Finite volume method for solving a one-dimensional parabolic inverse problem
In this paper, finite volume method is used to solve a one-dimensional parabolic inverse problem with source term and Neumann boundary conditions for the first time. Some advantages of this approach are developing difference schemes and maintaining certain properties of the physics of the problems,...
Gespeichert in:
| Veröffentlicht in: | Applied mathematics and computation Jg. 217; H. 12; S. 5227 - 5235 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier Inc
15.02.2011
Elsevier |
| Schlagworte: | |
| ISSN: | 0096-3003, 1873-5649 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, finite volume method is used to solve a one-dimensional parabolic inverse problem with source term and Neumann boundary conditions for the first time. Some advantages of this approach are developing difference schemes and maintaining certain properties of the physics of the problems, especially for the treatment of the source term and the unknown boundary conditions. Numerical results show that our method is more effective. |
|---|---|
| AbstractList | In this paper, finite volume method is used to solve a one-dimensional parabolic inverse problem with source term and Neumann boundary conditions for the first time. Some advantages of this approach are developing difference schemes and maintaining certain properties of the physics of the problems, especially for the treatment of the source term and the unknown boundary conditions. Numerical results show that our method is more effective. |
| Author | Zou, Guang-an Wang, Qiang Wang, Bo Zhao, Peng |
| Author_xml | – sequence: 1 givenname: Bo surname: Wang fullname: Wang, Bo email: wangbo_sbu@163.com organization: Institute of Applied Mathematics, Henan University, Kaifeng 475004, PR China – sequence: 2 givenname: Guang-an surname: Zou fullname: Zou, Guang-an email: zouguangan@gmail.com organization: College of Mathematics and Information Science, Henan University, Kaifeng 475004, PR China – sequence: 3 givenname: Peng surname: Zhao fullname: Zhao, Peng organization: College of Mathematics and Information Science, Henan University, Kaifeng 475004, PR China – sequence: 4 givenname: Qiang surname: Wang fullname: Wang, Qiang organization: College of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23885033$$DView record in Pascal Francis |
| BookMark | eNp9kE2LFDEQhoOs4OzqD_DWF_HUY-WjM914ksVdhQEvu-dQnVQ0QzoZk54B_71ZZr142FNR8D5vUc81u0o5EWPvOWw5cP3psMXFbgW0HaYtSPGKbfi4k_2g1XTFNgCT7iWAfMOuaz0AwE5ztWH7u5DCSt05x9NC3ULrr-w6n0tXczyH9LPDrl3qXVgo1ZATxu6IBeccg-1COlOp1B1LniMtb9lrj7HSu-d5wx7vvj7cfuv3P-6_337Z91YO09p7LwYxCeX5jIMSnuyEhFyRdAo0uHmYNQihSWk5g3SDm2bHUXrHaUQL8oZ9vPS2u79PVFezhGopRkyUT9WMWilQmouW_PCcxGox-oLJhmqOJSxY_hghx3EAKVtud8nZkmst5I0NK67t37VgiIaDedJsDqZpNk-aDUymaW4k_4_8V_4S8_nCUJN0DlRMtYGSJRcK2dW4HF6g_wIXeJfZ |
| CODEN | AMHCBQ |
| CitedBy_id | crossref_primary_10_1080_00036811_2013_835042 crossref_primary_10_1016_j_apnum_2021_07_023 crossref_primary_10_3390_sym10090409 crossref_primary_10_1007_s11075_021_01090_0 crossref_primary_10_1155_2018_4918256 crossref_primary_10_1016_j_expthermflusci_2013_09_006 crossref_primary_10_1515_jiip_2024_0008 |
| Cites_doi | 10.1016/j.mcm.2004.07.010 10.1016/j.amc.2006.05.183 10.1002/num.20055 10.1016/j.amc.2007.01.022 10.1016/0017-9310(95)00229-4 10.1016/S0096-3003(02)00047-4 10.1016/j.apm.2009.10.022 10.1016/S0168-9274(00)00057-X 10.1016/j.amc.2004.10.025 10.1016/j.amc.2005.08.040 10.1016/S0378-4754(01)00434-7 10.1016/j.matcom.2008.08.002 10.1515/156939406777570987 10.1016/S0955-7997(03)00102-4 10.1108/03684920810851230 10.1016/j.chaos.2005.11.010 10.1016/S0020-7225(01)00066-0 10.1016/j.apnum.2004.02.002 10.1016/j.cam.2009.08.003 10.1016/j.na.2005.09.030 10.1016/S0096-3003(02)00733-6 10.1002/num.20071 10.1007/s11075-008-9234-3 10.3844/jmssp.2008.60.63 10.1137/S1064827597331394 10.1002/mma.1670160203 10.1016/S0307-904X(01)00010-5 10.1016/S0096-3003(02)00063-2 10.1016/j.amc.2004.09.028 10.1016/0898-1221(96)00130-7 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2010 Elsevier Inc. – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.amc.2010.09.032 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1873-5649 |
| EndPage | 5235 |
| ExternalDocumentID | 23885033 10_1016_j_amc_2010_09_032 S0096300310009793 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ RXW SBC SDF SDG SES SME SPC SPCBC SSW SSZ T5K TN5 WH7 X6Y XPP ZMT ~02 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ACLOT ACRPL ACVFH ADCNI ADIYS ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HMJ HVGLF R2- SEW TAE VH1 VOH WUQ ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-ff252924f1ba542fec9aea14e3d4060db5b60226e463b03d5d9bd1a3fd1e8ac03 |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000286969000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0096-3003 |
| IngestDate | Sat Sep 27 18:15:59 EDT 2025 Mon Jul 21 09:13:23 EDT 2025 Sat Nov 29 06:12:22 EST 2025 Tue Nov 18 22:19:07 EST 2025 Fri Feb 23 02:31:12 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Finite volume method Difference schemes Parabolic partial differential equations Inverse problem Source terms Difference scheme Initial value problem Numerical method Boundary condition Stochastic method Partial differential equation Parabolic equation Numerical analysis Boundary value problem One-dimensional calculations Applied mathematics |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c359t-ff252924f1ba542fec9aea14e3d4060db5b60226e463b03d5d9bd1a3fd1e8ac03 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 864404612 |
| PQPubID | 23500 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_864404612 pascalfrancis_primary_23885033 crossref_citationtrail_10_1016_j_amc_2010_09_032 crossref_primary_10_1016_j_amc_2010_09_032 elsevier_sciencedirect_doi_10_1016_j_amc_2010_09_032 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-02-15 |
| PublicationDateYYYYMMDD | 2011-02-15 |
| PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Applied mathematics and computation |
| PublicationYear | 2011 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Lesnic, Elliott, Ingham (b0085) 1996; 39 Jonas, Louis (b0125) 2000; 16 Shidfar, Pourgholi (b0050) 2005; 168 Epshteyn, Khan, Riviere (b0115) 2009; 79 Shidfar, Pourgholi (b0090) 2006; 175 Dehghan (b0040) 2003; 136 Elden, Berntsson, Reginska (b0105) 2000; 21 Wei, Li (b0160) 1984; 5A Frankel (b0100) 1996; 32 Shidfar, Karamali (b0110) 2005; 168 Dehghan (b0025) 2007; 32 Dehghan (b0060) 2005; 41 Pourgholi, Rostamian (b0140) 2010; 34 Jia, Wang (b0020) 2006; 14 Shidfar, Zolfaghari, Damirchi (b0120) 2009; 233 Dehghan (b0080) 2003; 61 Dehghan (b0065) 2001; 25 Shidfar, Karamali, Damirchi (b0130) 2006; 65 Dehghan (b0070) 2001; 37 Dehghan (b0045) 2003; 135 Dehghan (b0055) 2005; 52 Thomas (b0165) 1997 Dehghan, Shakeri (b0150) 2009; 50 Molhem, Pourgholi (b0005) 2008; 4 Dehghan (b0035) 2004; 147 Shidfar, Damirchi, Reihani (b0015) 2007 Shidfar, Fakhraie, Pourgholi, Ebrahimi (b0010) 2007; 184 Dehghan (b0075) 2002; 40 Hsiao, Saranen (b0030) 1993; 16 Lakestani, Dehghan (b0155) 2008; 37 Hon, Wei (b0095) 2004; 28 Dehghan (b0135) 2006; 22 Dehghan (b0145) 2005; 21 Hsiao (10.1016/j.amc.2010.09.032_b0030) 1993; 16 Shidfar (10.1016/j.amc.2010.09.032_b0090) 2006; 175 Pourgholi (10.1016/j.amc.2010.09.032_b0140) 2010; 34 Dehghan (10.1016/j.amc.2010.09.032_b0060) 2005; 41 Dehghan (10.1016/j.amc.2010.09.032_b0045) 2003; 135 Dehghan (10.1016/j.amc.2010.09.032_b0065) 2001; 25 Dehghan (10.1016/j.amc.2010.09.032_b0150) 2009; 50 Epshteyn (10.1016/j.amc.2010.09.032_b0115) 2009; 79 Dehghan (10.1016/j.amc.2010.09.032_b0035) 2004; 147 Shidfar (10.1016/j.amc.2010.09.032_b0110) 2005; 168 Dehghan (10.1016/j.amc.2010.09.032_b0055) 2005; 52 Shidfar (10.1016/j.amc.2010.09.032_b0120) 2009; 233 Dehghan (10.1016/j.amc.2010.09.032_b0145) 2005; 21 Jonas (10.1016/j.amc.2010.09.032_b0125) 2000; 16 Dehghan (10.1016/j.amc.2010.09.032_b0135) 2006; 22 Molhem (10.1016/j.amc.2010.09.032_b0005) 2008; 4 Lakestani (10.1016/j.amc.2010.09.032_b0155) 2008; 37 Dehghan (10.1016/j.amc.2010.09.032_b0075) 2002; 40 Dehghan (10.1016/j.amc.2010.09.032_b0025) 2007; 32 Jia (10.1016/j.amc.2010.09.032_b0020) 2006; 14 Dehghan (10.1016/j.amc.2010.09.032_b0040) 2003; 136 Shidfar (10.1016/j.amc.2010.09.032_b0010) 2007; 184 Frankel (10.1016/j.amc.2010.09.032_b0100) 1996; 32 Hon (10.1016/j.amc.2010.09.032_b0095) 2004; 28 Dehghan (10.1016/j.amc.2010.09.032_b0080) 2003; 61 Wei (10.1016/j.amc.2010.09.032_b0160) 1984; 5A Lesnic (10.1016/j.amc.2010.09.032_b0085) 1996; 39 Dehghan (10.1016/j.amc.2010.09.032_b0070) 2001; 37 Thomas (10.1016/j.amc.2010.09.032_b0165) 1997 Shidfar (10.1016/j.amc.2010.09.032_b0015) 2007 Shidfar (10.1016/j.amc.2010.09.032_b0050) 2005; 168 Elden (10.1016/j.amc.2010.09.032_b0105) 2000; 21 Shidfar (10.1016/j.amc.2010.09.032_b0130) 2006; 65 |
| References_xml | – volume: 21 start-page: 611 year: 2005 end-page: 622 ident: b0145 article-title: Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement publication-title: Numer. Meth. Partial Differ. Equ. – volume: 136 start-page: 333 year: 2003 end-page: 344 ident: b0040 article-title: Numerical solution of one-dimensional parabolic inverse problem publication-title: Appl. Math. Comput. – volume: 14 start-page: 375 year: 2006 end-page: 384 ident: b0020 article-title: A boundary integral method for solving inverse heat conduction problem publication-title: J. Inv. Ill-Posed Probl. – volume: 65 start-page: 615 year: 2006 end-page: 621 ident: b0130 article-title: An inverse heat conduction problem with a nonlinear source term publication-title: Nonlinear Anal. – volume: 233 start-page: 545 year: 2009 end-page: 554 ident: b0120 article-title: Application of sinc-collocation method for solving problem publication-title: J. Comput. Appl. Math. – volume: 147 start-page: 397 year: 2004 end-page: 408 ident: b0035 article-title: Numerical computation of a control function in a partial differential equation publication-title: Appl. Math. Comput. – volume: 32 start-page: 117 year: 1996 end-page: 130 ident: b0100 article-title: Residual-minimization least-squares method for inverse heat conduction publication-title: Comput. Math. Appl. – volume: 175 start-page: 1366 year: 2006 end-page: 1374 ident: b0090 article-title: Numerical approximation of solution of an inverse heat conduction problem based Legendre polynomials publication-title: Appl. Math. Comput. – volume: 25 start-page: 743 year: 2001 end-page: 754 ident: b0065 article-title: An inverse problem of finding a source parameter in a semilinear parabolic equation publication-title: Appl. Math. Model. – volume: 22 start-page: 220 year: 2006 end-page: 257 ident: b0135 article-title: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications publication-title: Numer. Meth. Partial Differ. Equ. – volume: 5A start-page: 303 year: 1984 end-page: 312 ident: b0160 article-title: Solution of one-dimensional second order elliptic and parabolic differential equations with generalized differential method publication-title: Chin. Ann. Math – volume: 50 start-page: 417 year: 2009 end-page: 437 ident: b0150 article-title: Method of lines solutions of the parabolic inverse problem with an overspecification at a point publication-title: Numer. Algorithms – year: 1997 ident: b0165 article-title: Numerical partial differential equations: finite difference methods – start-page: 231 year: 2007 end-page: 236 ident: b0015 article-title: An stable numerical algorithm for identifying the solution of an inverse problem publication-title: Appl. Math. Comput. – volume: 135 start-page: 491 year: 2003 end-page: 503 ident: b0045 article-title: Finding a control parameter in one-dimensional parabolic equations publication-title: Appl. Math. Comput. – volume: 37 start-page: 352 year: 2008 end-page: 364 ident: b0155 article-title: A new technique for solution of a parabolic inverse problem publication-title: Kybernetes – volume: 168 start-page: 1400 year: 2005 end-page: 1408 ident: b0050 article-title: Application of finite difference method to analysis an ill-posed problem publication-title: Appl. Math. Comput. – volume: 40 start-page: 433 year: 2002 end-page: 447 ident: b0075 article-title: Fourth-order techniques for identifying a control parameter in the parabolic equations publication-title: Int. J. Eng. Sci. – volume: 79 start-page: 1989 year: 2009 end-page: 2000 ident: b0115 article-title: Numerical solution of a one-dimensional inverse problem by the discontinuous Galerkin method publication-title: Math. Comput. Simul. – volume: 61 start-page: 89 year: 2003 end-page: 100 ident: b0080 article-title: Determination of a control function in three-dimensional parabolic equations publication-title: Math. Comput. Simul. – volume: 34 start-page: 2102 year: 2010 end-page: 2110 ident: b0140 article-title: A numerical technique for solving IHCPs using Tikhonov regularization method publication-title: Appl. Math. Model. – volume: 37 start-page: 489 year: 2001 end-page: 502 ident: b0070 article-title: Determination of a control parameter in the two-dimensional diffusion equation publication-title: Appl. Numer. Math. – volume: 21 start-page: 2187 year: 2000 end-page: 2205 ident: b0105 article-title: Wavelet and Fourier methods for solving sideways equation publication-title: SIAM J. Sci. Comput. – volume: 16 start-page: 175 year: 2000 end-page: 185 ident: b0125 article-title: Approximate inverse for a one-dimensional inverse heat conduction problem publication-title: J. Inv.Ill-Posed Probl. – volume: 28 start-page: 489 year: 2004 end-page: 495 ident: b0095 article-title: A fundamental solution method for inverse heat conduction problem publication-title: Eng. Anal. Bound. Elem. – volume: 32 start-page: 661 year: 2007 end-page: 675 ident: b0025 article-title: The one-dimensional heat equation subject to a boundary integral specification publication-title: Chaos Solitons Fract. – volume: 39 start-page: 1503 year: 1996 end-page: 1517 ident: b0085 article-title: Application of the boundary element method to inverse heat conduction problems publication-title: J. Heat Mass Transfer – volume: 184 start-page: 308 year: 2007 end-page: 315 ident: b0010 article-title: A numerical solution technique for a one-dimensional inverse nonlinear parabolic problem publication-title: Appl. Math. Comput. – volume: 4 start-page: 60 year: 2008 end-page: 63 ident: b0005 article-title: A numerical algorithm for solving a one-dimensional inverse heat conduction problem publication-title: J. Math. Statist. – volume: 16 start-page: 87 year: 1993 end-page: 114 ident: b0030 article-title: Boundary integral solution of the two-dimensional heat equation publication-title: Math. Meth. Appl. Sci. – volume: 41 start-page: 197 year: 2005 end-page: 213 ident: b0060 article-title: Parameter determination in a partial differential equation from the overspecified data publication-title: Math. Comput. Model. – volume: 52 start-page: 39 year: 2005 end-page: 62 ident: b0055 article-title: Efficient techniques for the second-order parabolic equation subject to nonlocal specifications publication-title: Appl. Numer. Math. – volume: 168 start-page: 540 year: 2005 end-page: 548 ident: b0110 article-title: Numerical solution of inverse heat conduction problem with nonstationary measurements publication-title: Appl. Math. Comput. – volume: 41 start-page: 197 year: 2005 ident: 10.1016/j.amc.2010.09.032_b0060 article-title: Parameter determination in a partial differential equation from the overspecified data publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2004.07.010 – volume: 184 start-page: 308 year: 2007 ident: 10.1016/j.amc.2010.09.032_b0010 article-title: A numerical solution technique for a one-dimensional inverse nonlinear parabolic problem publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.05.183 – volume: 21 start-page: 611 year: 2005 ident: 10.1016/j.amc.2010.09.032_b0145 article-title: Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement publication-title: Numer. Meth. Partial Differ. Equ. doi: 10.1002/num.20055 – start-page: 231 year: 2007 ident: 10.1016/j.amc.2010.09.032_b0015 article-title: An stable numerical algorithm for identifying the solution of an inverse problem publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2007.01.022 – volume: 5A start-page: 303 issue: 3 year: 1984 ident: 10.1016/j.amc.2010.09.032_b0160 article-title: Solution of one-dimensional second order elliptic and parabolic differential equations with generalized differential method publication-title: Chin. Ann. Math – volume: 39 start-page: 1503 issue: 7 year: 1996 ident: 10.1016/j.amc.2010.09.032_b0085 article-title: Application of the boundary element method to inverse heat conduction problems publication-title: J. Heat Mass Transfer doi: 10.1016/0017-9310(95)00229-4 – volume: 136 start-page: 333 year: 2003 ident: 10.1016/j.amc.2010.09.032_b0040 article-title: Numerical solution of one-dimensional parabolic inverse problem publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(02)00047-4 – volume: 34 start-page: 2102 year: 2010 ident: 10.1016/j.amc.2010.09.032_b0140 article-title: A numerical technique for solving IHCPs using Tikhonov regularization method publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2009.10.022 – volume: 37 start-page: 489 year: 2001 ident: 10.1016/j.amc.2010.09.032_b0070 article-title: Determination of a control parameter in the two-dimensional diffusion equation publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(00)00057-X – volume: 168 start-page: 1400 year: 2005 ident: 10.1016/j.amc.2010.09.032_b0050 article-title: Application of finite difference method to analysis an ill-posed problem publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2004.10.025 – volume: 175 start-page: 1366 issue: 2 year: 2006 ident: 10.1016/j.amc.2010.09.032_b0090 article-title: Numerical approximation of solution of an inverse heat conduction problem based Legendre polynomials publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2005.08.040 – volume: 61 start-page: 89 year: 2003 ident: 10.1016/j.amc.2010.09.032_b0080 article-title: Determination of a control function in three-dimensional parabolic equations publication-title: Math. Comput. Simul. doi: 10.1016/S0378-4754(01)00434-7 – volume: 79 start-page: 1989 year: 2009 ident: 10.1016/j.amc.2010.09.032_b0115 article-title: Numerical solution of a one-dimensional inverse problem by the discontinuous Galerkin method publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2008.08.002 – volume: 14 start-page: 375 issue: 4 year: 2006 ident: 10.1016/j.amc.2010.09.032_b0020 article-title: A boundary integral method for solving inverse heat conduction problem publication-title: J. Inv. Ill-Posed Probl. doi: 10.1515/156939406777570987 – year: 1997 ident: 10.1016/j.amc.2010.09.032_b0165 – volume: 28 start-page: 489 year: 2004 ident: 10.1016/j.amc.2010.09.032_b0095 article-title: A fundamental solution method for inverse heat conduction problem publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/S0955-7997(03)00102-4 – volume: 37 start-page: 352 year: 2008 ident: 10.1016/j.amc.2010.09.032_b0155 article-title: A new technique for solution of a parabolic inverse problem publication-title: Kybernetes doi: 10.1108/03684920810851230 – volume: 32 start-page: 661 year: 2007 ident: 10.1016/j.amc.2010.09.032_b0025 article-title: The one-dimensional heat equation subject to a boundary integral specification publication-title: Chaos Solitons Fract. doi: 10.1016/j.chaos.2005.11.010 – volume: 40 start-page: 433 year: 2002 ident: 10.1016/j.amc.2010.09.032_b0075 article-title: Fourth-order techniques for identifying a control parameter in the parabolic equations publication-title: Int. J. Eng. Sci. doi: 10.1016/S0020-7225(01)00066-0 – volume: 52 start-page: 39 year: 2005 ident: 10.1016/j.amc.2010.09.032_b0055 article-title: Efficient techniques for the second-order parabolic equation subject to nonlocal specifications publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2004.02.002 – volume: 233 start-page: 545 year: 2009 ident: 10.1016/j.amc.2010.09.032_b0120 article-title: Application of sinc-collocation method for solving problem publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2009.08.003 – volume: 65 start-page: 615 year: 2006 ident: 10.1016/j.amc.2010.09.032_b0130 article-title: An inverse heat conduction problem with a nonlinear source term publication-title: Nonlinear Anal. doi: 10.1016/j.na.2005.09.030 – volume: 147 start-page: 397 year: 2004 ident: 10.1016/j.amc.2010.09.032_b0035 article-title: Numerical computation of a control function in a partial differential equation publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(02)00733-6 – volume: 22 start-page: 220 year: 2006 ident: 10.1016/j.amc.2010.09.032_b0135 article-title: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications publication-title: Numer. Meth. Partial Differ. Equ. doi: 10.1002/num.20071 – volume: 50 start-page: 417 year: 2009 ident: 10.1016/j.amc.2010.09.032_b0150 article-title: Method of lines solutions of the parabolic inverse problem with an overspecification at a point publication-title: Numer. Algorithms doi: 10.1007/s11075-008-9234-3 – volume: 4 start-page: 60 issue: 1 year: 2008 ident: 10.1016/j.amc.2010.09.032_b0005 article-title: A numerical algorithm for solving a one-dimensional inverse heat conduction problem publication-title: J. Math. Statist. doi: 10.3844/jmssp.2008.60.63 – volume: 21 start-page: 2187 issue: 6 year: 2000 ident: 10.1016/j.amc.2010.09.032_b0105 article-title: Wavelet and Fourier methods for solving sideways equation publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827597331394 – volume: 16 start-page: 87 year: 1993 ident: 10.1016/j.amc.2010.09.032_b0030 article-title: Boundary integral solution of the two-dimensional heat equation publication-title: Math. Meth. Appl. Sci. doi: 10.1002/mma.1670160203 – volume: 25 start-page: 743 year: 2001 ident: 10.1016/j.amc.2010.09.032_b0065 article-title: An inverse problem of finding a source parameter in a semilinear parabolic equation publication-title: Appl. Math. Model. doi: 10.1016/S0307-904X(01)00010-5 – volume: 135 start-page: 491 year: 2003 ident: 10.1016/j.amc.2010.09.032_b0045 article-title: Finding a control parameter in one-dimensional parabolic equations publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(02)00063-2 – volume: 168 start-page: 540 year: 2005 ident: 10.1016/j.amc.2010.09.032_b0110 article-title: Numerical solution of inverse heat conduction problem with nonstationary measurements publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2004.09.028 – volume: 32 start-page: 117 issue: 4 year: 1996 ident: 10.1016/j.amc.2010.09.032_b0100 article-title: Residual-minimization least-squares method for inverse heat conduction publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(96)00130-7 – volume: 16 start-page: 175 year: 2000 ident: 10.1016/j.amc.2010.09.032_b0125 article-title: Approximate inverse for a one-dimensional inverse heat conduction problem publication-title: J. Inv.Ill-Posed Probl. |
| SSID | ssj0007614 |
| Score | 2.0408711 |
| Snippet | In this paper, finite volume method is used to solve a one-dimensional parabolic inverse problem with source term and Neumann boundary conditions for the first... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5227 |
| SubjectTerms | Boundary conditions Computation Difference schemes Exact sciences and technology Finite volume method Inverse problem Inverse problems Mathematical analysis Mathematical models Mathematics Numerical analysis Numerical analysis in abstract spaces Numerical analysis. Scientific computation Numerical methods in probability and statistics Parabolic partial differential equations Partial differential equations Partial differential equations, initial value problems and time-dependant initial-boundary value problems Sciences and techniques of general use |
| Title | Finite volume method for solving a one-dimensional parabolic inverse problem |
| URI | https://dx.doi.org/10.1016/j.amc.2010.09.032 https://www.proquest.com/docview/864404612 |
| Volume | 217 |
| WOSCitedRecordID | wos000286969000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELagywGEEK8V5bHyAXGgCsr7cSyoFaBSQOpCxcXyE7pik7Bp0P58xrGdZhdY4MAlqhK7jjxfxp9nxjMIPRY5lT5T3BM6zWWsgtzLFZVeIFIFq43gJojmwyJbLvP1unhnQ4earpxAVpb56WlR_1dRwz0Qtj46-w_i7v8UbsBvEDpcQexw_SvBzzeaRk6M2rEVortgQhi2sx7QSVVKT-i0_iYlx0Tn_2Y6QfBkU-owDX14qqszM6Sujq8e94leG3corm7POvQ_WiP086q3S1dtZ4Fv4Yk37Rt--kIrEyVsF9BB5_cA3M9Do4S2soaeOZbpFG2hQ-r8aKhoQ3NK0yEqHOhNYIHZYA2G3XHyS_1uTA1Hz-gxt2F5OkdtuFvMnAN_-ZbMDxcLspqtV0_qb54uM6bd8bbmymW0F2ZJkY_Q3vTVbP26X7yz1KSDd-_vHOFdSOC5UX9HZa7XtIEPTJnKKD8t8h1zWd1EN-yWA08NVG6hS7K8ja692YnxDloY0GAzhdiABgNosAUNpvgcaHAPGmxBgy1o7qLD-Wz14qVn62x4PEqKradUmISwD1cBo0kcKskLKmkQy0gA3fMFS1gKVC-VcRoxPxKJKJgIaKREIHPK_WgfjUp4iXsIQ0cBjFPn8OcxSxSTjKusoDQJWZCnbIx8N2WE2yT0uhbKV-KiDY8IzDLRs0z8gsAsj9HTvkttMrBc1Dh2ciCWQhpqSABBF3U7OCOzfiAgtLl29I8RdkIkoH-1U42Wsmobkqc6wybsE-7_uckDdHX3sTxEo-1JKx-hK_z7dtOcHFgo_gDHE6mL |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+volume+method+for+solving+a+one-dimensional+parabolic+inverse+problem&rft.jtitle=Applied+mathematics+and+computation&rft.au=Wang%2C+Bo&rft.au=Zou%2C+Guang-An&rft.au=Zhao%2C+Peng&rft.au=Wang%2C+Qiang&rft.date=2011-02-15&rft.issn=0096-3003&rft.volume=217&rft.issue=12&rft.spage=5227&rft.epage=5235&rft_id=info:doi/10.1016%2Fj.amc.2010.09.032&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |