A Stochastic Simplex Approximate Gradient (StoSAG) for optimization under uncertainty

Summary We consider a technique to estimate an approximate gradient using an ensemble of randomly chosen control vectors, known as Ensemble Optimization (EnOpt) in the oil and gas reservoir simulation community. In particular, we address how to obtain accurate approximate gradients when the underlyi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal for numerical methods in engineering Ročník 109; číslo 13; s. 1756 - 1776
Hlavní autori: Fonseca, Rahul Rahul‐Mark, Chen, Bailian, Jansen, Jan Dirk, Reynolds, Albert
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bognor Regis Wiley Subscription Services, Inc 30.03.2017
Predmet:
ISSN:0029-5981, 1097-0207
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Summary We consider a technique to estimate an approximate gradient using an ensemble of randomly chosen control vectors, known as Ensemble Optimization (EnOpt) in the oil and gas reservoir simulation community. In particular, we address how to obtain accurate approximate gradients when the underlying numerical models contain uncertain parameters because of geological uncertainties. In that case, ‘robust optimization’ is performed by optimizing the expected value of the objective function over an ensemble of geological models. In earlier publications, based on the pioneering work of Chen et al. (2009), it has been suggested that a straightforward one‐to‐one combination of random control vectors and random geological models is capable of generating sufficiently accurate approximate gradients. However, this form of EnOpt does not always yield satisfactory results. In a recent article, Fonseca et al. (2015) formulate a modified EnOpt algorithm, referred to here as a Stochastic Simplex Approximate Gradient (StoSAG; in earlier publications referred to as ‘modified robust EnOpt’) and show, via computational experiments, that StoSAG generally yields significantly better gradient approximations than the standard EnOpt algorithm. Here, we provide theoretical arguments to show why StoSAG is superior to EnOpt. © 2016 The Authors. International Journal for Numerical Methods in Engineering Published by John Wiley & Sons, Ltd.
AbstractList We consider a technique to estimate an approximate gradient using an ensemble of randomly chosen control vectors, known as Ensemble Optimization (EnOpt) in the oil and gas reservoir simulation community. In particular, we address how to obtain accurate approximate gradients when the underlying numerical models contain uncertain parameters because of geological uncertainties. In that case, ‘robust optimization’ is performed by optimizing the expected value of the objective function over an ensemble of geological models. In earlier publications, based on the pioneering work of Chen et al . (2009), it has been suggested that a straightforward one‐to‐one combination of random control vectors and random geological models is capable of generating sufficiently accurate approximate gradients. However, this form of EnOpt does not always yield satisfactory results. In a recent article, Fonseca et al . (2015) formulate a modified EnOpt algorithm, referred to here as a Stochastic Simplex Approximate Gradient (StoSAG; in earlier publications referred to as ‘modified robust EnOpt’) and show, via computational experiments, that StoSAG generally yields significantly better gradient approximations than the standard EnOpt algorithm. Here, we provide theoretical arguments to show why StoSAG is superior to EnOpt. © 2016 The Authors. International Journal for Numerical Methods in Engineering Published by John Wiley & Sons, Ltd.
Summary We consider a technique to estimate an approximate gradient using an ensemble of randomly chosen control vectors, known as Ensemble Optimization (EnOpt) in the oil and gas reservoir simulation community. In particular, we address how to obtain accurate approximate gradients when the underlying numerical models contain uncertain parameters because of geological uncertainties. In that case, 'robust optimization' is performed by optimizing the expected value of the objective function over an ensemble of geological models. In earlier publications, based on the pioneering work of Chen et al. (2009), it has been suggested that a straightforward one-to-one combination of random control vectors and random geological models is capable of generating sufficiently accurate approximate gradients. However, this form of EnOpt does not always yield satisfactory results. In a recent article, Fonseca et al. (2015) formulate a modified EnOpt algorithm, referred to here as a Stochastic Simplex Approximate Gradient (StoSAG; in earlier publications referred to as 'modified robust EnOpt') and show, via computational experiments, that StoSAG generally yields significantly better gradient approximations than the standard EnOpt algorithm. Here, we provide theoretical arguments to show why StoSAG is superior to EnOpt. © 2016 The Authors. International Journal for Numerical Methods in Engineering Published by John Wiley & Sons, Ltd.
We consider a technique to estimate an approximate gradient using an ensemble of randomly chosen control vectors, known as Ensemble Optimization (EnOpt) in the oil and gas reservoir simulation community. In particular, we address how to obtain accurate approximate gradients when the underlying numerical models contain uncertain parameters because of geological uncertainties. In that case, 'robust optimization' is performed by optimizing the expected value of the objective function over an ensemble of geological models. In earlier publications, based on the pioneering work of Chen et al. (2009), it has been suggested that a straightforward one-to-one combination of random control vectors and random geological models is capable of generating sufficiently accurate approximate gradients. However, this form of EnOpt does not always yield satisfactory results. In a recent article, Fonseca et al. (2015) formulate a modified EnOpt algorithm, referred to here as a Stochastic Simplex Approximate Gradient (StoSAG; in earlier publications referred to as 'modified robust EnOpt') and show, via computational experiments, that StoSAG generally yields significantly better gradient approximations than the standard EnOpt algorithm. Here, we provide theoretical arguments to show why StoSAG is superior to EnOpt.
Summary We consider a technique to estimate an approximate gradient using an ensemble of randomly chosen control vectors, known as Ensemble Optimization (EnOpt) in the oil and gas reservoir simulation community. In particular, we address how to obtain accurate approximate gradients when the underlying numerical models contain uncertain parameters because of geological uncertainties. In that case, ‘robust optimization’ is performed by optimizing the expected value of the objective function over an ensemble of geological models. In earlier publications, based on the pioneering work of Chen et al. (2009), it has been suggested that a straightforward one‐to‐one combination of random control vectors and random geological models is capable of generating sufficiently accurate approximate gradients. However, this form of EnOpt does not always yield satisfactory results. In a recent article, Fonseca et al. (2015) formulate a modified EnOpt algorithm, referred to here as a Stochastic Simplex Approximate Gradient (StoSAG; in earlier publications referred to as ‘modified robust EnOpt’) and show, via computational experiments, that StoSAG generally yields significantly better gradient approximations than the standard EnOpt algorithm. Here, we provide theoretical arguments to show why StoSAG is superior to EnOpt. © 2016 The Authors. International Journal for Numerical Methods in Engineering Published by John Wiley & Sons, Ltd.
Author Chen, Bailian
Reynolds, Albert
Jansen, Jan Dirk
Fonseca, Rahul Rahul‐Mark
Author_xml – sequence: 1
  givenname: Rahul Rahul‐Mark
  surname: Fonseca
  fullname: Fonseca, Rahul Rahul‐Mark
  organization: Delft University of Technology
– sequence: 2
  givenname: Bailian
  surname: Chen
  fullname: Chen, Bailian
  organization: University of Tulsa
– sequence: 3
  givenname: Jan Dirk
  surname: Jansen
  fullname: Jansen, Jan Dirk
  email: j.d.jansen@tudelft.nl
  organization: Delft University of Technology
– sequence: 4
  givenname: Albert
  surname: Reynolds
  fullname: Reynolds, Albert
  organization: University of Tulsa
BookMark eNp1kF1LwzAUhoNMcFPBn1DwRi86T9KmTS_HmFPw42LuusT0FCNtUpMMnb_eOAVB9ObkQJ7z8vJMyMhYg4ScUJhSAHZhepzyLGd7ZEyhKlNgUI7IOH5VKa8EPSAT758BKOWQjcl6lqyCVU_SB62Sle6HDt-S2TA4-6Z7GTBZOtloNCE5i-BqtjxPWusSOwTd63cZtDXJxjTo4lTogtQmbI_Ifis7j8ff7yFZXy4e5lfpzf3yej67SVVWAEslqEpkAmQJIhZijxVVbZG3jeIZb7lSnNMKGaBoShEXlA1WbUHzSuXQqCw7JGdfubHuywZ9qHvtFXadNGg3vqZC5JTxvICInv5Cn-3GmdguUiUTlLGC_wQqZ7132NaDixrctqZQf_qto9_6029Ep79QpcPOR3BSd38dpF8Hr7rD7b_B9d3tYsd_AD3IjJE
CODEN IJNMBH
CitedBy_id crossref_primary_10_1088_1742_6596_1618_4_042030
crossref_primary_10_3390_en16010303
crossref_primary_10_1016_j_geoen_2024_213142
crossref_primary_10_2118_209226_PA
crossref_primary_10_2118_215110_PA
crossref_primary_10_1016_j_geothermics_2024_103094
crossref_primary_10_1016_j_petrol_2019_106872
crossref_primary_10_1007_s10596_020_10017_y
crossref_primary_10_1016_j_solener_2021_12_026
crossref_primary_10_2118_220754_PA
crossref_primary_10_1002_2017WR021870
crossref_primary_10_1016_j_petrol_2021_110076
crossref_primary_10_1109_ACCESS_2025_3529915
crossref_primary_10_1016_j_petrol_2021_109755
crossref_primary_10_1016_j_ijhydene_2025_03_031
crossref_primary_10_2118_193925_PA
crossref_primary_10_2118_220026_PA
crossref_primary_10_1016_j_petrol_2017_07_037
crossref_primary_10_1007_s11004_016_9664_8
crossref_primary_10_2118_217985_PA
crossref_primary_10_1016_j_icheatmasstransfer_2025_108881
crossref_primary_10_1016_j_petrol_2019_106342
crossref_primary_10_1007_s11081_020_09591_y
crossref_primary_10_1016_j_jcp_2017_02_024
crossref_primary_10_1016_j_geoen_2024_213273
crossref_primary_10_2118_199357_PA
crossref_primary_10_1016_j_petrol_2017_04_001
crossref_primary_10_1007_s10596_025_10370_w
crossref_primary_10_1007_s10596_021_10099_2
crossref_primary_10_3389_feart_2022_1053951
crossref_primary_10_1007_s10596_019_09927_3
crossref_primary_10_1007_s11081_019_09432_7
crossref_primary_10_1016_j_petrol_2021_110050
crossref_primary_10_3390_math13010036
crossref_primary_10_1016_j_petrol_2019_02_047
crossref_primary_10_3390_en16124735
crossref_primary_10_1016_j_apenergy_2023_121593
crossref_primary_10_2118_210200_PA
crossref_primary_10_1007_s10596_019_09914_8
crossref_primary_10_1016_j_apenergy_2024_123179
crossref_primary_10_2118_220110_PA
crossref_primary_10_1049_stg2_12115
crossref_primary_10_1016_j_petsci_2025_03_038
crossref_primary_10_1016_j_geoen_2024_212663
crossref_primary_10_1016_j_petrol_2020_106984
crossref_primary_10_1007_s10596_023_10197_3
crossref_primary_10_1007_s11081_024_09909_0
crossref_primary_10_1002_cjce_25273
crossref_primary_10_1007_s10596_024_10326_6
crossref_primary_10_3390_en18030627
crossref_primary_10_1029_2022WR032653
crossref_primary_10_1007_s10596_020_09952_7
crossref_primary_10_1007_s10596_019_09854_3
crossref_primary_10_1007_s10596_017_9689_1
crossref_primary_10_1007_s11004_017_9676_z
crossref_primary_10_1016_j_geoen_2024_213407
crossref_primary_10_2118_200581_PA
crossref_primary_10_1007_s11004_024_10165_2
crossref_primary_10_2118_199355_PA
crossref_primary_10_1016_j_petrol_2021_109486
crossref_primary_10_2118_210562_PA
crossref_primary_10_1016_j_jgsce_2025_205593
crossref_primary_10_1016_j_compchemeng_2018_11_013
crossref_primary_10_1007_s10596_019_09895_8
crossref_primary_10_2118_220821_PA
crossref_primary_10_1016_j_petrol_2017_09_002
crossref_primary_10_1016_j_petrol_2021_109671
crossref_primary_10_2118_209191_PA
crossref_primary_10_1007_s10596_017_9657_9
crossref_primary_10_2118_200862_PA
crossref_primary_10_2118_220105_PA
crossref_primary_10_2118_219770_PA
crossref_primary_10_1007_s10596_019_09888_7
crossref_primary_10_3389_feart_2020_00108
crossref_primary_10_1016_j_petsci_2023_02_007
crossref_primary_10_2118_204236_PA
crossref_primary_10_1007_s10596_023_10218_1
crossref_primary_10_1016_j_petrol_2021_108457
crossref_primary_10_1007_s10596_019_09892_x
crossref_primary_10_1016_j_petsci_2023_04_001
crossref_primary_10_1016_j_petrol_2019_106416
crossref_primary_10_1016_j_petrol_2020_107824
crossref_primary_10_2118_220002_PA
crossref_primary_10_1016_j_geoen_2023_212475
crossref_primary_10_1016_j_energy_2025_136891
crossref_primary_10_1016_j_geoen_2025_213845
crossref_primary_10_1016_j_petsci_2022_08_016
crossref_primary_10_1016_j_solener_2019_08_004
crossref_primary_10_1007_s10596_021_10101_x
crossref_primary_10_1007_s12182_019_00357_5
crossref_primary_10_1016_j_petrol_2021_108926
crossref_primary_10_3390_en12050816
crossref_primary_10_2118_200316_PA
crossref_primary_10_1007_s10444_022_09981_z
crossref_primary_10_1155_2022_5912732
crossref_primary_10_2118_209587_PA
crossref_primary_10_2118_214363_PA
crossref_primary_10_1016_j_compchemeng_2018_06_013
crossref_primary_10_2118_209828_PA
crossref_primary_10_2118_193885_PA
crossref_primary_10_1007_s11004_024_10155_4
crossref_primary_10_1016_j_compchemeng_2018_03_006
crossref_primary_10_1016_j_petrol_2020_107924
crossref_primary_10_1016_j_renene_2023_119061
crossref_primary_10_2118_201721_PA
crossref_primary_10_1016_j_compchemeng_2022_108096
crossref_primary_10_1038_s41598_024_76916_7
crossref_primary_10_1007_s10596_023_10213_6
crossref_primary_10_1016_j_petrol_2021_110029
crossref_primary_10_1007_s10596_019_09891_y
crossref_primary_10_2118_226222_PA
crossref_primary_10_1016_j_petrol_2021_108879
crossref_primary_10_2118_212212_PA
crossref_primary_10_1186_s40517_025_00336_7
crossref_primary_10_1016_j_petrol_2021_109165
crossref_primary_10_2118_209584_PA
crossref_primary_10_1007_s11004_024_10148_3
Cites_doi 10.2523/136916-MS
10.2118/109805-PA
10.1137/1.9780898718942
10.2118/163657-PA
10.3997/2214-4609.20141779
10.2118/163613-PA
10.1016/j.jprocont.2008.06.011
10.1007/978-3-319-00260-6
10.2118/102913-PA
10.3997/2214-4609.201406895
10.2118/173268-PA
10.1016/j.compfluid.2010.09.039
10.1007/s10596-013-9368-9
10.1162/089976698300017746
10.2118/99959-PA
10.1063/1.870417
10.2118/112873-PA
10.3997/2214-4609.20142642
10.1109/9.119632
10.1002/0471722138
10.2118/78278-PA
10.1002/gdj3.21
10.1137/1.9780898718768
10.2118/118926-PA
10.2118/18365-MS
10.1007/s10596-011-9254-2
10.3997/2214-4609.20141895
10.2118/173236-MS
10.2118/118952-PA
10.2118/173256-PA
10.2523/99690-MS
10.1016/j.petrol.2006.12.008
10.1007/s11004-015-9598-6
ContentType Journal Article
Copyright 2016 The Authors. Published by John Wiley & Sons, Ltd.
Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2016 The Authors. Published by John Wiley & Sons, Ltd.
– notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID 24P
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.5342
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Geology
EISSN 1097-0207
EndPage 1776
ExternalDocumentID 4317696131
10_1002_nme_5342
NME5342
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3602-a0c98380a7080112b91cf64fdc535f5cc5519e20e8d789e2eade9f6149c40dc33
IEDL.DBID 24P
ISICitedReferencesCount 128
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395065500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Sun Nov 09 14:31:27 EST 2025
Fri Jul 25 12:14:44 EDT 2025
Sat Nov 29 06:43:52 EST 2025
Tue Nov 18 21:36:27 EST 2025
Wed Aug 20 07:26:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License Attribution-NonCommercial-NoDerivs
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3602-a0c98380a7080112b91cf64fdc535f5cc5519e20e8d789e2eade9f6149c40dc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.5342
PQID 1872812265
PQPubID 996376
PageCount 21
ParticipantIDs proquest_miscellaneous_1884125460
proquest_journals_1872812265
crossref_primary_10_1002_nme_5342
crossref_citationtrail_10_1002_nme_5342
wiley_primary_10_1002_nme_5342_NME5342
PublicationCentury 2000
PublicationDate 30 March 2017
PublicationDateYYYYMMDD 2017-03-30
PublicationDate_xml – month: 03
  year: 2017
  text: 30 March 2017
  day: 30
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 15
2010; 13
2015; 18
2012
2010
2008; 18
2004; 9
2009
1975
2008
1997
1996
2006
2008; 11
1992; 37
2003
2012; 16
1979
2007; 58
1978
2014; 1
2009; 14
2013; 17
2000; 12
2015; 20
2016; 21
2011; 46
2015
2014; 19
2014
2013
2014; 9
1998; 10
2016; 48
1989
1988
e_1_2_10_23_1
Journel A (e_1_2_10_43_1) 1978
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
Nocedal J (e_1_2_10_12_1) 2006
Aziz K (e_1_2_10_2_1) 1979
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
Beck JV (e_1_2_10_40_1) 1997
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
Bryson AE (e_1_2_10_5_1) 1975
e_1_2_10_31_1
e_1_2_10_30_1
Oliveira DF (e_1_2_10_38_1) 2014; 9
Golub G (e_1_2_10_36_1) 1989
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – start-page: 3
  year: 1996
  end-page: 6
– year: 2009
– volume: 1
  start-page: 192
  issue: 2
  year: 2014
  end-page: 195
  article-title: The Egg Model‐ A geological ensemble for reservoir simulation
  publication-title: Geoscience Data Journal
– volume: 11
  start-page: 326
  issue: 2
  year: 2008
  end-page: 339
  article-title: Production optimization with adjoint models under nonlinear control‐state path inequality constraints
  publication-title: SPE Reservoir Evaluation and Engineering
– start-page: 4
  year: 2010
  end-page: 7
– year: 1989
– year: 2003
– volume: 9
  start-page: 391Ű402
  issue: 4
  year: 2014
  article-title: An adaptive hierarchical algorithm for estimation of optimal well controls
  publication-title: SPE Journal
– year: 1975
– volume: 48
  start-page: 399
  issue: 4
  year: 2016
  end-page: 417
  article-title: A theoretical look at ensemble‐based optimization in reservoir management
  publication-title: Mathematical Geosciences
– volume: 15
  start-page: 495
  issue: 12
  year: 2010
  end-page: 508
  article-title: History matching with parameterization based on the SVD of a dimensionless sensitivity matrix
  publication-title: SPE Journal
– volume: 10
  start-page: 251
  issue: 2
  year: 1998
  end-page: 276
  article-title: Natural gradients work efficiently in learning
  publication-title: Neural Computation
– year: 1979
– volume: 17
  start-page: 959
  issue: 6
  year: 2013
  end-page: 973
  article-title: Theoretical connections between optimization algorithms based on an approximate gradient
  publication-title: Computational Geosciences
– year: 2012
– volume: 19
  start-page: 873
  issue: 5
  year: 2014
  end-page: 890
  article-title: Optimization algorithms based on combining FD approximations and stochastic gradients compared with methods based only on a stochastic gradient
  publication-title: SPE Journal
– volume: 14
  start-page: 202
  issue: 1
  year: 2009
  end-page: 210
  article-title: Robust waterflooding optimization of multiple geological scenarios
  publication-title: SPE Journal
– volume: 46
  start-page: 40
  issue: 1
  year: 2011
  end-page: 51
  article-title: Adjoint‐based optimization of multiphase flow through porous media a review
  publication-title: Computers and Fluids
– volume: 16
  start-page: 75
  issue: 1
  year: 2012
  end-page: 92
  article-title: Well placement optimization with the covariance matrix adaptation evolution strategy and meta‐models
  publication-title: Computational Geosciences
– start-page: 16
  year: 1988
  end-page: 19
– volume: 12
  start-page: 1656
  issue: 7
  year: 2000
  end-page: 1670
  article-title: Optimization of fluid front dynamics in porous media using rate control
  publication-title: Physics of Fluids
– year: 2008
– year: 2006
– year: 1997
– volume: 18
  start-page: 846
  issue: 9
  year: 2008
  end-page: 855
  article-title: Model‐based control of multiphase flow in subsurface oil reservoirs
  publication-title: Journal of Process Control
– volume: 13
  start-page: 56
  issue: 1
  year: 2010
  end-page: 71
  article-title: Ensemble‐based closed‐loop optimization applied to Brugge field
  publication-title: SPE Reservoir Engineering and Evaluation
– start-page: 8
  year: 2014
  end-page: 11
– volume: 21
  start-page: 501
  issue: 2
  year: 2016
  end-page: 521
  article-title: Simultaneous and sequential estimation of optimal placement and controls of wells using a covariance matrix adaptation algorithm
  publication-title: SPE Journal
– start-page: 16
  year: 2013
  end-page: 18
– volume: 18
  start-page: 1094
  issue: 4
  year: 2015
  end-page: 6470
  article-title: Ensemble‐based multiobjective optimization of on‐off control devices under geological uncertainty
  publication-title: SPE Reservoir Evaluation and Engineering
– start-page: 11
  year: 2006
  end-page: 13
– year: 1978
– volume: 37
  start-page: 332
  issue: 3
  year: 1992
  end-page: 341
  article-title: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation
  publication-title: IEEE Transactions onAutomatic Contol
– volume: 9
  start-page: 391
  issue: 4
  year: 2004
  end-page: 402
  article-title: Dynamic optimization of water flooding with smart wells using optimal control theory
  publication-title: SPE Journal
– year: 2015
– volume: 14
  start-page: 634
  issue: 4
  year: 2009
  end-page: 645
  article-title: Efficient ensemble‐based closed‐loop production optimization
  publication-title: SPE Journal
– volume: 14
  start-page: 506
  issue: 3
  year: 2009
  end-page: 523
  article-title: Production optimization in closed loop reservoir management
  publication-title: SPE Journal
– year: 2013
– volume: 20
  start-page: 155
  issue: 1
  year: 2015
  end-page: 168
  article-title: Improving the ensemble optimization method through covariance matrix adaptation (CMA‐EnOpt)
  publication-title: SPE Journal
– volume: 58
  start-page: 186
  year: 2007
  end-page: 200
  article-title: Bang‐bang control and singular arcs in reservoir flooding
  publication-title: Journal of Petroleum Science and Engineering
– ident: e_1_2_10_35_1
  doi: 10.2523/136916-MS
– ident: e_1_2_10_34_1
  doi: 10.2118/109805-PA
– ident: e_1_2_10_3_1
  doi: 10.1137/1.9780898718942
– ident: e_1_2_10_31_1
  doi: 10.2118/163657-PA
– ident: e_1_2_10_37_1
  doi: 10.3997/2214-4609.20141779
– ident: e_1_2_10_26_1
  doi: 10.2118/163613-PA
– ident: e_1_2_10_39_1
– ident: e_1_2_10_4_1
  doi: 10.1016/j.jprocont.2008.06.011
– ident: e_1_2_10_29_1
  doi: 10.1007/978-3-319-00260-6
– ident: e_1_2_10_13_1
  doi: 10.2118/102913-PA
– ident: e_1_2_10_7_1
  doi: 10.3997/2214-4609.201406895
– volume-title: Applied Optimal Control
  year: 1975
  ident: e_1_2_10_5_1
– ident: e_1_2_10_28_1
  doi: 10.2118/173268-PA
– ident: e_1_2_10_11_1
  doi: 10.1016/j.compfluid.2010.09.039
– volume-title: Mining Geostatistics
  year: 1978
  ident: e_1_2_10_43_1
– ident: e_1_2_10_16_1
  doi: 10.1007/s10596-013-9368-9
– ident: e_1_2_10_21_1
  doi: 10.1162/089976698300017746
– volume-title: Matrix Computations
  year: 1989
  ident: e_1_2_10_36_1
– ident: e_1_2_10_10_1
  doi: 10.2118/99959-PA
– ident: e_1_2_10_8_1
  doi: 10.1063/1.870417
– ident: e_1_2_10_14_1
  doi: 10.2118/112873-PA
– ident: e_1_2_10_23_1
  doi: 10.3997/2214-4609.20142642
– ident: e_1_2_10_17_1
  doi: 10.1109/9.119632
– ident: e_1_2_10_18_1
  doi: 10.1002/0471722138
– ident: e_1_2_10_9_1
  doi: 10.2118/78278-PA
– volume-title: Numerical Optimization
  year: 2006
  ident: e_1_2_10_12_1
– volume-title: Parameter Estimation in Engineering and Science
  year: 1997
  ident: e_1_2_10_40_1
– ident: e_1_2_10_44_1
  doi: 10.1002/gdj3.21
– ident: e_1_2_10_19_1
  doi: 10.1137/1.9780898718768
– ident: e_1_2_10_15_1
  doi: 10.2118/118926-PA
– volume-title: Petroleum Reservoir Simulation
  year: 1979
  ident: e_1_2_10_2_1
– ident: e_1_2_10_6_1
  doi: 10.2118/18365-MS
– ident: e_1_2_10_30_1
  doi: 10.1007/s10596-011-9254-2
– volume: 9
  start-page: 391Ű402
  issue: 4
  year: 2014
  ident: e_1_2_10_38_1
  article-title: An adaptive hierarchical algorithm for estimation of optimal well controls
  publication-title: SPE Journal
– ident: e_1_2_10_27_1
  doi: 10.3997/2214-4609.20141895
– ident: e_1_2_10_24_1
  doi: 10.2118/173236-MS
– ident: e_1_2_10_41_1
  doi: 10.2118/118952-PA
– ident: e_1_2_10_42_1
– ident: e_1_2_10_25_1
– ident: e_1_2_10_32_1
  doi: 10.2118/173256-PA
– ident: e_1_2_10_22_1
  doi: 10.2523/99690-MS
– ident: e_1_2_10_33_1
  doi: 10.1016/j.petrol.2006.12.008
– ident: e_1_2_10_45_1
– ident: e_1_2_10_20_1
  doi: 10.1007/s11004-015-9598-6
SSID ssj0011503
Score 2.6097252
Snippet Summary We consider a technique to estimate an approximate gradient using an ensemble of randomly chosen control vectors, known as Ensemble Optimization...
We consider a technique to estimate an approximate gradient using an ensemble of randomly chosen control vectors, known as Ensemble Optimization (EnOpt) in the...
Summary We consider a technique to estimate an approximate gradient using an ensemble of randomly chosen control vectors, known as Ensemble Optimization...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1756
SubjectTerms Algorithms
Approximate gradient
Ensemble optimization
Geology
Mathematical analysis
Mathematical models
Optimization
Robust optimization
Robustness (mathematics)
Stochastic gradient
Stochasticity
StoSAG
Uncertainty
Title A Stochastic Simplex Approximate Gradient (StoSAG) for optimization under uncertainty
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.5342
https://www.proquest.com/docview/1872812265
https://www.proquest.com/docview/1884125460
Volume 109
WOSCitedRecordID wos000395065500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9NwMN4GFBAK7DKSAjGQ8BOnMR5rKBlD7Sq1lXqWxS7jqg02qkJCP773eVrnQTSpL3kQ7k4ke27-yW--x3AmU1CV_mp6-D3T-igh5CO1txzEp6qQHKZCK2KYhPhcKim02hURVVSLkzJD9H8cCPNKOw1KXiis-s10tBHe-V7Es3vphCeorINrhw1KwgIdLw6vMOPlKiJZ7l7Xd_5tyv6gy_XUWrhZvo7__OCu_CpApesW86GPfhgFy3YqYAmq9Q4a8H2Ggshng0a6tZsHyZdNs6X5iEhAmc2nhN78AvrEvX4yxyFLLtbFWFiOfuKguPu3SVD4MuWaHseq6RORplpK9yaMuAgfz2ASb_34-abU9VecIwXoJFMuIkU9moSIqRETKYjYdJApjPje37qG4NIK7Iut2oWKjyguOsoRV8fGclnxvMOYWOxXNjPwJS0PFChMoESUnOjtcbmuKvDGVfa6DZc1MMQm4qYnOpj_IxLSmU3xp6MqSfbcNpI_irJON6QOalHMq7UMYuFwhkpEGn62ERzGRWJVkeShV0-kYySgqoD8DacF-P67jPi4aBH-6N_FTyGjy7BAcpl5Cewka-e7BfYMs_5PFt1ionbgc3b7_3J_W-0zfFv
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_ECeqD8xOnUyOIHw91aZu2KT4NdSpuQ5wD30qTpThwm2xV9L_30i8nKAi-9INe09Lc5X5N7n4HcKBCz-JOZBn4_-MZ6CGYIQS1jZBG3GWUhabgSbEJr93mj4_-3Qyc5bkwKT9EMeGmLSMZr7WB6wnp2hRr6ECdOjbD8bfEUItQvUsX941us1hEQKxj5xEejs_NnHuWWrX83u_e6AtiTgPVxNM0yv96x2VYygAmqacasQIzargK5QxsksyUJ6uwOMVEiGetgr51sgbdOunEI_kUahJn0ulrBuF3Utf04-99FFLkapyEisXkGAU79asTguCXjHD8GWSJnURnp41xK9Ogg_hjHbqNy4fzayOrv2BI28WBMqTS5zanoYewEnGZ8E0ZuSzqScd2IkdKRFu-sqjiPY_jgY699iP0975ktCdtewNmh6Oh2gTCmaIu97h0uckElUIIbI5awutRLqSowFHeD4HMyMl1jYznIKVVtgL8koH-khXYLyRfUkKOH2SqeVcGmUlOApOjVpqINh1soriMxqRXSMKhGr1qGc5MXSGAVuAw6dhfnxG0W5d6v_VXwT2Yv35oNYPmTft2GxYsDQ90biOtwmw8flU7MCff4v5kvJvp8Sf6ZPVV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kiuiD8xOnUyOIHw_VtE3bFJ-GcyrqGM6Bb6VJUxzoJlsV_e-99MsJCoIv_aDXtCS5u1-bu98B7KnQs7gTWwZ-_3gGeghmCEFtI6QxdxlloSl4WmzCa7f5w4PfmYLTIhcm44cof7hpzUjttVZw9RLFJxOsoc_q2LEZ2t9ppmvIVGC6edfq3ZSLCIh17CLCw_G5WXDPUuukuPe7N_qCmJNANfU0req_3nERFnKASRrZjFiCKTVYhmoONkmuyuNlmJ9gIsSz25K-dbwCvQbpJkP5GGoSZ9Ltawbhd9LQ9OPvfRRS5GKUhool5BAFu42LI4LglwzR_jzniZ1EZ6eNcCuzoIPkYxV6rfP7s0sjr79gSNtFQxlS6XOb09BDWIm4TPimjF0WR9KxndiREtGWryyqeORxPNCx136M_t6XjEbSttegMhgO1DoQzhR1ucely00mqBRCYHPUEl5EuZCiBgfFOAQyJyfXNTKegoxW2QqwJwPdkzXYLSVfMkKOH2TqxVAGuUqOA5PjrDQRbTrYRHkZlUmvkIQDNXzVMpyZukIArcF-OrC_PiNo357r_cZfBXdgttNsBTdX7etNmLM0OtCpjbQOlWT0qrZgRr4l_fFoO5_Gn5TU9NA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Stochastic+Simplex+Approximate+Gradient+%28StoSAG%29+for+optimization+under+uncertainty&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Fonseca%2C+Rahul+Rahul-Mark&rft.au=Chen%2C+Bailian&rft.au=Jansen%2C+Jan+Dirk&rft.au=Reynolds%2C+Albert&rft.date=2017-03-30&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=109&rft.issue=13&rft.spage=1756&rft_id=info:doi/10.1002%2Fnme.5342&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4317696131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon