 – ident: e_1_3_4_40_1 doi: 10.1002/9783527617609 – ident: e_1_3_4_2_1 doi: 10.1016/j.cnsns.2011.03.031 – ident: e_1_3_4_33_1 doi: 10.1201/9780203491164 – ident: e_1_3_4_37_1 doi: 10.2298/TSCI180110160M – ident: e_1_3_4_39_1 doi: 10.1090/trans2/015/01 – ident: e_1_3_4_20_1 doi: 10.1023/A:1016601312158 – volume: 13 start-page: 153 issue: 1 year: 2015 ident: e_1_3_4_43_1 article-title: Applying the reduced differential transform method to solve the telegraph and Cahn-Hilliard equations publication-title: Thai Journal of Mathematics – volume: 6 start-page: 319 issue: 1 year: 1998 ident: e_1_3_4_60_1 article-title: Sumudu transform–a new integral transform to solve differential equations and control engineering problems publication-title: Mathematical Engineering in Industries – ident: e_1_3_4_59_1 doi: 10.1142/S0218348X19500178 – ident: e_1_3_4_17_1 doi: 10.1155/2016/2371837 – ident: e_1_3_4_22_1 doi: 10.1016/S0045-7825(99)00018-3 – ident: e_1_3_4_15_1 doi: 10.1006/jmaa.2000.7194 – ident: e_1_3_4_4_1 doi: 10.2298/TSCI160111018A – ident: e_1_3_4_61_1 doi: 10.1016/j.cam.2006.07.010 |
| SSID | ssj0002048957 |
| Score | 2.226762 |
| Snippet | In this paper, we introduce a new semi-analytical method called the homotopy analysis Shehu transform method (HASTM) for solving multidimensional fractional... |
| SourceID | doaj crossref informaworld |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 27 |
| SubjectTerms | fractional diffusion equations homotopy analysis Shehu transform method Shehu transform method symbolic-numeric computation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMctVDGwIMpDlJc8MMCQNg8njkdAVAyoYgDULfJTgFBb2hSJb4_PdqrAQBe2yIoj63yxz_b590fovLQxLFc0izTlHCTMWCRYQSJhEpLGPDPcHRc839PRqByP2UNL6gtywjwe2BtuYMdOpgtaKCk4Sbn1QEILwTSnRcxS5e6Rx5S1FlNv7niNlCynzZWdMh5AYJ3bsReyuVgfoDFpRn5MRo7Z_4tY2pprhjtoOwSJ-Mo3ros29GQXdcNvuMAXgRV9uYeEHaTwC2TUTWdfmAfCCK6bcBR7hWhsn7H1Mtg9wC6HUAHV3xM5sJn72w32EfRSllCM9YeHgC_20dPw9vHmLgqyCZHMCjjnkBIgbzwtY0mSVCtZaKrssgW4OsRIoRW3YRfPhUqk4ta2hkvjQgEZl5JmB6gzmU70IcJ5ZspCCUMzIYnI7Rd1nNuYPJWxziWnPUQa-1UyMMVB2uK9SgJ6tDF7BWavgtl7qL-qNvNQjXUVrqFzVi8DE9sVWE-pgqdU6zylh1i7a6vabYkYr19SZX824Og_GnCMtlJYrbsNnBPUqedLfYo25Wf9upifOQf-BqZe8MM priority: 102 providerName: Directory of Open Access Journals |
| Title | New homotopy analysis transform method for solving multidimensional fractional diffusion equations |
| URI | https://www.tandfonline.com/doi/abs/10.1080/25765299.2019.1706234 https://doaj.org/article/7189e676dcba42a183476b9ea76092d7 |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2576-5299 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048957 issn: 2576-5299 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2576-5299 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048957 issn: 2576-5299 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 2576-5299 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048957 issn: 2576-5299 databaseCode: 0YH dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 2576-5299 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048957 issn: 2576-5299 databaseCode: TFW dateStart: 20180102 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagYmABykOUR-WBAYaUNC_HI6BWHaBiKFCmyE9AQm1JWiQWfjs-x6kKEjDAEllWLnJs3_nz-fwdQkepwbBMktBThDFIYUY9TpPI47odBT4LNbPHBbeXpN9Ph0N67aIJCxdWCXtoXRJFWFsNys14UUXEnQJGjo0ZhcAs2gL-lyAERlCD7CGob9C9m3tZgJaWxqS6uvOd8KdFyXL3f2EuXVhzuuv_0NoNtOYAJz4rZ0gdLanRJqo7lS7wseOdPtlC3Bg8_AjReePJG2aOrQRPK2iLy2zT2JSxmbHgicA2HlFChoCS3QPrvLwpYYqQe2UG1Vi9lITixTa66XYGFz3PpWDwRJjAmYkQQBjHgtQXUTtQUiSKSLMFAo6eSAuuJDMQjsVctoVkCUk0E9rCCuGngoQ7qDYaj9QuwnGo00RyTUIuIh6bLyo_Nvg-EL6KBSMNFFVjkAnHTw5pMp6ztqMxrXoyg57MXE82UGsuNikJOn4TOIcBnr8M_Nq2Ypw_ZE5dM7NiU2X-RgrOooAZuxeRhFPFSOLTQJrG0sXpkU2te0WXuVCy8McG7P1Bdh-tBrDhtz6gA1Sb5jN1iFbE6_SpyJto2b_vNa1bwTyv3jtNqw0f0KIE2A |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIMEClId444EBhkCaOHE8AgIVUToVBJPlJyChFvpA4t_jc5yqIAEDbJGVixz77vz5fP4Oof3CYVihaRoZKgSUMGORZDmJpG2QJBapFf644LZF2-3i7o5N3oWBtErYQ9uSKML7ajBuCEZXKXHHAJIz50chM4sdAQFMkpJpNJMVtAAtj--b4zgLENOyjFaXd76T_rQsefb-L9ylE6vOxeJ_9HcJLQTMiU9KJamjKdNdRvVg1QN8EKinD1eQdD4PP0KCXu_lHYtAWIKHFbrFZcFp7J6xU1oIRmCfkqihSEBJ8IFtv7ws4R6h_MoImrF5LTnFB6vo5uK8c9aMQhWGSKU5HJsoBZxxIiliRRqJ0So3VLtdEND0EKuk0cKhOJFJ3VBa5DS3QlmPLFRcKJquoVq31zXrCGepLXItLU2lIjJzXzRx5iB-omKTKUE3EKkmgatAUQ6VMp55IzCZViPJYSR5GMkNdDQWeyk5On4TOIUZHr8MFNu-odd_4MFiuVu0mXF_o5UUJBHO9RGaS2YEzWOWaNdZNqkffOgjLLYsh8LTHzuw-QfZPTTX7Fy3eOuyfbWF5hPY__uQ0DaqDfsjs4Nm1dvwadDf9YbwAX4qBac |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELXYhLgAZRE7PnCAQyBNnDg-slUgUNUD283yCkioLWlB4u_xOE4FSMABbpGViRx7Zvw8Hr9BaKdwGFZomkaGCgElzFgkWU4iaZskiUVqhT8uuLmk7XZxd8c6IZtwENIqYQ9tK6II76vBuPva1hlxB4CRM-dGITGL7QP_S5KScTQJzaDYV63bUZgFeGlZRuu7O99Jf1qVPHn_F-rSD4tOa-4fujuPZgPixIeVijTQmOkuoEaw6QHeDcTTe4tIOo-HHyA9r9d_wyLQleBhjW1xVW4au2fsVBZCEdgnJGooEVDRe2BbVlcl3CMUX3mBZmyeK0bxwRK6bp1eHZ9FoQZDpNIcDk2UAsY4kRSxIs3EaJUbqt0eCEh6iFXSaOEwnMikbiotcppboazHFSouFE2X0US31zUrCGepLXItLU2lIjJzXzRx5gB-omKTKUFXEanngKtAUA51Mp54M_CY1iPJYSR5GMlVtD8S61cMHb8JHMEEj14Ggm3f0CvvebBX7pZsZtzfaCUFSYRzfITmkhlB85gl2nWWfVQPPvTxFVsVQ-Hpjx1Y-4PsNprunLT45Xn7Yh3NJLD59_GgDTQxLF_MJppSr8PHQbnlzeAdtdUElQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+homotopy+analysis+transform+method+for+solving+multidimensional+fractional+diffusion+equations&rft.jtitle=Arab+journal+of+basic+and+applied+sciences&rft.au=Maitama%2C+Shehu&rft.au=Zhao%2C+Weidong&rft.date=2020-01-01&rft.pub=Taylor+%26+Francis&rft.eissn=2576-5299&rft.volume=27&rft.issue=1&rft.spage=27&rft.epage=44&rft_id=info:doi/10.1080%2F25765299.2019.1706234&rft.externalDBID=0YH&rft.externalDocID=1706234 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-5299&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-5299&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-5299&client=summon |