Improved Multiobjective Genetic Algorithm for Partitioning Distributed Photovoltaic Clusters: Balancing Spatial Distance and Power Similarity

The prediction of power output from photovoltaic generation clusters is crucial for optimizing the dispatch of regional photovoltaic generation. Enhancing the accuracy of power prediction for photovoltaic power plant clusters requires the segmentation of distributed photovoltaic systems into cluster...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computing and information technology Vol. 32; no. 4; pp. 251 - 264
Main Authors: Chen, Yansen, Cheng, Kai, Li, Zhuohuan, Pan, Shixian, Hu, Xudong
Format: Journal Article Paper
Language:English
Published: Sveuciliste U Zagrebu 01.12.2024
Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva
University of Zagreb Faculty of Electrical Engineering and Computing
Subjects:
ISSN:1330-1136, 1846-3908
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The prediction of power output from photovoltaic generation clusters is crucial for optimizing the dispatch of regional photovoltaic generation. Enhancing the accuracy of power prediction for photovoltaic power plant clusters requires the segmentation of distributed photovoltaic systems into clusters. This paper proposes a method for partitioning distributed photovoltaic clusters using a multiobjective genetic algorithm NSGA2, with spatial distance modularity and electricity similarity as optimization objectives to determine the optimal cluster partitioning scheme. The numerical examples and experimental results of the case analysis demonstrate a significant improvement in the convergence speed of the prediction system when employing the clustering partitioning method. This cluster segmentation algorithm significantly reduces the complexity and investment cost of the prediction system.
AbstractList The prediction of power output from photovoltaic generation clusters is crucial for optimizing the dispatch of regional photovoltaic generation. Enhancing the accuracy of power prediction for photovoltaic power plant clusters requires the segmentation of distributed photovoltaic systems into clusters. This paper proposes a method for partitioning distributed photovoltaic clusters using a multiobjective genetic algorithm NSGA2, with spatial distance modularity and electricity similarity as optimization objectives to determine the optimal cluster partitioning scheme. The numerical examples and experimental results of the case analysis demonstrate a significant improvement in the convergence speed of the prediction system when employing the clustering partitioning method. This cluster segmentation algorithm significantly reduces the complexity and investment cost of the prediction system.
The prediction of power output from photovoltaic generation clusters is crucial for optimizing the dispatch of regional photovoltaic generation. Enhancing the accuracy of power prediction for photovoltaic power plant clusters requires the segmentation of distributed photovoltaic systems into clusters. This paper proposes a method for partitioning distributed photovoltaic clusters using a multiobjective genetic algorithm NSGA2, with spatial distance modularity and electricity similarity as optimization objectives to determine the optimal cluster partitioning scheme. The numerical examples and experimental results of the case analysis demonstrate a significant improvement in the convergence speed of the prediction system when employing the clustering partitioning method. This cluster segmentation algorithm significantly reduces the complexity and investment cost of the prediction system. ACM CCS (2012) Classification: Computing methodologies [right arrow] Artificial Intelligence [right arrow] Planning and Scheduling Keywords: multi-objective genetic algorithm, distributed photovoltaic, cluster partitioning
Audience Academic
Author Chen, Yansen
Hu, Xudong
Cheng, Kai
Li, Zhuohuan
Pan, Shixian
Author_xml – sequence: 1
  givenname: Yansen
  surname: Chen
  fullname: Chen, Yansen
  organization: China Southern Grid Digital Grid Research Institute Co. Ltd., Guangzhou, China
– sequence: 2
  givenname: Kai
  surname: Cheng
  fullname: Cheng, Kai
  organization: China Southern Grid Digital Grid Research Institute Co. Ltd., Guangzhou, China
– sequence: 3
  givenname: Zhuohuan
  surname: Li
  fullname: Li, Zhuohuan
  organization: China Southern Grid Digital Grid Research Institute Co. Ltd., Guangzhou, China
– sequence: 4
  givenname: Shixian
  surname: Pan
  fullname: Pan, Shixian
  organization: China Southern Grid Digital Grid Research Institute Co. Ltd., Guangzhou, China
– sequence: 5
  givenname: Xudong
  surname: Hu
  fullname: Hu, Xudong
  organization: China Southern Grid Digital Grid Research Institute Co. Ltd., Guangzhou, China
BookMark eNptkt9u0zAUxiM0JMbYA3AXiSsu0vlfHIe70sGoNMRE4do6cZzWJYkr2y3sIfbOnDYTUiXsCx99-n2ffeTzOrsY_Wiz7C0lM0ZKzm6MS1gxMaOElKoiL7JLqoQseE3UBdack4JSLl9l1zFuCS5eSynoZfa0HHbBH2ybf933yflma01yB5vf2dEmZ_J5v_bBpc2Qdz7kDxCSQ2x04zq_dTEF1-wTuh82PvmD7xOgZ9HvY7Ihfsg_Qg-jOcKrHSQH_cmEks1hRJf_bUO-coPrAS95fJO97KCP9vr5vMp-fv70Y_GluP92t1zM7wvDJSGFqVpWNoIpYQgzopWNbOoSFLYoWFVaI3llLeOKKymgpAyYsm2nRNeptjI1v8qWU27rYat3wQ0QHrUHp0-CD2t9bNT0VleUCtaYrqaSiwaEMnWN11BFKyIq1mJWMWVtgoFfZ2GTEoOxWGrOZCkI8u8mfg0Y78bOpwBmcNHouWLYE8ZKpGb_oXC3dnAGv79zqJ8Z3p8ZkEn2T1rDPka9XH0_Z-nEmuBjDLb792pK9GmiNE6UPk6Ufp4o_hcnDr_1
CODEN CJCTEM
ContentType Journal Article
Paper
Copyright COPYRIGHT 2024 Sveuciliste U Zagrebu
Copyright_xml – notice: COPYRIGHT 2024 Sveuciliste U Zagrebu
DBID AAYXX
CITATION
ISR
VP8
DOA
DOI 10.20532/cit.2024.1005870
DatabaseName CrossRef
Gale In Context: Science
Portal of Croatian Scientific and Professional Journals – HRČAK
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1846-3908
EndPage 264
ExternalDocumentID oai_doaj_org_article_71142bcf91634ba48c9913418170472d
oai_hrcak_srce_hr_326540
A822840476
10_20532_cit_2024_1005870
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .4S
.DC
29B
29K
2WC
5GY
5VS
77I
AAYXX
ADMLS
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BAIFH
BBTPI
CITATION
CS3
D-I
DU5
E3Z
EBS
EDO
EJD
EN8
EOJEC
GROUPED_DOAJ
I-F
IAO
ICD
ISR
ITC
IVC
KQ8
KWQ
MK~
ML~
M~E
OBODZ
OK1
OVT
P2P
PV9
RZL
TR2
TUS
VP8
XH6
ICW
IPNFZ
RIG
ID FETCH-LOGICAL-c3600-c7d25b4284c02c4d6b6b95a81134275ec637ee2383864a512a28edf84ff8d7c93
IEDL.DBID DOA
ISSN 1330-1136
IngestDate Fri Oct 03 12:45:26 EDT 2025
Fri Jan 10 04:27:59 EST 2025
Sat Nov 29 13:52:41 EST 2025
Sat Nov 29 10:35:35 EST 2025
Thu Nov 13 16:04:34 EST 2025
Sat Nov 29 04:13:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by-nd: openAccess
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3600-c7d25b4284c02c4d6b6b95a81134275ec637ee2383864a512a28edf84ff8d7c93
Notes 326540
OpenAccessLink https://doaj.org/article/71142bcf91634ba48c9913418170472d
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_71142bcf91634ba48c9913418170472d
hrcak_primary_oai_hrcak_srce_hr_326540
gale_infotracmisc_A822840476
gale_infotracacademiconefile_A822840476
gale_incontextgauss_ISR_A822840476
crossref_primary_10_20532_cit_2024_1005870
PublicationCentury 2000
PublicationDate 20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241201
  day: 01
PublicationDecade 2020
PublicationTitle Journal of computing and information technology
PublicationYear 2024
Publisher Sveuciliste U Zagrebu
Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva
University of Zagreb Faculty of Electrical Engineering and Computing
Publisher_xml – name: Sveuciliste U Zagrebu
– name: Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva
– name: University of Zagreb Faculty of Electrical Engineering and Computing
SSID ssj0000396641
Score 2.289305
Snippet The prediction of power output from photovoltaic generation clusters is crucial for optimizing the dispatch of regional photovoltaic generation. Enhancing the...
SourceID doaj
hrcak
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 251
SubjectTerms Algorithms
Analysis
Artificial intelligence
cluster partitioning
Distributed generation (Electric power)
distributed photovoltaic
Genetic algorithms
multi-objective genetic algorithm
Photovoltaic power generation
Solar energy
Solar power plants
Title Improved Multiobjective Genetic Algorithm for Partitioning Distributed Photovoltaic Clusters: Balancing Spatial Distance and Power Similarity
URI https://hrcak.srce.hr/326540
https://doaj.org/article/71142bcf91634ba48c9913418170472d
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1846-3908
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000396641
  issn: 1330-1136
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1846-3908
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000396641
  issn: 1330-1136
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQ4cCFli-xUJCFEEhIUTeJYzu9bUsrOFCtKEi9WfbE6W5pkyrJcuw_4D93xk6r3RMXFCmKkrEUe8bjN8n4DWMfao3rupc6ET5TeFJF4qAsEiDiEytFaQsXik2okxN9dlbO10p9UU5YpAeOA7enaLOngxphTC6cFRpK-lmcErGcUFlF3neqyrVgKvjgHGG8SONvzIyqH-zBklInM0F5AYWm4sRrC1Hg67_3yg8XHdjfa-vM8Q57MgJEPosv9pQ98M0ztn1XfIGPc_E5-xs_B_iKhz20rbuIrosTkTS25bPL8xYj_8UVR1zK59TT8eMr_0JsuVToClvPF-3Qoo8aLLY5vFwRcUK_zw8o5RFImIoWo5GGRmQi3DbYioqr8dPl1RIjYwTyL9iv46Ofh1-TsbZCAjlinARUlRUOYw8B0wxEJZ10ZWF1imObqcKDzJX3uJ7nWgqLqMBm2le1FnWtKwVl_pJtNW3jXzFepNo5oI0mCCWtldZW6RQo-63GQ1YT9vluoM11pNAwGHoErRjUiiGtmFErE3ZAqrgXJPbrcANtwow2Yf5lExP2nhRpiN-ioQSac7vqe_Pt9IeZISDCmFYoOWGfRqG6HToLdtyPgJ0iSqwNyd0NSZyAsPH4Y7CXjXeOd_oOPF4axMiIjF__j769YY9pvGJGzS7bGrqVf8sewZ9h2XfvwizA8_ebo1sAyAty
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Multiobjective+Genetic+Algorithm+for+Partitioning+Distributed+Photovoltaic+Clusters%3A+Balancing+Spatial+Distance+and+Power+Similarity&rft.jtitle=Journal+of+computing+and+information+technology&rft.au=Chen%2C+Yansen&rft.au=Cheng%2C+Kai&rft.au=Li%2C+Zhuohuan&rft.au=Pan%2C+Shixian&rft.date=2024-12-01&rft.pub=Sveuciliste+U+Zagrebu&rft.issn=1330-1136&rft.volume=32&rft.issue=4&rft.spage=251&rft_id=info:doi/10.20532%2Fcit.2024.1005870&rft.externalDocID=A822840476
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fhrcak.srce.hr%2Flogo_broj%2F25287.jpg