Finite volume method for solving a one-dimensional parabolic inverse problem

In this paper, finite volume method is used to solve a one-dimensional parabolic inverse problem with source term and Neumann boundary conditions for the first time. Some advantages of this approach are developing difference schemes and maintaining certain properties of the physics of the problems,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 217; H. 12; S. 5227 - 5235
Hauptverfasser: Wang, Bo, Zou, Guang-an, Zhao, Peng, Wang, Qiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier Inc 15.02.2011
Elsevier
Schlagworte:
ISSN:0096-3003, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, finite volume method is used to solve a one-dimensional parabolic inverse problem with source term and Neumann boundary conditions for the first time. Some advantages of this approach are developing difference schemes and maintaining certain properties of the physics of the problems, especially for the treatment of the source term and the unknown boundary conditions. Numerical results show that our method is more effective.
AbstractList In this paper, finite volume method is used to solve a one-dimensional parabolic inverse problem with source term and Neumann boundary conditions for the first time. Some advantages of this approach are developing difference schemes and maintaining certain properties of the physics of the problems, especially for the treatment of the source term and the unknown boundary conditions. Numerical results show that our method is more effective.
Author Zou, Guang-an
Wang, Qiang
Wang, Bo
Zhao, Peng
Author_xml – sequence: 1
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
  email: wangbo_sbu@163.com
  organization: Institute of Applied Mathematics, Henan University, Kaifeng 475004, PR China
– sequence: 2
  givenname: Guang-an
  surname: Zou
  fullname: Zou, Guang-an
  email: zouguangan@gmail.com
  organization: College of Mathematics and Information Science, Henan University, Kaifeng 475004, PR China
– sequence: 3
  givenname: Peng
  surname: Zhao
  fullname: Zhao, Peng
  organization: College of Mathematics and Information Science, Henan University, Kaifeng 475004, PR China
– sequence: 4
  givenname: Qiang
  surname: Wang
  fullname: Wang, Qiang
  organization: College of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23885033$$DView record in Pascal Francis
BookMark eNp9kE2LFDEQhoOs4OzqD_DWF_HUY-WjM914ksVdhQEvu-dQnVQ0QzoZk54B_71ZZr142FNR8D5vUc81u0o5EWPvOWw5cP3psMXFbgW0HaYtSPGKbfi4k_2g1XTFNgCT7iWAfMOuaz0AwE5ztWH7u5DCSt05x9NC3ULrr-w6n0tXczyH9LPDrl3qXVgo1ZATxu6IBeccg-1COlOp1B1LniMtb9lrj7HSu-d5wx7vvj7cfuv3P-6_337Z91YO09p7LwYxCeX5jIMSnuyEhFyRdAo0uHmYNQihSWk5g3SDm2bHUXrHaUQL8oZ9vPS2u79PVFezhGopRkyUT9WMWilQmouW_PCcxGox-oLJhmqOJSxY_hghx3EAKVtud8nZkmst5I0NK67t37VgiIaDedJsDqZpNk-aDUymaW4k_4_8V_4S8_nCUJN0DlRMtYGSJRcK2dW4HF6g_wIXeJfZ
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1080_00036811_2013_835042
crossref_primary_10_1016_j_apnum_2021_07_023
crossref_primary_10_3390_sym10090409
crossref_primary_10_1007_s11075_021_01090_0
crossref_primary_10_1155_2018_4918256
crossref_primary_10_1016_j_expthermflusci_2013_09_006
crossref_primary_10_1515_jiip_2024_0008
Cites_doi 10.1016/j.mcm.2004.07.010
10.1016/j.amc.2006.05.183
10.1002/num.20055
10.1016/j.amc.2007.01.022
10.1016/0017-9310(95)00229-4
10.1016/S0096-3003(02)00047-4
10.1016/j.apm.2009.10.022
10.1016/S0168-9274(00)00057-X
10.1016/j.amc.2004.10.025
10.1016/j.amc.2005.08.040
10.1016/S0378-4754(01)00434-7
10.1016/j.matcom.2008.08.002
10.1515/156939406777570987
10.1016/S0955-7997(03)00102-4
10.1108/03684920810851230
10.1016/j.chaos.2005.11.010
10.1016/S0020-7225(01)00066-0
10.1016/j.apnum.2004.02.002
10.1016/j.cam.2009.08.003
10.1016/j.na.2005.09.030
10.1016/S0096-3003(02)00733-6
10.1002/num.20071
10.1007/s11075-008-9234-3
10.3844/jmssp.2008.60.63
10.1137/S1064827597331394
10.1002/mma.1670160203
10.1016/S0307-904X(01)00010-5
10.1016/S0096-3003(02)00063-2
10.1016/j.amc.2004.09.028
10.1016/0898-1221(96)00130-7
ContentType Journal Article
Copyright 2010 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.amc.2010.09.032
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 5235
ExternalDocumentID 23885033
10_1016_j_amc_2010_09_032
S0096300310009793
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-ff252924f1ba542fec9aea14e3d4060db5b60226e463b03d5d9bd1a3fd1e8ac03
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000286969000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Sat Sep 27 18:15:59 EDT 2025
Mon Jul 21 09:13:23 EDT 2025
Sat Nov 29 06:12:22 EST 2025
Tue Nov 18 22:19:07 EST 2025
Fri Feb 23 02:31:12 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Finite volume method
Difference schemes
Parabolic partial differential equations
Inverse problem
Source terms
Difference scheme
Initial value problem
Numerical method
Boundary condition
Stochastic method
Partial differential equation
Parabolic equation
Numerical analysis
Boundary value problem
One-dimensional calculations
Applied mathematics
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c359t-ff252924f1ba542fec9aea14e3d4060db5b60226e463b03d5d9bd1a3fd1e8ac03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 864404612
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_864404612
pascalfrancis_primary_23885033
crossref_citationtrail_10_1016_j_amc_2010_09_032
crossref_primary_10_1016_j_amc_2010_09_032
elsevier_sciencedirect_doi_10_1016_j_amc_2010_09_032
PublicationCentury 2000
PublicationDate 2011-02-15
PublicationDateYYYYMMDD 2011-02-15
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied mathematics and computation
PublicationYear 2011
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Lesnic, Elliott, Ingham (b0085) 1996; 39
Jonas, Louis (b0125) 2000; 16
Shidfar, Pourgholi (b0050) 2005; 168
Epshteyn, Khan, Riviere (b0115) 2009; 79
Shidfar, Pourgholi (b0090) 2006; 175
Dehghan (b0040) 2003; 136
Elden, Berntsson, Reginska (b0105) 2000; 21
Wei, Li (b0160) 1984; 5A
Frankel (b0100) 1996; 32
Shidfar, Karamali (b0110) 2005; 168
Dehghan (b0025) 2007; 32
Dehghan (b0060) 2005; 41
Pourgholi, Rostamian (b0140) 2010; 34
Jia, Wang (b0020) 2006; 14
Shidfar, Zolfaghari, Damirchi (b0120) 2009; 233
Dehghan (b0080) 2003; 61
Dehghan (b0065) 2001; 25
Shidfar, Karamali, Damirchi (b0130) 2006; 65
Dehghan (b0070) 2001; 37
Dehghan (b0045) 2003; 135
Dehghan (b0055) 2005; 52
Thomas (b0165) 1997
Dehghan, Shakeri (b0150) 2009; 50
Molhem, Pourgholi (b0005) 2008; 4
Dehghan (b0035) 2004; 147
Shidfar, Damirchi, Reihani (b0015) 2007
Shidfar, Fakhraie, Pourgholi, Ebrahimi (b0010) 2007; 184
Dehghan (b0075) 2002; 40
Hsiao, Saranen (b0030) 1993; 16
Lakestani, Dehghan (b0155) 2008; 37
Hon, Wei (b0095) 2004; 28
Dehghan (b0135) 2006; 22
Dehghan (b0145) 2005; 21
Hsiao (10.1016/j.amc.2010.09.032_b0030) 1993; 16
Shidfar (10.1016/j.amc.2010.09.032_b0090) 2006; 175
Pourgholi (10.1016/j.amc.2010.09.032_b0140) 2010; 34
Dehghan (10.1016/j.amc.2010.09.032_b0060) 2005; 41
Dehghan (10.1016/j.amc.2010.09.032_b0045) 2003; 135
Dehghan (10.1016/j.amc.2010.09.032_b0065) 2001; 25
Dehghan (10.1016/j.amc.2010.09.032_b0150) 2009; 50
Epshteyn (10.1016/j.amc.2010.09.032_b0115) 2009; 79
Dehghan (10.1016/j.amc.2010.09.032_b0035) 2004; 147
Shidfar (10.1016/j.amc.2010.09.032_b0110) 2005; 168
Dehghan (10.1016/j.amc.2010.09.032_b0055) 2005; 52
Shidfar (10.1016/j.amc.2010.09.032_b0120) 2009; 233
Dehghan (10.1016/j.amc.2010.09.032_b0145) 2005; 21
Jonas (10.1016/j.amc.2010.09.032_b0125) 2000; 16
Dehghan (10.1016/j.amc.2010.09.032_b0135) 2006; 22
Molhem (10.1016/j.amc.2010.09.032_b0005) 2008; 4
Lakestani (10.1016/j.amc.2010.09.032_b0155) 2008; 37
Dehghan (10.1016/j.amc.2010.09.032_b0075) 2002; 40
Dehghan (10.1016/j.amc.2010.09.032_b0025) 2007; 32
Jia (10.1016/j.amc.2010.09.032_b0020) 2006; 14
Dehghan (10.1016/j.amc.2010.09.032_b0040) 2003; 136
Shidfar (10.1016/j.amc.2010.09.032_b0010) 2007; 184
Frankel (10.1016/j.amc.2010.09.032_b0100) 1996; 32
Hon (10.1016/j.amc.2010.09.032_b0095) 2004; 28
Dehghan (10.1016/j.amc.2010.09.032_b0080) 2003; 61
Wei (10.1016/j.amc.2010.09.032_b0160) 1984; 5A
Lesnic (10.1016/j.amc.2010.09.032_b0085) 1996; 39
Dehghan (10.1016/j.amc.2010.09.032_b0070) 2001; 37
Thomas (10.1016/j.amc.2010.09.032_b0165) 1997
Shidfar (10.1016/j.amc.2010.09.032_b0015) 2007
Shidfar (10.1016/j.amc.2010.09.032_b0050) 2005; 168
Elden (10.1016/j.amc.2010.09.032_b0105) 2000; 21
Shidfar (10.1016/j.amc.2010.09.032_b0130) 2006; 65
References_xml – volume: 21
  start-page: 611
  year: 2005
  end-page: 622
  ident: b0145
  article-title: Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement
  publication-title: Numer. Meth. Partial Differ. Equ.
– volume: 136
  start-page: 333
  year: 2003
  end-page: 344
  ident: b0040
  article-title: Numerical solution of one-dimensional parabolic inverse problem
  publication-title: Appl. Math. Comput.
– volume: 14
  start-page: 375
  year: 2006
  end-page: 384
  ident: b0020
  article-title: A boundary integral method for solving inverse heat conduction problem
  publication-title: J. Inv. Ill-Posed Probl.
– volume: 65
  start-page: 615
  year: 2006
  end-page: 621
  ident: b0130
  article-title: An inverse heat conduction problem with a nonlinear source term
  publication-title: Nonlinear Anal.
– volume: 233
  start-page: 545
  year: 2009
  end-page: 554
  ident: b0120
  article-title: Application of sinc-collocation method for solving problem
  publication-title: J. Comput. Appl. Math.
– volume: 147
  start-page: 397
  year: 2004
  end-page: 408
  ident: b0035
  article-title: Numerical computation of a control function in a partial differential equation
  publication-title: Appl. Math. Comput.
– volume: 32
  start-page: 117
  year: 1996
  end-page: 130
  ident: b0100
  article-title: Residual-minimization least-squares method for inverse heat conduction
  publication-title: Comput. Math. Appl.
– volume: 175
  start-page: 1366
  year: 2006
  end-page: 1374
  ident: b0090
  article-title: Numerical approximation of solution of an inverse heat conduction problem based Legendre polynomials
  publication-title: Appl. Math. Comput.
– volume: 25
  start-page: 743
  year: 2001
  end-page: 754
  ident: b0065
  article-title: An inverse problem of finding a source parameter in a semilinear parabolic equation
  publication-title: Appl. Math. Model.
– volume: 22
  start-page: 220
  year: 2006
  end-page: 257
  ident: b0135
  article-title: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications
  publication-title: Numer. Meth. Partial Differ. Equ.
– volume: 5A
  start-page: 303
  year: 1984
  end-page: 312
  ident: b0160
  article-title: Solution of one-dimensional second order elliptic and parabolic differential equations with generalized differential method
  publication-title: Chin. Ann. Math
– volume: 50
  start-page: 417
  year: 2009
  end-page: 437
  ident: b0150
  article-title: Method of lines solutions of the parabolic inverse problem with an overspecification at a point
  publication-title: Numer. Algorithms
– year: 1997
  ident: b0165
  article-title: Numerical partial differential equations: finite difference methods
– start-page: 231
  year: 2007
  end-page: 236
  ident: b0015
  article-title: An stable numerical algorithm for identifying the solution of an inverse problem
  publication-title: Appl. Math. Comput.
– volume: 135
  start-page: 491
  year: 2003
  end-page: 503
  ident: b0045
  article-title: Finding a control parameter in one-dimensional parabolic equations
  publication-title: Appl. Math. Comput.
– volume: 37
  start-page: 352
  year: 2008
  end-page: 364
  ident: b0155
  article-title: A new technique for solution of a parabolic inverse problem
  publication-title: Kybernetes
– volume: 168
  start-page: 1400
  year: 2005
  end-page: 1408
  ident: b0050
  article-title: Application of finite difference method to analysis an ill-posed problem
  publication-title: Appl. Math. Comput.
– volume: 40
  start-page: 433
  year: 2002
  end-page: 447
  ident: b0075
  article-title: Fourth-order techniques for identifying a control parameter in the parabolic equations
  publication-title: Int. J. Eng. Sci.
– volume: 79
  start-page: 1989
  year: 2009
  end-page: 2000
  ident: b0115
  article-title: Numerical solution of a one-dimensional inverse problem by the discontinuous Galerkin method
  publication-title: Math. Comput. Simul.
– volume: 61
  start-page: 89
  year: 2003
  end-page: 100
  ident: b0080
  article-title: Determination of a control function in three-dimensional parabolic equations
  publication-title: Math. Comput. Simul.
– volume: 34
  start-page: 2102
  year: 2010
  end-page: 2110
  ident: b0140
  article-title: A numerical technique for solving IHCPs using Tikhonov regularization method
  publication-title: Appl. Math. Model.
– volume: 37
  start-page: 489
  year: 2001
  end-page: 502
  ident: b0070
  article-title: Determination of a control parameter in the two-dimensional diffusion equation
  publication-title: Appl. Numer. Math.
– volume: 21
  start-page: 2187
  year: 2000
  end-page: 2205
  ident: b0105
  article-title: Wavelet and Fourier methods for solving sideways equation
  publication-title: SIAM J. Sci. Comput.
– volume: 16
  start-page: 175
  year: 2000
  end-page: 185
  ident: b0125
  article-title: Approximate inverse for a one-dimensional inverse heat conduction problem
  publication-title: J. Inv.Ill-Posed Probl.
– volume: 28
  start-page: 489
  year: 2004
  end-page: 495
  ident: b0095
  article-title: A fundamental solution method for inverse heat conduction problem
  publication-title: Eng. Anal. Bound. Elem.
– volume: 32
  start-page: 661
  year: 2007
  end-page: 675
  ident: b0025
  article-title: The one-dimensional heat equation subject to a boundary integral specification
  publication-title: Chaos Solitons Fract.
– volume: 39
  start-page: 1503
  year: 1996
  end-page: 1517
  ident: b0085
  article-title: Application of the boundary element method to inverse heat conduction problems
  publication-title: J. Heat Mass Transfer
– volume: 184
  start-page: 308
  year: 2007
  end-page: 315
  ident: b0010
  article-title: A numerical solution technique for a one-dimensional inverse nonlinear parabolic problem
  publication-title: Appl. Math. Comput.
– volume: 4
  start-page: 60
  year: 2008
  end-page: 63
  ident: b0005
  article-title: A numerical algorithm for solving a one-dimensional inverse heat conduction problem
  publication-title: J. Math. Statist.
– volume: 16
  start-page: 87
  year: 1993
  end-page: 114
  ident: b0030
  article-title: Boundary integral solution of the two-dimensional heat equation
  publication-title: Math. Meth. Appl. Sci.
– volume: 41
  start-page: 197
  year: 2005
  end-page: 213
  ident: b0060
  article-title: Parameter determination in a partial differential equation from the overspecified data
  publication-title: Math. Comput. Model.
– volume: 52
  start-page: 39
  year: 2005
  end-page: 62
  ident: b0055
  article-title: Efficient techniques for the second-order parabolic equation subject to nonlocal specifications
  publication-title: Appl. Numer. Math.
– volume: 168
  start-page: 540
  year: 2005
  end-page: 548
  ident: b0110
  article-title: Numerical solution of inverse heat conduction problem with nonstationary measurements
  publication-title: Appl. Math. Comput.
– volume: 41
  start-page: 197
  year: 2005
  ident: 10.1016/j.amc.2010.09.032_b0060
  article-title: Parameter determination in a partial differential equation from the overspecified data
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2004.07.010
– volume: 184
  start-page: 308
  year: 2007
  ident: 10.1016/j.amc.2010.09.032_b0010
  article-title: A numerical solution technique for a one-dimensional inverse nonlinear parabolic problem
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.05.183
– volume: 21
  start-page: 611
  year: 2005
  ident: 10.1016/j.amc.2010.09.032_b0145
  article-title: Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement
  publication-title: Numer. Meth. Partial Differ. Equ.
  doi: 10.1002/num.20055
– start-page: 231
  year: 2007
  ident: 10.1016/j.amc.2010.09.032_b0015
  article-title: An stable numerical algorithm for identifying the solution of an inverse problem
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2007.01.022
– volume: 5A
  start-page: 303
  issue: 3
  year: 1984
  ident: 10.1016/j.amc.2010.09.032_b0160
  article-title: Solution of one-dimensional second order elliptic and parabolic differential equations with generalized differential method
  publication-title: Chin. Ann. Math
– volume: 39
  start-page: 1503
  issue: 7
  year: 1996
  ident: 10.1016/j.amc.2010.09.032_b0085
  article-title: Application of the boundary element method to inverse heat conduction problems
  publication-title: J. Heat Mass Transfer
  doi: 10.1016/0017-9310(95)00229-4
– volume: 136
  start-page: 333
  year: 2003
  ident: 10.1016/j.amc.2010.09.032_b0040
  article-title: Numerical solution of one-dimensional parabolic inverse problem
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(02)00047-4
– volume: 34
  start-page: 2102
  year: 2010
  ident: 10.1016/j.amc.2010.09.032_b0140
  article-title: A numerical technique for solving IHCPs using Tikhonov regularization method
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2009.10.022
– volume: 37
  start-page: 489
  year: 2001
  ident: 10.1016/j.amc.2010.09.032_b0070
  article-title: Determination of a control parameter in the two-dimensional diffusion equation
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(00)00057-X
– volume: 168
  start-page: 1400
  year: 2005
  ident: 10.1016/j.amc.2010.09.032_b0050
  article-title: Application of finite difference method to analysis an ill-posed problem
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2004.10.025
– volume: 175
  start-page: 1366
  issue: 2
  year: 2006
  ident: 10.1016/j.amc.2010.09.032_b0090
  article-title: Numerical approximation of solution of an inverse heat conduction problem based Legendre polynomials
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.08.040
– volume: 61
  start-page: 89
  year: 2003
  ident: 10.1016/j.amc.2010.09.032_b0080
  article-title: Determination of a control function in three-dimensional parabolic equations
  publication-title: Math. Comput. Simul.
  doi: 10.1016/S0378-4754(01)00434-7
– volume: 79
  start-page: 1989
  year: 2009
  ident: 10.1016/j.amc.2010.09.032_b0115
  article-title: Numerical solution of a one-dimensional inverse problem by the discontinuous Galerkin method
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2008.08.002
– volume: 14
  start-page: 375
  issue: 4
  year: 2006
  ident: 10.1016/j.amc.2010.09.032_b0020
  article-title: A boundary integral method for solving inverse heat conduction problem
  publication-title: J. Inv. Ill-Posed Probl.
  doi: 10.1515/156939406777570987
– year: 1997
  ident: 10.1016/j.amc.2010.09.032_b0165
– volume: 28
  start-page: 489
  year: 2004
  ident: 10.1016/j.amc.2010.09.032_b0095
  article-title: A fundamental solution method for inverse heat conduction problem
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/S0955-7997(03)00102-4
– volume: 37
  start-page: 352
  year: 2008
  ident: 10.1016/j.amc.2010.09.032_b0155
  article-title: A new technique for solution of a parabolic inverse problem
  publication-title: Kybernetes
  doi: 10.1108/03684920810851230
– volume: 32
  start-page: 661
  year: 2007
  ident: 10.1016/j.amc.2010.09.032_b0025
  article-title: The one-dimensional heat equation subject to a boundary integral specification
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2005.11.010
– volume: 40
  start-page: 433
  year: 2002
  ident: 10.1016/j.amc.2010.09.032_b0075
  article-title: Fourth-order techniques for identifying a control parameter in the parabolic equations
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/S0020-7225(01)00066-0
– volume: 52
  start-page: 39
  year: 2005
  ident: 10.1016/j.amc.2010.09.032_b0055
  article-title: Efficient techniques for the second-order parabolic equation subject to nonlocal specifications
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2004.02.002
– volume: 233
  start-page: 545
  year: 2009
  ident: 10.1016/j.amc.2010.09.032_b0120
  article-title: Application of sinc-collocation method for solving problem
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2009.08.003
– volume: 65
  start-page: 615
  year: 2006
  ident: 10.1016/j.amc.2010.09.032_b0130
  article-title: An inverse heat conduction problem with a nonlinear source term
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2005.09.030
– volume: 147
  start-page: 397
  year: 2004
  ident: 10.1016/j.amc.2010.09.032_b0035
  article-title: Numerical computation of a control function in a partial differential equation
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(02)00733-6
– volume: 22
  start-page: 220
  year: 2006
  ident: 10.1016/j.amc.2010.09.032_b0135
  article-title: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications
  publication-title: Numer. Meth. Partial Differ. Equ.
  doi: 10.1002/num.20071
– volume: 50
  start-page: 417
  year: 2009
  ident: 10.1016/j.amc.2010.09.032_b0150
  article-title: Method of lines solutions of the parabolic inverse problem with an overspecification at a point
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-008-9234-3
– volume: 4
  start-page: 60
  issue: 1
  year: 2008
  ident: 10.1016/j.amc.2010.09.032_b0005
  article-title: A numerical algorithm for solving a one-dimensional inverse heat conduction problem
  publication-title: J. Math. Statist.
  doi: 10.3844/jmssp.2008.60.63
– volume: 21
  start-page: 2187
  issue: 6
  year: 2000
  ident: 10.1016/j.amc.2010.09.032_b0105
  article-title: Wavelet and Fourier methods for solving sideways equation
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827597331394
– volume: 16
  start-page: 87
  year: 1993
  ident: 10.1016/j.amc.2010.09.032_b0030
  article-title: Boundary integral solution of the two-dimensional heat equation
  publication-title: Math. Meth. Appl. Sci.
  doi: 10.1002/mma.1670160203
– volume: 25
  start-page: 743
  year: 2001
  ident: 10.1016/j.amc.2010.09.032_b0065
  article-title: An inverse problem of finding a source parameter in a semilinear parabolic equation
  publication-title: Appl. Math. Model.
  doi: 10.1016/S0307-904X(01)00010-5
– volume: 135
  start-page: 491
  year: 2003
  ident: 10.1016/j.amc.2010.09.032_b0045
  article-title: Finding a control parameter in one-dimensional parabolic equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(02)00063-2
– volume: 168
  start-page: 540
  year: 2005
  ident: 10.1016/j.amc.2010.09.032_b0110
  article-title: Numerical solution of inverse heat conduction problem with nonstationary measurements
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2004.09.028
– volume: 32
  start-page: 117
  issue: 4
  year: 1996
  ident: 10.1016/j.amc.2010.09.032_b0100
  article-title: Residual-minimization least-squares method for inverse heat conduction
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(96)00130-7
– volume: 16
  start-page: 175
  year: 2000
  ident: 10.1016/j.amc.2010.09.032_b0125
  article-title: Approximate inverse for a one-dimensional inverse heat conduction problem
  publication-title: J. Inv.Ill-Posed Probl.
SSID ssj0007614
Score 2.0408711
Snippet In this paper, finite volume method is used to solve a one-dimensional parabolic inverse problem with source term and Neumann boundary conditions for the first...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5227
SubjectTerms Boundary conditions
Computation
Difference schemes
Exact sciences and technology
Finite volume method
Inverse problem
Inverse problems
Mathematical analysis
Mathematical models
Mathematics
Numerical analysis
Numerical analysis in abstract spaces
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Parabolic partial differential equations
Partial differential equations
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Sciences and techniques of general use
Title Finite volume method for solving a one-dimensional parabolic inverse problem
URI https://dx.doi.org/10.1016/j.amc.2010.09.032
https://www.proquest.com/docview/864404612
Volume 217
WOSCitedRecordID wos000286969000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELagywGEEK8V5bHyAXGgCsr7cSyoFaBSQOpCxcXyE7pik7Bp0P58xrGdZhdY4MAlqhK7jjxfxp9nxjMIPRY5lT5T3BM6zWWsgtzLFZVeIFIFq43gJojmwyJbLvP1unhnQ4earpxAVpb56WlR_1dRwz0Qtj46-w_i7v8UbsBvEDpcQexw_SvBzzeaRk6M2rEVortgQhi2sx7QSVVKT-i0_iYlx0Tn_2Y6QfBkU-owDX14qqszM6Sujq8e94leG3corm7POvQ_WiP086q3S1dtZ4Fv4Yk37Rt--kIrEyVsF9BB5_cA3M9Do4S2soaeOZbpFG2hQ-r8aKhoQ3NK0yEqHOhNYIHZYA2G3XHyS_1uTA1Hz-gxt2F5OkdtuFvMnAN_-ZbMDxcLspqtV0_qb54uM6bd8bbmymW0F2ZJkY_Q3vTVbP26X7yz1KSDd-_vHOFdSOC5UX9HZa7XtIEPTJnKKD8t8h1zWd1EN-yWA08NVG6hS7K8ja692YnxDloY0GAzhdiABgNosAUNpvgcaHAPGmxBgy1o7qLD-Wz14qVn62x4PEqKradUmISwD1cBo0kcKskLKmkQy0gA3fMFS1gKVC-VcRoxPxKJKJgIaKREIHPK_WgfjUp4iXsIQ0cBjFPn8OcxSxSTjKusoDQJWZCnbIx8N2WE2yT0uhbKV-KiDY8IzDLRs0z8gsAsj9HTvkttMrBc1Dh2ciCWQhpqSABBF3U7OCOzfiAgtLl29I8RdkIkoH-1U42Wsmobkqc6wybsE-7_uckDdHX3sTxEo-1JKx-hK_z7dtOcHFgo_gDHE6mL
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+volume+method+for+solving+a+one-dimensional+parabolic+inverse+problem&rft.jtitle=Applied+mathematics+and+computation&rft.au=Wang%2C+Bo&rft.au=Zou%2C+Guang-An&rft.au=Zhao%2C+Peng&rft.au=Wang%2C+Qiang&rft.date=2011-02-15&rft.issn=0096-3003&rft.volume=217&rft.issue=12&rft.spage=5227&rft.epage=5235&rft_id=info:doi/10.1016%2Fj.amc.2010.09.032&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon