New homotopy analysis transform method for solving multidimensional fractional diffusion equations

In this paper, we introduce a new semi-analytical method called the homotopy analysis Shehu transform method (HASTM) for solving multidimensional fractional diffusion equations. The proposed technique is a combination of the homotopy analysis method and the Laplace-type integral transform called the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Arab journal of basic and applied sciences Ročník 27; číslo 1; s. 27 - 44
Hlavní autori: Maitama, Shehu, Zhao, Weidong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis 01.01.2020
Taylor & Francis Group
Predmet:
ISSN:2576-5299, 2576-5299
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we introduce a new semi-analytical method called the homotopy analysis Shehu transform method (HASTM) for solving multidimensional fractional diffusion equations. The proposed technique is a combination of the homotopy analysis method and the Laplace-type integral transform called the Shehu transform which is a generalization of the Laplace and the Sumudu integral transforms. Shehu transform is user-friendly, and its visualization is easier than the Sumudu, and the natural transforms. The convergence analysis of the method is proved, and we provide some applications of the fractional diffusion equations to validate the efficiency and the high accuracy of the technique. The results obtained using the HASTM are in complete agreement with the results of the existing techniques.
ISSN:2576-5299
2576-5299
DOI:10.1080/25765299.2019.1706234